P/ PD and PID position control of a DC motor-

Example 1 (rotational system):

Consider a DC motor equipped with an incremental encoder for position control. This motor is
steered in torque mode. This means that we use a servo amplifier configured in current mode.
This motor is coupled with a gear and a symmetric load (no gravity).

u ServoAmplifier

Figure 1- DC Motor, gear and load- The motor is equipped with an incremental encoder and controlled by a servo amplifier

The reason for which this mode is called “Torque mode” is that the motor torque I;,, provided
by the motor is be proportional to the current control “i .

Parameters of the system:

n | Gear ratio

k. | Torque constant of the motor (Constante de couple in French)
Jm | Motor Inertia

kvis | Viscous coefficient reported to the motor side

Ju | Load Inertia

JrL | Total Inertia reported to the load

Jrm | Total Inertia reported to the motor

In this problem we are interested in the position control of this mechanical system (Motor +
Gear + Load). Different cases will be considered and discussed.

Case 1: No friction, no gravity, Proportional gain on the position error.

Dynamic Model: 2 cases may be considered- The dynamic model may be written either at the
load side or the motor side. Only eq.2 or eg.3 must be considered.

I, = k,i 1)
ST = Jpm * 0, (2) On the side of motor shaft
ST =Jg *6, (3) On the side of the load shaft

Draft 1, Dr M- Bouri, Lab. Syst. Robotiques, EPFL, November 2013



Jem =Jm + 7’1—; is the inertia reported to the motor
Jr = JL + 1%, iIs the inertia reported to the load

If we consider (eg.1) and (eg.2), we obtain :
Zr:]Rmém:rm:kci (4)

The relation between @and i defines the open loop transfer function. It corresponds to a
double integrator (Exercise — DC motor step current response).

On the other hand, the closed loop scheme is represented by the following figure:
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Figure 2- Position control of a DC Motor

By using a proportional controller I, = k, (84 — 6,,), and replacing the motor torque
expression in eg.4, we obtain the following closed loop expression:

JRmém + kpem = kped )

Using the s-transform (8 = s6,6 = s20), this gives:

= (s%Jgm + kp)Om = k04 (6)

0 k
Gd SZJRm+kp

(7)

EQ.7 corresponds to a pure oscillatory system that will never reach the desired position.

Very important remark:

Never control a DC Motor in torque mode with only a proportional —type position control
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Case 2: P-Controller in presence of viscous friction

In presence of viscous friction, the model (4) becomes:

2T = Jrmbm = In = kuis * Om (8)

By closing the loop with a proportional controller I3, = k, (684 — 6,,,), we obtain:
= S?JrmOm + SkyisOm + kpOm = k,04

Which leads to following closed loop transfer function:

Om kp
64 SZJRm+Skm'S+kp

(9)

This transfer function corresponds to a stable system that has a damping factor to ensure the
convergence of the motor position to the desired position. Nevertheless, this damping may not
be sufficient to damp the system and we absolutely need to add a derivative control
component.

Case 3: PD-controller in presence of viscous friction

The PD control law is given by: L = kp(0g — 0r) — kg6, (10)

kg 1s the derivative parameter of the PD controller. The open loop dynamic model is given by
eq.8

Z r :]Rmém =Ly — kvisém
By closing the loop, the dynamic expression becomes:
Z I = 52JrmOm
= kp(ed — Om) — kasOn — kyisSOiy (11)
Which leads to following closed loop transfer function:

Om _ kp
64 S2Jrm+(Kq+Kyis)s+ky

(12)

This transfer function between the input (desired motor position) and the output (measured
motor position) corresponds to a stable behavior. In this case, it is an asymptotic stability
assuring a total convergence of the measured position to the target. The following writing of
this transfer function as follows:

Om 1 1
6 . IRm | (kat+kyis (
T E T
Leads to a proper frequency |w,, = ]k—” (14)
Rm
R . 1 kp kd+kvis>
n mping r == |2 (== 1
and a damping ratio [z = - /]Rm( o (15)
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Case 4: PD-controller in presence of viscous and drv friction

In this case, the dynamic model is expressed by the following equation:

xr :]Rmém =In — I‘dr'y (16)

The model of the dry friction is given by the following characteristic

The dry friction torque has two characteristic values : r
e The static dry friction corresponding to the P _l—
value of the dry torque before the starting of )
the movement (| < ¢).
€| € o
e The dynamic dry friction corresponding to the
value of the dry torque when motion is —I i
occurring and (|a| > ¢) Na

Figure 2- Dry friction characteristic

However, in the dynamic model the dry friction will be considered as constant (/ary). By closing
the loop of the system with a PD controller, the dynamic expression of our mechanical system
is then written as follows:

Xr= ]Rmém = kp(gd —0m) — kng - kw’sém - 1—‘dry (17)

To understand what happen in the static phase, we only need to cancel the first and second
derivatives of the desired and measured positions.

