=Pr-L REHAssist

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

RELAB

REHABILITATION ENGINEERING LAB

Haptic Human-Robot interfaces: Lab O -
answers

2 First steps with the board

2.3

Interaction with the board

2.3.1 Basic remote control with the GUI

When setting the motor torque to a value of 3 mN.m, the paddle moves until it reaches the end stop.
When moving the paddle, it does not really feel like a spring, because the force is constant, and is
then not proportional to the angle. Examples of (almost) constant forces are:

The gravity acting on a constant mass.
A constant-force spring.

A pre-loaded spring with a very low stiffness, so that over the paddle movement range, it
does not deform enough to change its force noticeably.

2.4 Exercises

2.4.1 Spring effect

1.
2.

See 3.1 for the full implementation.
When moving the paddle with a high spring stiffness (0.02 N.m/deg), we obtain:

08 ! A [Al 20

0.6 “" / 1\ 120
04))

02 | | { |

Motor current [A]
o
Paddle angle [deg]

\ If

02 W |
A

04+ 4 . |
Vo 1 .

<06 I Vi 30

08 \ Y 1-40

Time [s]

Figure 1: plot of the current and the paddle position

We can notice that the motor current saturates around 0.92 A, which is when the motor torque
reaches its nominal value, even if the angle of the paddle keeps increasing. This is because the board
automatically limits the current to prevent the motor from overheating.

3. We set the spring stiffness to a lower value, such that we make sure that the motor current

never saturates. Then, we pull and release the paddle, and record the oscillation.

“PFL REHAssist EfH ... RELAB

REHABILITATION ENGINEERING LAB
Swiss Federal Institute of Technology Zurich

30
25
|
20 ‘
‘I X 7.396

15 Y 13.35
> |
s 10 I X 7.563
© [“ | Y 6.018
2 o=
g A
© | I A
= ||
o R

S 1 X 7.647

[Y -3.334
10 F |
X7.313 || X 7.479
15 Y 767 | Y -9.926
.
6.5 7 7.5 8 85
Time [s]

Figure 2: paddle oscillation after release

From the plot, we can read the oscillation period: 0.175 s, or 5.71 Hz.
The frequency of an ideal mass-spring oscillator is:

1 |k

f=2 7

With:

e f=5.71Hz: the oscillation frequency
e k=0.01 N.m/deg =0.573 N.m/rad: the spring stiffness
e | [kg.m?]: the system inertia

We can then compute the system inertia (paddle part + rotor + worm screw inertia):

1= _k 4.45-10~* kg.m?

(2nf)?
We now have to compute the theoretical paddle inertia, considering the dominant inertias: the
paddle part itself, the rotor of the motor and the worm screw. From the hardware documentation:

e Paddle part inertia: 2.054e-4 kg.m?2.

e Rotorinertia: 11 g.cm? = 1.1e-6 kg.m>.

e Worm screw inertia: 1.44 g.cm?= 0.144e-6 kg.m?.
e Reduction ratio: 15.

The total equivalent inertia around the rotation axis of the paddle is:
qu = lpaddle + RZ(Irotor + Lyorm screw) = 4.85 - 107* kg-mz

This theoretical value is very close to the one computed from the measurements. (What do you think
is the major source of error in this calculation?)

2.4.2 Damping effect

1. When moving the paddle slowly, we notice that the resolution of the speed estimate is very
poor (~17°/s).

=Pr-L REHAssist

=] n = @ @
] o o =1 =1
T T

Paddle speed [deg/s]
[=)] o]
(=] (=}

40

20

0k

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

I
N_%"”‘Wl Bail

\JM | I .
Il i)

u,w.“ N'Luw,
IM %H_A, -

LT
r |

Il .

Paddle angle [deg]

4.4 45 46 47 4.8 4.9 5 5.1
Time [s]

Figure 3: speed estimate at dt = 350 us.

RELAB

REHABILITATION ENGINEERING LAB

From the hardware documentation, the encoder has a resolution of 4096 steps per motor turn, so
4096 x 15 = 61440 steps per paddle turn, or 170.67 steps/°.
The speed resolution corresponds to the smallest value that can be measured. In this case, this would
correspond to 1 encoder step per sampling period (350 us), or 1/170.67° / 350e-6s = 16.74°/s.

