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Restoring natural sensation via neuroprosthetics relies on the possibility of encoding complex and nuanced information.
For example, an ideal brain-machine interface with sensory feedback would provide the user with sensation about
movement, pressure, curvature, texture, etc. Despite advances in neural interfaces that allow for complex stimulation
patterns (e.g., multisite stimulation or the possibility of targeting a precise neural ensemble), a key question remains;
How can we best exploit the potential of these technologies? The growing of the number of electrodes coupled with
more parameters being explored leads to an exponential increase in the number of possible combinations, making a
brute-force approach, such as systematic search, impractical. This perspective outlines three different optimization
frameworks — namely, the explicit, physiological, and self-optimized methods — allowing one to potentially converge
faster toward effective parameters. Although our focus will be on the somatosensory system, these frameworks are
flexible and applicable to various sensory systems (e.g., vision) and stimulator types.

INTRODUCTION

In recent years, many non-invasive and implantable strate-
gies have been proposed to restore a variety of sensations
(e.g., vision,! tactile,> auditory?). For example, somatosen-
sory neuroprosthetics have been developed for upper limb,*°
lower limb,”# stroke,” spinal cord injury!® with promising
outcomes. Raspopovic et al. (2014) restored the sensa-
tion of force, stiffness and shape in arm amputees using
transversal intrafascicular multichannel electrodes (TIME),*
while Oddo et al. (2016) demonstrated the discrimination
of different textures using microneurography and TIME.!!.
For non-invasive options, D’Anna et al. (2017) managed to
utilized transcutaneous electrical nerve stimulation (TENS)
to restore force feedback'?. Several studies with brain im-
plants showed somatosensory restoration via intracortical mi-
crostimulation (ICMS) in both non-human primate!>'* and
humans.® In recent years, the field has also begun to gravitate
towards restoration of thermal sensation.!>~1%

Sensory encoding refers to the process in which informa-
tion from the environment is captured and converted into neu-
ronal signals that are interpreted by the brain. The loss of
sensory organs disrupts the biological sensory encoding path-
ways. However, an artificial sensor could replace the sensory
organs'>!°. Coupled with neural interfaces that map the input
from the sensor to stimulation (e.g. electrical, mechanical,
thermal) of the nervous system, this allows for the artificial
restoration of the sensory encoding process*>13:16:20.21

Although lost sensations can be partially restored through

sensory encoding, it poses a fundamental challenge due to the
subjective nature of personal perceptions. This is in contrast
to the relatively more objective task of reading and decoding
neural signals for motor neural prosthesis.?>>* This concept of
the subjective nature of individual perceptions is also known
as ‘qualia’ — exemplified by the idea that the personal expe-
rience of “what is red?" or “feeling pain" is hard to commu-
nicate and unique. The challenge in sensory restoration arises
from the variability of the qualia, influenced by factors such
as prior sensory experiences and neural plasticity. In addition,
the placement of the neural interface inevitably varies between
users, contributing to the elicitation of different perceptions.

The inherent subjectivity of sensory perception complicates
the evaluation of stimulation strategies, making it challenging
to determine their effectiveness. To mitigate this, researchers
have developed objective assessment methods that minimize
bias. For instance, Iberite and colleagues employed a match-
ing task where artificial sensations from prosthetics were pre-
sented alongside reference natural sensations, allowing users
to indicate whether they matched'> — this is less susceptible
to bias compared to asking participants to describe how the
artificial sensation felt. Another strategy involves assessing
the impact of sensory feedback on motor performance, such
as moving blocks with varying thermal®* or fragility levels®,
as well as measuring the time taken to reach for an object®.
Finally, embodiment assessments serve as proxies for evalu-
ating the efficacy of sensory feedback. Methods such as the
cross-congruency paradigm?® and peripersonal space tests?’
help determine the extent to which a prosthetic limb is inte-
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FIG. 1. Sensory encoding of neural interface. a Examples of different types of neural interfaces. b Possible stimulation parameters that can

be optimized. ¢ Possible ways of selecting the stimulation sites.

grated into the body schema. Together, these objective ap-
proaches offer a more comprehensive and reliable evaluation
of sensory feedback in neuroprosthetics.