650, 6;,-0 6-0 and 6;-0

Xr= ]Rmém = kp(gd —0m) — kDém - kvisém - 1—‘dry (18)
| I | |
v v v v
0 Esta 0 0

= kp(ed — Om) = Coec
%_J
Esta
The static error &t may then be expressed as follows:

l-‘dry
€sta = 7 (19)
14

First, eq. 16 implies that in presence of dry friction, the PD controller is unable to cancel the
static error (&ta is not null). The good news is that the static error may be reduced by increasing
the proportional gain k,,. Increasing k,, increases the stiffness of the controller. Nevertheles, high
values of the gain k,, may make the system instable because of the stability criterion (Nyquist plot) and

also because of the saturation of the control. The PD controller is then not sufficient to totally remove
the static error and the PID controller may be considered.
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Case 5: PID-controller in presence of dry friction

As in the previous case (eq.16, case 4), the physical model is given by the following
equation:

Z r :]Rmém =In— 1-‘dry
The PID control law is given by:
T = kp(8a = Om) = Kl + Ky [ (8 — 6)dt (20)

Closing the loop of the system (eq.16) by using the PID control law (eq.20) and using the s-
transform leads to the following behavior:

k k
]Rmszem = kp(ed —0m) —skpOpy, + ?Iad - ?Igm — Tary (21)
Below, eq.21 is rewritten in a very interesting manner ©.

k k
(]Rms2 +kps + k, + ?’) 6, = (kp + ?’) 04 — Tary

€ "

By multiplying by “s” in two sides, we obtain:

(Jrms® + kpS* + kpS + ki)Om = 04 — STary (22)
_ kpS"'kI s
= Om = JRmS3+kps>+kps+k @ Jpms3+kps+kps+ky Lary (23)

What eq.23 is meaning?

EQg.23 means that the motor position & is an output of two dynamic systems.

B kys + k; 0 s r
 JrmS3 + kps? + kyps + k; T JemS3 + kps? + kys + k; dry
- / \ /
1 1
Regulation transfer function Disturbance rejection transfer
Hr(s) function Ho(s)

Om

We first notice that the dry friction is considered as a disturbance because it is assumed to be
unknown. The transfer function Hg(s) represents the dynamic behavior of the output (motor position)
with respect to the target (desired position) and the transfer function Hp(s) corresponds to the dynamic
effect of the disturbance 73y on the output. Hg(s) represents the closed loop regulation performances
and Hp(s) gives the disturbance rejection performances.
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JrmS3 + kps? + ks + k;

Effect of the dry friction
- | on the output

6, kps + ki .
JrmS® t kps? + k,s + k; +

Figure 3- PID control and dry friction effect

In static phase by assuming that I';,.,, is constant, the static gain of the output transfer function

is 1 and the static gain of the friction transfer function is 0. This leads to the total cancellation
of the static error.

Notice that, biggest is Ki, More the disturbance rejection is fast!

What happen in the static phase?

Regarding previous analysis, we demonstrated that the static error reaches the zero-value. The
closed loop behavior may be represented by the (eq. 23) or by the following temporal
representation:

JamBm = kpe = kpB + k; [ €(D)dT — Ty (24)

is the regulation error.

In the static phase, 6,, = 8,, = 84 = 64 = 0. This leads to the following very important
equality:

ki [ £()dT = Ty, (25)

Observations:

e This relation shows that at the end of the regulation phase (in the static phase and when &
reaches 0) the integrator identifies the dry friction. It also shows that the “Integral
contribution” of the controller works as a dry friction compensation.

o Ifthedry friction changes with respect to the motor position, take care that this identification
is only valid at the position on which the motor is stopped (ie, at the position ;).

e Previous remarks are not valid only for the case of the dry friction but for any type of
constant unknown torques (or slowly variable disturbances). We can give the example of
the gravity, external constant force or others.
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