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Scope and Outline
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Scope:
 Basic understanding of some physical and chemical phenomena relevant at nanoscale. 

Outline:
 Introduction
 Basics of quantum mechanics
 Atomic structure (hydrogen like atoms)
 Molecular structure (linear combination of atomic orbitals)
 Band structure of solids in 0D, 1D, 2D, 3D (electrons in a box and in a periodic potential)
 Intermolecular forces
 Physi- and chemi-absorption, 
 Surface tension
 Examples of nanoscale phenomena: tunneling current, conductance quantization, Coulomb 
blockade, single electron transistor (SET), nanomagnetism, quantum Hall effect, Casimir effect.
References:
Books
K. S. Krane, Modern Physics, John Wiley & Sons Inc, 2012.
P. Atkins, J. de Paula, Atkins' physical chemistry, Oxford Univ. Press, 2006.
J. N. Israelachvily, Intermolecular and surface forces, Academic Press, 2011.
Web resources
IUPAC guide to chemical nomenclature: http://goldbook.iupac.org
E. F. Schubert, Physical foundation of solid state devices, http://homepages.rpi.edu/~schubert/
Links to other courses:
Scaling laws (from macro to micro….but not down to nano) are extensively treated in: “Scaling of MEMS”, Ph. Renaud & H. Shea
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Nanoscience and nanotechnology: definitions
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Nanometer range: from 100 nm down to 0.2 nm in at least one dimension.

• Only one dimension (2D): Thin films, thin surface coatings, quantum wells, ..
• Only two dimensions (1D): Nanotubes, nanowires, quantum wires,…
• All three dimensions (0D): Nanoparticles,quantum dots, nanodots….

Nanoscience: study of phenomena and manipulation of materials at 
the atomic, molecular and macromolecular scale (nanometer range), 
where properties differ significantly from those at larger scale.

Nanotechnologies: design, characterization, production and application of structures,
and devices with controlled dimension(s) at the nanometer range.

Nanoscience and nanotechnologies: opportunities and uncertainties, The Royal Society & The Royal Academy of Engineering, July 2004, www.nanotech.org.uk
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• Nanosized «objects» exhibit different properties than larger «objects» of the same material.

• Understanding the behavior of nanoscale «objects» requires new theories with respect to 
those used for the behavior of larger «objects».

• Nanoscale «objects» are useful in several fields (fundamental and applied research, medicine, 
consumer electronics, ….) 

Introduction

Why it is interesting to study nanoscale «objects» ? 
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Properties of nanoscale «objects»

Micrometer scale «objects» have properties typically identical to those 
of larger «objects» (i.e., they have “bulk” properties).

Which properties might be significantly different in nanoscale «objects» ?

• Optical (color, transparency,….)
• Electrical (conductivity,….)
• Mechanical (hardness,…)
• Thermal (melting point,…)
• Chemical (reactivity, reaction rates, …)
• Magnetic (superparamagnetism,…)

Why properties of nanoscale «objects» are 
different from those of macroscopic «objects » ?

• Surface-to-volume ratios are larger
• Gravitational force is negligible
• Quantum effects might be important
• Random thermal molecular motion is more important
• …

Introduction 6



Example: Nanoparticles melting point
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Au nanoparticles

Sn nanoparticles

Note:

Isolated metallic nanoparticle:
smaller particles have lower melting point

Metallic nanocrystals in a continuous matrix: 
smaller particles have higher melting point
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http://lh6.ggpht.com/-ClHQhVXyMGs/SyQnKaiACVI/AAAAAAAAGP0/oaQUlJY6EPg/dos.jpg

3D                         2D                        1D                    0D

D(E): Density of available states for electrons 
E: Energy

Introduction

Bulk Thin
film

Nanowire Nanodot

Example: Density of available states for electrons
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Macroscopic metallic objects:

Metals are colored because the absorption and re-emission of light are dependent on wavelength.