Beyond the evaluation of stimulation strategies, subjectiv-

ity also poses a fundamental challenge in optimizing stimula-
tion parameters. A key question in sensory feedback is how
to best encode sensory information through artificial stimula-
tion to produce meaningful and naturalistic perceptions. Find-



ing an effective set of parameters involves navigation in a
very large search space. For example, considering ICMS of
the somatosensory cortex (Fig. 1a), two categories of stim-
ulation parameters could be explored: the stimulation pa-
rameters (Fig. 1b) and the stimulation sites (Fig. 1c). Typi-
cally, stimulation parameters such as pulse amplitude, pulse
width, and stimulation frequency were modulated. Wave-
form shape, symmetry, cathodic or anodic first, and the use
of mono/bipolar stimulation have also been investigated. Fur-
thermore, in recent years, biomimetic patterns have been
introduced.?®?° Biomimetic stimulation is a complex form of
stimulation that mirrors the encoding methods utilized by the
nervous system in nature. In addition to biomimicry, stimula-
tion bursts have also been used and can be defined by param-
eters such as burst duration and interburst interval.>°

When considering the stimulation sites, we can generally
select a single electrode or multiple electrodes (Fig. 1c). The
stimulation parameters are usually similar across the elec-
trodes. Nevertheless, the discipline is increasingly focusing
on investigating the spatio-temporal characteristics of neurons
during stimulation’!. Initially, neuronal activity is captured
through implants as specific stimuli are administered. Sub-
sequently, they stimulate the implanted region guided by the
recorded neuronal activity. For instance, one group of neurons
may become active in the initial phase, whereas a different
group might activate subsequently.

Most, if not all of the parameters discussed are mutu-
ally exclusive; as such, this leads to an exponential increase
in the number of possible combinations across the different
parameters. Studies of computational models® and animal
models’?33 have helped narrow down this huge multidimen-
sional search space. Nevertheless, to unlock the next tier of
bespoke sensory encoding — encompassing more natural sen-
sation, precise, and stable somatotopy — we need faster or
automated methods to optimize the parameters, exploiting the
extensive possibilities offered by the multiparameter and mul-
tisite stimulation.

To this end, in this perspective, we first discuss the con-
ventional approach of developing sensory encoding strate-
gies, which involves devising encoding method with novel
strategy or modality. Then, we elaborate on the three differ-
ent optimization frameworks — explicit, physiological, self-
optimized — for efficient optimization of stimulation param-
eters for the different sensory encoding strategies already ex-
plored through the conventional approach. Although we fo-
cused on the somatosensory system, these frameworks are de-
signed to be adaptable across different sensory systems and
types of stimulators. Lastly, we explore how the different op-
timization frameworks could work in tandem.

CONVENTIONAL APPROACH

Traditionally, the development of sensory encoding strate-
gies has been guided by theoretical models.>**° More re-
cently, there has also been an increase in developmen-
tal efforts inspired by biological mechanisms observed in
natural sensory processing.®4!1=#* Researchers identify po-

tential stimulation parameters, such as those illustrated in
Fig. 1b, to encode sensory information. Then these param-
eters are validated on human subjects through experimental
trials.! 123945 The effectiveness of these parameters is often
assessed through post-stimulation psychophysical tests and
post-experiment questionnaires, where subjects describe their
sensory experiences, including aspects such as intensity, qual-
ity, and spatial localization.