2. When increasing the sampling period of the haptic controller to 10 ms, the resolution of the
speed estimate is dramatically improved. This time, the resolution increases to
1/170.67° / 10e-3s = 0.59°/s.

Paddle speed [deg/s]

207 20
151 h
,H |4 15
11y
10 A b
M ’w“" \ |/ Wy
LYY, \ 109
5 w ‘,/ WY N]
| ¥) l\.\.n/.l1 B
| ’ A 2
0 Y ' y 15 &
‘ | =
-5 l E
10 v U,’»" "‘\m R
Wy 5
15 v
20 ‘ ‘ . ‘ . ‘
1 2 3 4 5 6 7 8
Time [s]

Figure 4: speed estimate at dt = 10000 us.

3. See 3.2 for the full implementation.

When the paddle moves into the center area, it feels like it is moving into a viscous liquid. It

requires very little force to go through it at low speed, but more force is needed to move

faster.

Note that if the damping factor is too high, the motor current may saturate, and the

controller could even be unstable.

E I : L R E } IASS I St Eidgendssische Technische Hochschule Ziirich REHABILITATION ENGINEERING LAB

Swiss Federal Institute of Technology Zurich

3 Appendix: source codes
3.1 Spring effect

#include "haptic_controller.h"
#include "communication.h"

#include "drivers/adc.h"

#include "drivers/incr_encoder.h"
#include "drivers/hall.h"

#include "drivers/callback_timers.h"
#include "lib/utils.h"

#include "torque_regulator.h"

#tdefine DEFAULT_HAPTIC_CONTROLLER_PERIOD 350 // Default control loop period [us].

volatile uint32_t hapt_timestamp; // Time base of the controller, also used to timestamp the samples
sent by streaming [us].

volatile float32_t hapt_hallvoltage; // Hall sensor output voltage [V].

volatile float32_t hapt_encoderPaddleAngle; // Paddle angle measured by the incremental encoder [deg].
volatile float32_t hapt_motorTorque; // Motor torque [N.m].

volatile float32_t hapt_springStiffness; // Spring stiffness [N.m/deg].

volatile float32_t hapt_springRestAngle; // Spring rest angle [deg].

void hapt_Update(void);

/**
* @brief Initializes the haptic controller.
*/

void hapt_Init(void)

{

hapt_timestamp = 0;

hapt_motorTorque = 0.0f;
hapt_springStiffness = 0.0f;
hapt_springRestAngle = 0.0f;

// Make the timers call the update function periodically.
cbt_SetHapticControllerTimer(hapt_Update, DEFAULT_HAPTIC_CONTROLLER_PERIOD);

// Share some variables with the computer.

comm_monitorUint32Func("timestep [us]", cbt_GetHapticControllerPeriod,
cbt_SetHapticControllerPeriod);

comm_monitorFloat("motor_torque [N.m]", (float32_t*)&hapt_motorTorque, READWRITE);

comm_monitorFloat("encoder_paddle pos [deg]", (float32_t*)&hapt_encoderPaddleAngle, READONLY);

comm_monitorFloat("hall voltage [V]", (float32_t*)&hapt_hallVoltage, READONLY);

comm_monitorFloat("“spring stiffness [N.m/deg]", (float32_t*)&hapt_springStiffness, READWRITE);

comm_monitorFloat("“spring rest angle [deg]", (float32_t*)&hapt_springRestAngle, READWRITE);

}

/**
* @brief Updates the haptic controller state.
*/

void hapt_Update()

{

float32_t motorShaftAngle; // [deg].
float32_t paddleTorque; // [N.m].

// Compute the dt (uncomment if you need it).
//float32_t dt = ((float32_t)cbt_GetHapticControllerPeriod()) / 1leeeeee.of; // [s].