If the efficiency of absorption and re-emission is equal at all optical energies, then all the different colors under
white light illumination will be reflected equally well. Silver has efficiency that does not vary with wavelength
within the optical region, and therefore appears close to white. If the efficiency decreases with increasing energy,
as is the case for gold and copper, the reduced reflectivity at the blue end of the spectrum produces yellow and
reddish colors..

The color of metals can be explained by energy band theory. In metals, empty bands overlap with bands
containing electrons. The available electrons fill the bands up the level of the Fermi surface. Silver, gold and
copper have similar electron configurations, but we perceive them as having quite distinct colors. The density of
states available varies differently as a function of the energy. Electrons absorb energy from incident light, and are
excited from lower energy levels to higher, vacant energy levels. The excited electrons can then return to the
lower energies and emit the difference of energy as a photon. If an energy level holds many more electrons (than
other energy levels) then the excitation of electrons from this highly occupied level to above the Fermi level will
become important. Gold has an intense absorption of light with energy of 2.3 eV (from the 3d band to above the
Fermi level). The color we see is yellow, as the corresponding wavelengths are re-emitted. Copper has a strong
absorption at a slightly lower energy, with orange being most strongly absorbed and re-emitted. In silver, the
absorption peak lies in the ultraviolet region, at about 4 eV. As a result, silver maintains high reflectivity evenly
across the visible spectrum, and we see it as a pure white. The lower energies (which in this case contain
energies corresponding to the entire visible spectrum of color) are equally absorbed and re-emitted.

Introduction

Example: Metal nanoparticles optical properties
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Metallic nanoparticles have size and shape dependent optical properties caused by the surface plasmon resonance (SPR) absorption.

Mie explained this phenomenon theoretically by solving Maxwell's equation for the absorption and scattering of electromagnetic radiation. The developed theory 
is widely used to calculate the particle extinction spectra of nanoparticles.

The origin of the light absorption by metallic nanoparticles is the coherent oscillation of the conduction band electrons induced by the interaction with the 
incident electromagnetic wave. This effect is generally known as SPR and it is absent in bulk metals.

In general, the SPR absorption peak red shifted to longer wavelength with increasing of particle size as predicted by Mie theory. 

The SPR frequency of metallic nanoparticles depends on particle size, shape, dielectric properties, aggregate morphology, surface modification, and 
refractive index of the surrounding medium. 

Gold nanoparticles in transparent media. Transmitted light 
and reflected light. 

The Lycurgus Cup, lit from front (reflected light)  
and behind (transmitted light).

Gold nanoparticles in transparent media. 
Transmitted light. 

Introduction

Example: Metal nanoparticles optical properties
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http://www.tychosnose.com/wp-content/uploads/2015/03/lycurguscup.jpg


Example: Metal nanoparticles optical properties
http://www.discovernano.northwestern.edu/whatis/index_html/images/nanoprisms.jpg

Metallic nanoparticles have different transmission 
depending on their size, shape, «medium»,…

These are surface plasmons resonance effects.

Introduction

Absorption (optical density) spectra of gold nanospheres with diameters ranging 
from 10 to 100 nm at a concentration of 0.05 mg/mL 

Absorption (optical density) spectra of silver nanospheres with diameters ranging from 
10 - 100 nm at mass concentrations of 0.02 mg/mL.
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The optical density (OD) quantifies the effect of absorption:
OD=α

α: absorption coefficient  (measure of how much light is absorbed per unit 
length of the material, and it has usually the units of cm⁻¹).
The transmission through a distance d of the material is 

T=10-OD*d

(example: if OD=2 cm⁻¹, the transmission through a distance d=1 cm of the 
material is T=0.01, i.e., only 1% of the light is transmitted and then 90% of the 
light is absorbed).