Sensory encoding strategies can vary in complexity. For
example, in tactile sensory feedback, early efforts focused on
a simple mapping of force sensor values to the intensity of
stimulation parameters.*® Then, apparent moving sensation
could be elicited through sequential stimulation of multiple
locations.*” More recently, complex stimulation patterns in-
spired by biomimicry have shown a marked improvement in
the naturalness of the elicited tactile sensation. Saal and Bens-
maia proposed a biomimetic approach to stimulate the phe-
ripheral nerve in 2015,”8 where they subsequently released a
biophysical model.?® Valle et al. validated the approach in
multiple studies in which they based the stimulation param-
eters on the output of the biophysical model. This elicited a
sensation in amputees that felt more natural compared to that
elicited by a more naive method.>®

Beyond increasing the complexity of stimulation, sensory
encoding can be expanded by incorporating additional modal-
ities. For example, rather than solely providing pressure or
vibration feedback, researchers have explored thermal feed-
back to enhance the range of sensory information conveyed to
users'>118 Introducing new modalities can also unlock pre-
viously unattainable possibilities, such as encoding wetness
sensations through thermal feedback!”.

OPTIMIZATION FRAMEWORKS

Although the conventional approach is effective for iden-
tifying potential sensory encoding strategies, eliciting a be-
spoke sensation requires optimization. For instance, one
might propose that a burst-stimulation approach is suitable
for sensory encoding, but to maximize its potential, various
parameters should be tuned. Optimization frameworks can be
employed to fine-tune these parameters to elicit the desired
sensation. Fig. 2 highlights the different types of optimization
framework. In general, the main components of an optimiza-
tion framework consist of responses, optimizer, stimulator,
and its stimulation parameters (Fig. 2a). This skeletal frame-
work is applicable to different types of stimulation, ranging
from invasive / non-invasive, brain / peripheral nerve stimu-
lation, or even retinal and auditory stimulation. Upon stim-
ulation, responses could be acquired. Such responses can be
categorized into physiological or perceptual (Fig. 2b). Exam-
ples of physiological signals could be electroencephalogram
(EEGQG) or electroneurography (ENG), while the most common
measure of perceptual information is through psychophysical
tests. The output of the responses is then relayed to an opti-
mizer that decides on the stimulation parameters of the next
iteration, closing the optimization loop. The endpoint of the
optimization process is contingent on factors such as the max-
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imum number of iterations or a specified time constraint.

The crux of an optimization framework lies in the choice of
responses and optimizer. Depending on the combination of re-
sponses and optimizer, we obtain three different optimization
frameworks. Fig. 2c illustrates how the different combinations
generate different optimization frameworks. Briefly, when we
obtain perceptual data from the subject post-stimulation and
we utilize algorithms for the tuning of stimulation parameters,
we have the explicit framework. Changing the responses from

perceptual to physiological signals results in a physiological
framework. On the otherhand, if we retain perceptual data but
instead change the optimizer to the subject themselves, we get
the self-optimized framework. In the following section, we
elaborate on the different responses-optimizer combinations
and the pros and cons associated with each framework.



EXPLICIT

Conventionally, perceptual responses are collected through
psychophysical tests or questionnaires during the experimen-
tal process to assess the effectiveness of the stimulation
applied.*®-30 This approach is logical considering that percep-
tual responses offer direct and valuable insights into the sen-
sory experiences of the participants. It is therefore intuitive
to utilize these perceptual responses as a means of optimiza-
tion. This concept forms the basis of the explicit framework,
in which perceptual responses are fed into an algorithmic op-
timizer as input (Fig. 2c).

Some example studies utilizing the explicit frameworks in-
clude Borda et al. (2023), who used reinforcement learning
algorithms to adjust TENS parameters for lower limb sen-
sory feedback. Participants provided real-time feedback on
the sensations experienced, allowing the system to learn and
optimize stimulation settings effectively.’! Multiple studies
also used variations of Bayesian optimizations to adapt stim-
ulation parameters.”>%>3 Their method efficiently navigated
the complex parameter space to identify optimal settings. In
visual prosthetics, Fauvel and Chalk (2023) combined simu-
lation with limited human feedback to optimize stimulation
parameters,’* while Lee et al. (2023) presented a user pref-
erence optimization approach using RankNet for exoskeleton
control, which could easily be adapted to optimize sensory
feedback parameters.>> Another common example is cochlear
implant programming. In this process, an audiologist adjusts
key stimulation parameters based on user feedback. First, the
audiologist determines the T-levels (Threshold levels), which
represent the softest sounds the user can detect. Next, they
assess the C/M-levels (Comfort or Most Comfortable levels),
which define the loudest sounds that remain comfortable for
the user°.

