

EXERCISE SERIES 10

Exercise 1: Real solar cell

Consider a solar cell based on a simple p-n junction with the same emitter as described in Ex. 2 of Serie 6 and a p-doped base ($N_A = 10^{16} \text{ cm}^{-3}$) but this time with a finite thickness of $d = 180 \mu\text{m}$. The total thickness of the wafer is denoted by H . We assume that under AM1.5G illumination, the fill factor (FF) is 75 % and the short circuit current density (J_{sc}) is 44 mA cm^{-2} . The purpose of this exercise is to get a feeling for the impact that the surface recombination velocities S_n and S_p , the lifetime τ and the saturation current density J_0 have on the cell efficiency.

- Write down the V_{oc} as a function of J_0 with the help of the diode equation (one diode model) under illumination.
- Explain why J_{0E} increases with the doping (starting from approx. 10^{19} cm^{-3}) for a constant S_p using Fig. 1.
- Explain why J_{0E} increases strongly for S_p higher than 10^3 cm s^{-1} , if the doping is decreased below 10^{19} .

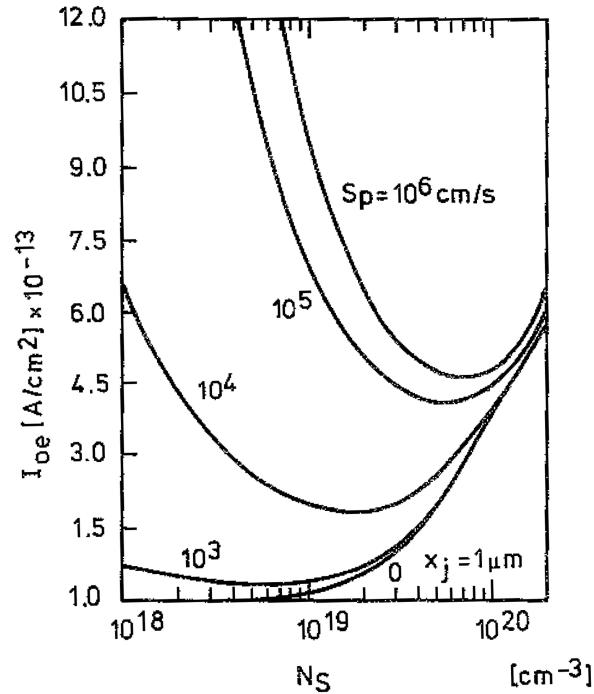


Figure 1: Saturation current of an emitter as a function of surface concentration, with S_p being parameter. Taken from *Crystalline silicon solar cells* by A. Goetzberger, J. Knobloch, and B. Voss.

Exercise 2: Geometry factor

The following exercise will treat the so-called geometry factor G_F which influences the base saturation current J_{0B} given by:

$$J_{0B} = \frac{q \cdot n_i^2 \cdot D_n}{N_A \cdot L_n} \cdot G_F \quad (1)$$

G_F is determined by the two variables S_n/S_∞ and H/L_n , where S_∞ is the bulk recombination velocity defined as D_n/L_n . The relationship between those parameters is shown in Fig. 2.

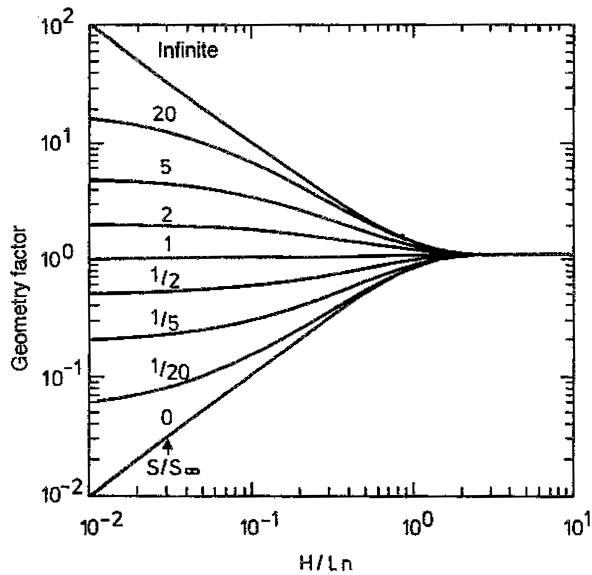


Figure 2: Geometry factor as function of the ratio base thickness H / diffusion length L_n . Taken from *Crystalline silicon solar cells* by A. Götzberger, J. Knoblauch, and B. Voss.

a) Explain Fig. 2 in your own words.

The rest of this exercise is OPTIONAL but we recommend to you to at least have a look at the solutions posted on the Moodle.

b) Extract the value of the G_F for $\tau = 1$ ms from the graph and three different values of surface recombination velocity $S_n = 10^1, 10^3, 10^7 \text{ cm s}^{-1}$. Use $H = 180 \mu\text{m}$ and $D_n = 28 \text{ cm}^2 \text{s}^{-1}$.

c) With the values obtained in part b) calculate the corresponding base saturation current values, the total saturation current density $J_0 = J_{0E} + J_{0B}$, the V_{oc} and eventually the efficiency η . Use the following values: $D_n = 28 \text{ cm}^2 \text{s}^{-1}$, $n_i^2 = 10^{20} \text{ cm}^{-6}$, $J_{0E} = 2 \times 10^{-13} \text{ A cm}^{-2}$, $J_{sc} = 44 \text{ mA cm}^{-2}$ and $FF = 75\%$.

d) Change the lifetime to $\tau_n = 1 \mu\text{s}$ and calculate again.

e) Is the efficiency realistic?

f) Imagine $S_n \rightarrow 0$ and $\tau_n \rightarrow \infty$. Calculate J_{0B} . Which part of the saturation current dominates and limits the efficiency? What is the maximum achievable efficiency?