Introduction

Example: Semiconducting CdSe nanoparticle optical properties

12



White light illumination

UV-illumination (365 nm)

http://nanocluster.mit.edu/wiki/images/f/f2/Synthesis_fig2.jpg

These are «band gap» effects.
Larger CdSe nanoparticles have 
smaller bandgaps and re-emit light 
at longer wavelengths.

UV-illumination (365 nm)

Photoluminescence spectrum of CdSe nanoparticles (Lumidot Sigma-Aldrich)
nanocrystal sizes range from 2.5 nm (CdSe 480) to 6.5 nm (CdSe 640).

Introduction

Example:  Semiconducting CdSe nanoparticle optical properties
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Introduction

Magnetic moment per Ni atom 
vs 
number of atoms

Example: Magnetic moment of Ni clusters vs cluster size
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Example: Structural properties

Interatomic spacing:
• The interatomic spacing of Cu metallic nanoparticles decreases

with the decrease of the nanoparticle size.

• The interatomic spacing of semiconductors and metal oxides increases
with the decrease of the nanoparticle size.

Shape:
• Large particles have stable shape. Nanoparticles might have shape «fluctuating»

over time due to several energy minima located with barrier smaller than thermal energy.

Introduction 15



Failures of classical physics

16

Some failures of classical physics:

 Mercury's orbit → general relativity

 Invariance of the speed of light → special relativity

 Photoelectric effect → quantum mechanics

 Blackbody radiation → quantum mechanics

 Wave behaviour of particles → quantum mechanics

 Stability of the atoms → quantum mechanics

 Emission/absorption lines of the atoms → quantum mechanics

 Chemical bonds → quantum mechanics

Introduction



Blackbody radiation

 Classical theory (Rayleigh-Jeans equation):

 Quantum theory (Plank equation)

http://4.bp.blogspot.com
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Emission/absorption “lines” of the atoms 
Sun spectrum is  NOT continuous  (at the sea level as well as at the top of the atmosphere): 

Absorption “lines" due to discrete energy levels of the absorbing molecules/atoms.
http://upload.wikimedia.org
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Stability of the atoms

1H atom stability
 A “classical physics model” of an 1H atom is a point-like electron rotating around a proton. But 

“classical physics” predicts that in such accelerated motion the electron emit electromagnetic waves. 
Hence:

Emission of EM waves  energy loss  electron would "falls" into the nucleus (in about 10-11 s) 

This is not experimentally observed, hence the “classical physics model” of the 1H atom is not correct.

2 22 2 2

2 2
0 0 0

2
2

0

1 1 1                                     
4 4 4

1 1                        
2 4

e e
Coulomb Centripetal Coulomb Centripetal

e

Kinetic e Potential Total Potential

m v m ve e eF F F F v
r r r r m r

eE m v E E E
r

= = = ⇒ = ⇒ =
πε πε πε

= = ⇒ = +
πε

2 2
2

0 0
22 2 2 2 4 2 2 5

3 3 2 3 2 3 3 3 2 4
0 0 0 0 0

0

1 1 1
2 4 4 2

1 1                      
6 6 6 4 96

( )     ......
Collapse

Potential e

Larmor Larmor
e e

t

Total Larmor

e eE m v
r r

e a v e v e e eP a P
c r c r c r m r c m r

E P t dt

= + =
πε πε

 
= = ⇒ = = = πε πε πε πε π ε 

= ∫

Introduction 19

How long it would take to an electron to collapse on the proton if radiation is taken 
into account but without considering quantum mechanics ? About 10-11 s !



Why do we need quantum mechanics ?

• As shown before, classical physics cannot explain several experimentally observed phenomena.

• We need quantum mechanics to explain the following nanoscale «phenomena»:

the atomic structure
the chemical bonding
….
the quantization of the conductance

the tunneling effect
the Coulomb blockade and the single electron transistor (SET)
the quantum Hall effect
…

Introduction 20



Basics of quantum mechanics

The 5 postulates of quantum mechanics
The postulates of quantum mechanics cannot be proven or deduced. 
These postulates are hypotheses, and, if no violation with nature (experiments) is found, they are 
called axioms, i.e. non-provable, true statements.

http://homepages.rpi.edu/~schubert/
Physical foundations of solid state devices (free download)

Postulate 1:
The wave function Ψ(x, t) describes the temporal and spatial evolution of a particle.