A key consideration in the explicit framework is the trade-
off between the amount of feedback required from the sub-
ject and the number of iterations that can be performed within
practical constraints. Minimizing the need for extensive sub-
ject feedback — shorter psychophysical tests — allows for
more iterations and rapid data generation, which is beneficial
for data-driven optimization methods such as machine learn-
ing algorithms. However, insufficient feedback could prevent
the algorithm from accurately identifying the optimal stim-
ulation parameters, as it may lack critical information about
the user’s subjective experience. Therefore, domain expertise
remains essential in designing the optimization protocol. Ex-
perts must determine the optimal balance between the quan-
tity and quality of information needed from the subject and
the feasible number of iterations within a limited time frame,
ensuring both efficiency and effectiveness in the optimization
process.

The explicit framework represents a significant advance-
ment over conventional methods by incorporating real-time
human feedback into the optimization of stimulation param-
eters. This approach enables a more dynamic and responsive
refinement process, allowing for the identification of effective
parameters. However, it also introduces new challenges, par-
ticularly in the design of experiments to balance the trade-offs

between the quantity of user input and the number of iterations
that can be conducted.

PHYSIOLOGICAL

While psychophysical tests have traditionally served as the
gold standard for evaluating participants’ perceptions, efforts
to optimize stimulation parameters have been constrained by
the speed at which individuals can complete them. In the ex-
plicit framework, the need for participants to finalize these
psychophysical tests before applying the results in subsequent
iterations presents a significant bottleneck in the process. In
a bid to address this bottleneck, some researchers have turned
to the measurement of physiological responses as proxy in-
formation for perceptions.”’° The physiological framework
leverages computational algorithms to dynamically adjust and
refine stimulation parameters based on proxy measures that
correlate with the desired sensory perception as shown in
Fig. 2c. As this method bypasses the need for human feed-
back, theoretically it holds the potential to allow for the max-
imum number of iterations for optimization.

For example, in 2022, Eldeep and Akcakaya used EEG sig-
nals to guide the adjustment of electrical stimulation parame-
ters to generate different texture force profiles, demonstrating
the potential of EEG as a proxy for the optimization of tactile
sensory feedback.”’ Apart from EEG, Birznieks and Vickery
(2017) utilized microneurography and identified the neuronal
code involved in vibrotactile frequency perception. In the fu-
ture, adjusting stimulation parameters based on microneurog-
raphy data could further enhance frequency perception®®°!.
Other physiological signals such as those acquired from gal-
vanic skin response, and pupil dilation can also serve as opti-
mization targets. In visual prosthetics, surrogate models have
facilitated the optimization process. Our team employed an
actor-model framework to build a digital twin of the biologi-
cal retina to optimize stimulation parameters for visual pros-
thetics, potentially enhancing the quality of perceived visual
stimuli without requiring extensive subjective feedback.”® In
deep brain stimulation for Parkinson’s disease, genetic algo-
rithms based on physiological measurements have also shown
promising results.®? In cochlear implants, beyond determining
T-levels and C/M-levels, objective measures such as Electri-
cally Evoked Compound Action Potentials, recorded via Neu-
ral Response Telemetry, are often used to optimize stimulation
parameters®3.