// Increment the timestamp.
hapt_timestamp += cbt_GetHapticControllerPeriod();

// Get the Hall sensor voltage.
hapt_hallVoltage = hall_GetVoltage();

// Get the encoder position.

c I I L R E } IASS I St Eidgendssische Technische Hochschule Ziirich REHABILITATION ENGINEERING LAB

Swiss Federal Institute of Technology Zurich

motorShaftAngle = enc_GetPosition();
hapt_encoderPaddleAngle = motorShaftAngle / REDUCTION_RATIO;

// Compute the spring torque.
paddleTorque = -(hapt_encoderPaddleAngle - hapt_springRestAngle) * hapt_springStiffness;

// Compute the motor torque, and apply it.
hapt_motorTorque = paddleTorque / REDUCTION_RATIO;
torg_SetTorque(hapt_motorTorque);

3.2 Damping effect

#include "haptic_controller.h"
#include "communication.h"

#include "drivers/adc.h"

#include "drivers/incr_encoder.h"
#include "drivers/hall.h"

#include "drivers/callback_timers.h"
#include "1ib/utils.h"

#include "torque_regulator.h”

#define DEFAULT_HAPTIC_CONTROLLER_PERIOD 10000 // Default control loop period [us].

volatile uint32_t hapt_timestamp; // Time base of the controller, also used to timestamp the samples
sent by streaming [us].

volatile float32_t hapt_hallvoltage; // Hall sensor output voltage [V].

volatile float32_t hapt_encoderPaddleAngle; // Paddle angle measured by the incremental encoder [deg].
volatile float32_t hapt_motorTorque; // Motor torque [N.m].

volatile float32_t hapt_damping; // Spring stiffness [N.m/(deg/s)].
volatile float32_t hapt_prevPaddleAngle; // Previous paddle angle [deg].
volatile float32_t hapt_paddleSpeed; // Paddle speed [deg/s].

void hapt_Update(void);

/**
* @brief Initializes the haptic controller.
*/

void hapt_Init(void)

{

hapt_timestamp = 0;
hapt_motorTorque = 0.0f;
hapt_damping = ©0.6f;
hapt_prevPaddleAngle = 0.0f;

// Make the timers call the update function periodically.
cbt_SetHapticControllerTimer(hapt_Update, DEFAULT_HAPTIC_CONTROLLER_PERIOD);

// Share some variables with the computer.

comm_monitorUint32Func("timestep [us]", cbt_GetHapticControllerPeriod,
cbt_SetHapticControllerPeriod);

comm_monitorFloat("motor_torque [N.m]", (float32_t*)&hapt_motorTorque, READWRITE);

comm_monitorFloat("encoder_paddle_pos [deg]", (float32_t*)&hapt_encoderPaddleAngle, READONLY);

comm_monitorFloat("hall voltage [V]", (float32_t*)&hapt_hallVoltage, READONLY);

comm_monitorFloat(“damping [N.m/(deg/s)]", (float32_t*)&hapt_damping, READWRITE);

comm_monitorFloat("“paddle_speed [deg/s]", (float32_t*)&hapt_paddleSpeed, READONLY);

}

/**
* @brief Updates the haptic controller state.
*/

void hapt_Update()

{

float32_t motorShaftAngle; // [deg].
float32_t paddleTorque; // [N.m].

// Compute the dt (uncomment if you need it).
float32_t dt = ((float32_t)cbt_GetHapticControllerPeriod()) / 16000e6.0t; // [s].

// Increment the timestamp.
hapt_timestamp += cbt_GetHapticControllerPeriod();

c I I L R E } IASS I st Eidgendssische Technische Hochschule Ziirich REHABILITATION ENGINEERING LAB

Swiss Federal Institute of Technology Zurich

// Get the Hall sensor voltage.
hapt_hallVoltage = hall_GetVoltage();

// Get the encoder position.
motorShaftAngle = enc_GetPosition();
hapt_encoderPaddleAngle = motorShaftAngle / REDUCTION_RATIO;

// Compute the paddle speed.
hapt_paddleSpeed = (hapt_encoderPaddleAngle - hapt_prevPaddleAngle) / dt;
hapt_prevPaddleAngle = hapt_encoderPaddleAngle;

// Compute the paddle damping torque.
if(fabsf(hapt_encoderPaddleAngle) < 10.0f)
paddleTorque = -hapt_paddleSpeed * hapt_damping;
else
paddleTorque = 9.0f;

// Compute the motor torque, and apply it.
hapt_motorTorque = paddleTorque / REDUCTION_RATIO;
torg_SetTorque(hapt_motorTorque);