Postulate 2:
The product Ψ*(x, t) Ψ(x, t) is the probability density function of a particle. Consequently,

( ) ( )

( ) ( )

*

*

Probability to find the particle "around" the position  at time 

, ,  
Probability to find the particle in the volume  at time 

, ,

Probability to find the particle somewhere 
V

t

t t dxdydz
V t

t t dxdydz

Ψ Ψ

Ψ Ψ∫

x

x x

x x

( ) ( )*

in the Universe at time 

, , =1
Vuniverse

t

t t dxdydzΨ Ψ∫ x x
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Basics of quantum mechanics

Postulate 3:The wave function Ψ(x, t) (and its derivative) are continuous in an isotropic medium. The wave 
function has to be finite and single valued throughout the position space.

Postulate 4: In classical mechanics, variables such as position, momentum, or energy are called dynamical 
variables.In quantum mechanics operators rather than dynamical variables are employed.

Position:          , ,                                                   , ,

Momentum:     , ,                                         x y z

x y z x y z

p p p

DYNAMICAL VARIABLE                                 OPERATOR

2 2
2

2

    , ,

Kinetic energy :                                                   
2 2

Potential Energy:  ( , , )                                      ( , , ) 
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2
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Note:
The total energy is "rappresented" by two operators:

( , , )  and   
2

  

U x y z
m i t

∂
− ∇ + −

∂
 



Basics of quantum mechanics

Postulate 4 (continuation):

Usually the total energy operator is indicated with H and called the hamiltonian operator:

The hamiltonian operator H represents the total energy of a particle represented by the wave 
function ψ(x). 

Many problems of quantum mechanics are solved by minimizing the total energy of a particle or a 
system of particles.

2
2 ( )

2
H U

m
= − ∇ + x

Introduction

2 2 2
2 2

2 2 2:  Laplace operator (indicated also with  or ):           (cartesian coordinates)
x y z

∂ ∂ ∂
∇ ∆ ∇ ⋅∇ ∇ = + +

∂ ∂ ∂
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Basics of quantum mechanics

Postulate 4 (continuation):

The Schödinger equation is the key equation in quantum mechanics.

It is formally obtained by making both «total energy operators» acting on the wave function:

( ) ( ) ( )2
2 ,

, ,
2

t
U t t i

m t
∂Ψ 

− ∇ + Ψ =  ∂ 

x
x x



Time-dependent
Schrödinger equation
(linear, 2nd order, 
partial differential equation)( ) ( ),

,
t

H t i
t

∂Ψ
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∂
x

x 
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or

Note: In same books the postulates are written differently. In some of them, the Schrödinger equation is considered as one of 
the postulates and the «total energy operator» is only H.



Basics of quantum mechanics

Postulate 5:

The expectation value, 〈ξ〉, of any dynamical variable ξ, is calculated from the wave function 
according to

where ξop is the operator of the dynamical variable ξ. 

The expectation value of a variable is also referred to as average value or ensemble average, 
and is denoted by the triangular brackets 〈…〉.

This equation allows one to calculate expectation values of important quantities, such as position, 
momentum, potential energy, kinetic energy, angular momentum, etc.