The primary advantage of the physiological framework is
its efficiency, enabling a highly iterative and adaptive ap-
proach that could quickly converge on optimal stimulation
settings without direct human input. By utilizing proxy mea-
surements — such as neural activity patterns, physiological
responses, or behavioral indicators — the system can adjust
parameters in real-time, continuously learning and improv-
ing over time. This makes the physiological framework suit-
able also for applications where sensory feedback needs to be
fine-tuned regularly, such as in dynamic environments or with
changing user conditions.

Howeyver, this framework also has limitations. A funda-



mental challenge is the reliance on proxy measures that may
not always be perfectly correlated with subjective sensory ex-
periences. For instance, physiological signals like EEG may
provide indirect information on sensory perception but might
not capture the full complexity or nuances of an individual’s
subjective experience. When the proxy measurement does
not accurately reflect the target sensation, the optimization
process potentially results in suboptimal or inconsistent sen-
sory feedback. Therefore, the effectiveness of the closed-loop
system heavily depends on the selection and accuracy of the
proxy data used for optimization. Moreover, in contrast to
the explicit framework where subjects need to concentrate on
the perception they must report, the physiological framework
lacks this requirement. Consequently, throughout the session,
subjects might lose focus, which can potentially influence the
physiological signal .

SELF-OPTIMIZED

While the explicit framework incorporates perceptual re-
sponses as input for optimization — which could be more pre-
cise than physiological responses — it simultaneously creates
a bottleneck in the iterative process. On the other hand, the
physiological framework boasts the potential for rapid itera-
tions, but the reliance on optimization based on proxy infor-
mation could become problematic.

The self-optimized framework offers promise to address the
key limitations of the other two frameworks by empowering
the subject to control the stimulation parameters. In this ap-
proach, the subject is provided with a target perception or sen-
sation, and they adjust the stimulation parameters themselves
until the desired perception is elicited. In contrast to the ex-
plicit framework, where explicit feedback is required, the self-
optimized framework does not require the participants to re-
spond. This framework leverages the subject’s intuitive un-
derstanding of their own sensory experiences. At each itera-
tion upon stimulation, the subject perceives the sensation and
determines the trajectory for the upcoming set of stimulation
parameters. Throughout the process, the researcher does not
receive information about the perception of the subject.

Also in contrast to the physiological framework, the self-
optimized framework allows for the rapid iterations possible
while still accounting for the subject’s feedback, albeit in an
implicit form. Shokur et al. (2016) demonstrate this method-
ology by having subjects adjust vibrator stimulation parame-
ters to elicit sensations that matched the experience of walking
on specific surfaces. Participants manipulated the parameters
until the tactile feedback felt congruent with the target surface,
effectively personalizing the sensory encoding.® The general-
izability of this approach was further tested by Verbaarschot
et al. (2024), who showed that allowing subjects to tune their
stimulation parameters improved their ability to identify dif-
ferent objects during tactile exploration. By directly control-
ling the parameters, the subjects achieved more accurate tac-
tile sensations, enhancing object recognition. '

The self-optimized framework represents an interesting ap-
proach to optimizing stimulation parameters by placing con-

trol directly in the hands of the subject. This approach by-
passes the need for explicit responses, thereby maximizing
the number of iterations possible within a given timeframe.
By eliminating the trade-off between user input and the num-
ber of iterations, the self-optimized framework has the poten-
tial to accelerate the optimization process while ensuring that
the resulting parameters closely align with the subject’s sen-
sory experience. It is worth noting that the simultaneous op-
timization of parameters is contingent upon the setup, and by
monitoring both hands, up to six parameters (3 dimensions
per hand) can be optimized. Additionally, by integrating ro-
tations into the tracking mechanism, the number of param-
eters subject to optimization could be increased. However,
this could add complexity, potentially diminishing the frame-
work’s effectiveness. As this framework continues to evolve,
it holds enormous potential for advancing sensory encoding
techniques.