Introduction

*( , ) ( , )dxopx t x t
∞

−∞

ξ = Ψ ξ Ψ∫
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Basics of quantum mechanics

• Time-independent Schrödinger equation
The Schrödiger equation is partial differential equation  we can write:

Introducing this equation into the time-dependent Schrödiger equation we have:

The left side of this equation depends on x only, while the right side depends only on t. Because x
and t are independent variables, the equation can be true, only if both sides are constant, i.e.,

If we denote this constant E (the meaning will be clear later), we have

( ) ( ), ( )t f tΨ = ψx x

( ) ( )1 ( )
( )

iH f t
f t t

∂
ψ =

ψ ∂
x

x

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i f t E
f t t

∂
= =

∂


( ) ( ) ( )
2

2 ( )
2

U E
m

− ∇ ψ + ψ = ψx x x x

( ) ( )H Eψ = ψx x
or

Time-Independent Schrödinger equation
(linear, 2nd order, partial differential 
equation)

Introduction

( ( ) exp( ))Ef t i t⇒ = −

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Basics of quantum mechanics

Properties of quantum mechanics operators
• Virtually all operators in quantum mechanics are linear operators, i.e.,

where c is a constant.

• Quantum mechanics operators, in general, do not commute, i.e.,

• Most quantum mechanics operators are Hermitian operators, i.e.,

The eigenvalues of Hermitian operators are always real numbers.
The eigenfunctions of Hermitian operators corresponding to two unequal eigenvalues are 
orthogonal to each other, i.e.,

( ) ( )* * *
1 2 2 1( )  ( )op opx x dx x x dx

∞ ∞

−∞ −∞

ψ ξ ψ = ψ ξ ψ∫ ∫

( )*
1 2( ) 0x x dx

∞

−∞

ψ ψ =∫

( ) ( )op opc x c xξ ψ = ξ ψ

( ) ( )1 2 2 1ξ ξ ψ ≠ ξ ξ ψop op op opx x

(see examples and more details in Schubert, Physical foundation of solid state devices, http://homepages.rpi.edu/~schubert/)
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Basics of quantum mechanics

• Definition of eigenfunctions and eigenvalues of a generic operator:

If the effect of an operator  ξop acting on a function f(x) is that the function f(x) is modified only by 
the multiplication with a scalar constant λ, i.e. 

ξop f(x) = λf(x) Eigenvalue equation

then:
1) f(x) is called eigenfunction of the operator ξop
2) λ is called eigenvalue of the eigenfunction f(x) of the operator ξop

• Eigenfunctions and eigenvalues of the energy operator H:

H is an Hermitian operator  E is a real number  the Schrödinger equation

is an eigenvalue equation, where ψ(x) is an eigenfunction of H and E is an eigenvalue of H.

( ) ( )H Eψ = ψx x
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Basics of quantum mechanics

The eigenfunctions ψn(x) and the eigenvalues En are found by solving the Schrödinger equation:

Since

En are the expectation values of H, which represent the total energy of the system.

Since the eigenvalues of the Schrödinger equation En are discrete, only certain energy values are 
allowed, all other energies are forbidden. The energy eigenvalues are also called eigenenergies or 
eigenstate energies. The lowest eigenstate energy is the ground state energy. All higher energies are 
called excited state energies.

The eigenstate energies En and eigenfunctions ψn(x) of a physical system are of great importance, 
because the knowledge of ψn(x) and En implies the knowledge of all relevant physical quantities.

• Meaning of E in the time-independent Schrödinger equation

( ) ( )H Eψ = ψx x

( ) ( ) ( ) ( ) ( ) ( )* * *
n n n n n n n n nH H dx E dx E dx E

∞ ∞ ∞

−∞ −∞ −∞

≡ ψ ψ = ψ ψ = ψ ψ =∫ ∫ ∫x x x x x x
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Basics of quantum mechanics
Properties of the eigenfunctions ψn(x)
• Superposition principle
Any linear combination of solutions is also a solution of the time-dependent Schrödinger equation :

A condition on the An is that the new solution must be also normalized, i.e.,

which is equivalent to 

Is                                also a solution of the time-independent Schrödinger equation ? 

Only if the solutions ψ1(x)…ψn(x) correspond to states with the same energy.     