COMBINATION

In the preceding sections, we examined the explicit, physi-
ological, and self-optimized frameworks independently. Each
of these frameworks has their unique strengths in the opti-
mization process but also contains limitations. Integrating
these frameworks can help to mitigate the individual short-
comings, potentially leading to a more robust optimization
process.

Ideally, the physiological framework holds a huge potential
for optimizing stimulation parameters by allowing for rapid it-
erations. In practice, finding an ideal proxy measure that cor-
relates well with the desired sensory perception is challeng-
ing; physiological signals may only partially capture the sub-
jective experience of sensations, which can be complex and
context-dependent. Integrating the physiological framework
with either the explicit or self-optimized framework can help
enhance these proxy measures. For instance, using EEG as a
proxy, initial data could be gathered by having a group of sub-
jects follow an explicit or self-optimized protocol, where sub-
jects adjust parameters or provide feedback on their sensory
experiences. During this process, EEG signals (or other phys-
iological signals) can be recorded alongside the process. Once
subjects perceive the desired sensation, concurrent EEG data
can be analyzed to identify characteristic features that corre-
spond well to that particular sensation. By examining EEG
signals across multiple subjects, it might be possible to estab-
lish a robust map of EEG features that reliably correlate with
certain sensations. These neurological markers can then be
used as a proxy measure in future physiological frameworks
for optimization.

Even with improved proxy measurements informed by ex-
plicit or self-optimized frameworks, it is likely that these
physiological signals still may not capture all the complex-
ities of sensory perception. To address this, a combination
of frameworks can be applied sequentially to leverage the
strengths of each. A practical method involves using the phys-
iological framework for an initial broad parameter adjustment,
taking advantage of its rapid and efficient nature for initial



coarse tuning. This helps to narrow the parameter space. Fol-
lowing this initial stage, the explicit or self-optimizing frame-
work can be utilized to refine the parameters, relying on direct
user perceptual responses for greater precision. By integrating
user feedback for fine-tuning, this combined approach com-
pensates for the limitations of the physiological framework
and avoids the extensive time demand of the explicit frame-
work for preliminary tuning. In essence, this method balances
the quick convergence of the physiological framework with
the accuracy of the explicit framework.

The self-optimized framework, which integrates the sub-
ject’s intuition and control over parameter adjustments, could
similarly benefit from the combination with the explicit
framework. In contrast to the other framework, the self-
optimized framework requires the subject to control and de-
termine the next stimulation parameters. However, without
algorithmic guidance, users may choose parameter combina-
tions arbitrarily or inefficiently, potentially overlooking op-
timal regions within the search space. To tackle this issue,
the framework could periodically introduce guidance in the
form of system-generated suggestions. For example, during
the self-optimization process, brief psychophysical tests could
periodically appear to capture the user’s perceptual feedback.
As more data accumulates from user responses, the system
could analyze patterns to recommend parameter adjustments,
directing the user’s exploration towards specific areas in the
parameter space where optimal results are more likely. This
hybrid self-optimized approach blends subjects’ intuitive ad-
justments with data-driven suggestions, thus ensuring a more
comprehensive exploration of the parameter space while pre-
serving users’ autonomy over their sensory experience adjust-
ments. This strategy improves both the speed and accuracy of
the self-optimized framework by balancing algorithmic guid-
ance with subject-driven exploration.

CONCLUSION

In conclusion, this perspective article provides a compre-
hensive overview of various frameworks to optimize stimula-
tion parameters in sensory encoding, a pivotal aspect of neu-
roprosthetics in various sensory systems, including vision, au-
ditory, and touch. As neuroprosthetic technology continues to
evolve, facilitating more intricate and refined perceptions, un-
derstanding the strengths and limitations of each framework
— explicit, physiological, and self-optimized — is imperative
for advancing the field. Importantly, these frameworks are
not isolated approaches, but can be integrated to harness their
complementary strengths. Combining them can lead to more
robust and efficient sensory feedback systems, ultimately en-
hancing the efficacy and user experience of neuroprosthetic
devices.
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