• Ortogonality
Two eigenfunctions ψn(x) and ψm(x) solutions of the Schrödinger equation and having different energies 
En ≠ Em, are orthogonal, i.e.,

2 1n
n

A =∑

( ) ( ) ( ) ( )*, , , , 1t t t t dx
∞

−∞

Ψ Ψ = Ψ Ψ =∫x x x x

( ) ( ) ( ) ( )* 0m n m n dx
∞

−∞

ψ ψ = ψ ψ =∫x x x x

Introduction

( ) ( ) ( )
( ) ( )1 2

1 1 2 2

( / ) ( / )
1 1 2 2

, , , ...

            = e e ...i E t i E t

t A t A t

A A− −

Ψ = Ψ + Ψ + =

ψ + ψ +

x x x

x x 

( ) ( )n n
n

Aψ = ψ∑x x

30



Basics of quantum mechanics
Can we somehow “justify” the expression of the operator momentum p?

Let’s consider a plane wave

if we assume that:

we have that

Since for a generic wave

we obtain

which is the de Broglie relation. 
(also called de Broglie momentum wavelength relation).

( , , ) i
x y z

∂ ∂ ∂
= −

∂ ∂ ∂
p 

( ) ( ), expt i t ψ = ⋅ − ω x k x

( ) ( )= ψ ψ =p x p x k

2π
=k
λ
h

=p
λ

Introduction

With a «normalization» problem
if the plane wave extends
everywhere in the Universe.
A pure plane wave cannot be normalized.  
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Basics of quantum mechanics

Can we somehow “justify” the expression of the operators energy H?

Let’s consider a plane wave

if we assume that:

we have that

which is the Planck-Einstein relation expressing the energy of a photon 
(also called Planck equation, Einstein relation, or Planck’s energy-frequency relation).

Note: These two “justifications” are not “demonstrations” that the p and H operators are “correctly 
defined”. They shows only that the axiomatic definition of the operators p and H are compatible 
with other quantum mechanical relationships such as the Planck-Einstein relation and the de 
Broglie relation. 

H i
t

∂
=

∂


( ) ( ), expt i t ψ = ⋅ − ω x k x

( ) ( )H E= ψ ψ = ωx x 

Introduction

With a «normalization» problem
if the plane wave extends
everywhere in the Universe.
A pure plane wave cannot be normalized. 
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Wavelength of an “object”

When the «object» dimensions are very large with respect to its wavelength we do not see 
easily the «wave-like» behavior of the «object».

When the «object» dimensions are comparable or smaller with respect to its wavelength we 
can see its «wave-like» behavior.

(The «wave-like» behavior is more evident when the «object»  has a wavelength similar to the 
size of the «obstacle» which interacts with it)

2

2
0 0

0

Wavelenght of an object (de Broglie wavelength):

1                                     

:  mass of the object at rest       :  speed of the object      
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Wavelength of the particles: examples

Introduction

0PHOTONS: 0  and 

/

0.01 eV      (Infrared)             100 m
1 eV            (Visible)               1 m
10 eV          (UV)                    100 nm
1000 eV      (X-ray)

m v c

h h
p E c

E
E
E
E

= =

λ = = ⇒
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≅ → λ ≅
≅                  1 nm→ λ ≅
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Wavelength of the particles: examples
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CRICKET BALL: 0.16 kg

For :  1

160 km/h=44 m/s (max speed in a game) 10 m 
0.04 nm/s   (extremely slow speed) 10 m 
the cricket ball size (0.07 m) is much larger than

m
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v
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−
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<< λ = − ≅ ⇒
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≅ ⇒ λ ≅
⇒  its wavelength, even at extremely slow speeds,
 its "wave nature" is hardly measurable.

30
0

2
2

2
0

ELECTRONS:  10  kg

1 21                      
2

1 eV               0.002                  1.2 nm
100 keV         0.5                      0.004 nm
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the size of an electron (zero because it is an elementary particle) is much smaller than 

its wavelength, diffraction from an array of atoms and interference patte

v c≅ λ ≅
⇒

rn in double-slit experiments 
are observable (which demonstrates the "wave nature" of the electrons)
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The resolution limit (diffraction limited) of a "far field" microscope is:
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EM: Energy: 1 keV to 30 keV, Max. Resolution:  0.5 nm 
TEM: Energy: 100 keV to 300 keV, Max. Resolution 0.05 nm

≅
≅
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Note on electron microscopes
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In practice: 
SEM: The lateral resolution is 0.5 to 10 
nm. The resolution is limited by factors 
such as the electron scattering.
TEM: The lateral resolution is 0.05 to 
0.2 nm. The resolution is very close to 
the Abbe equation limit.



Wave behaviour of particles

Visible light photons Electrons

http://accessscience.com

The interference pattern observed in an 
experiment with single particles suggests 
that each particle interferes with itself. In 
some sense, the particle must be passing 
through both slits simultaneously.

C60 molecules
http://www.intechopen.com/source/html/29589/media/image57.png
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Nanotechnology
Nanoscale phenomena

Atomic structure

Atomic Structure 38



Interaction nucleus-electron
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The electric field created by a nucleus of charge  at a distance  is
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= − +

∞ = ∞ =

= − =
πε

∫

∫

r

r

r

U Fdr U r

r U r

ZeU Fdr
r

http://users.aber.ac.uk
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i iatom iH Eψ = ψ

Time-independent Schrödinger equation of an atom (Z electrons + nucleus)

:    Wavefunction of state  (possible state of the system)i iψ
: Hamiltonian operator (total energy)atomH

:    Energy of state  (possible energy of the system)iE i

2 2 2

1 1 10 0
      ( ) ( )

2 4 4= = < =
= − + + ⋅ ξ∑ ∑ ∑ ∑πε πε −

Z Z Z Zi
i i iatom

i i i j ie i i j

p Ze eH r
m r r r

l s

Spin-Orbit 
Interaction

Electron-Electron
Coulomb interaction

Electron-Nucleus
Coulomb interaction

Electron kinetic
energy

The atom 

Note: Here we do not consider the kinetic energy of the nucleus (Born-Oppenheimer approximation, see later in the course).
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The hydrogen-like atom

Fcoul.

- e

Ze
nucleus

electron

2 2 2

1 1 10 0
2 2

0

      ( ) ( )
2 4 4

   
2 4

= = < =
= − + + ⋅ ξ =∑ ∑ ∑ ∑πε πε −

= −
πε

Z Z Z Zi
i i iatom

i i i j ie i i j

e

p Ze eH r
m r r r

p Ze
m r

l s

• The “hydrogen-like atom” is an hypothetical atom with:
- one electron of charge –e 
- one nucleus of charge Ze

with total energy that contains only:
- the kinetic energy of the electron 
- the Coulomb interaction electron-nucleus

• The Hamiltonian operator is:

2 2 2 2 2

0 0

        =
2 4 2 4

∇= − → − −
πε πε



e e

p Ze ZeH H
m r m r
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The hydrogen-like atom

The equation to be solved is the three-dimensional equation

• The time-independent Schrödinger equation for the hydrogen-like atom is

2 2 2

0

( ) ( )      where  
2 4

∇ψ = ψ = − −
πε

⇒



e

ZeH E H
m r

r r

Cartesian 
coodinates

Spherical 
coordinates

2 2 2

0

( , , ) ( ) ( , , ) 0
2 4e

Zex y z E x y z
m r
∇ ψ + − ψ =

πε


( ) ( )
2 2 2

0

, , ( ) , , 0
2 4e

Zer E r
m r
∇

ψ θ ϕ + − ψ θ ϕ =
πε



or
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2

2 2 2

2
2 2

2 2 2 2 2

Cartesian coordinates:

Spherical coordinates:
1 1 1( ) (sin )

sin sin

f f ff
x y z

f f ff r
r r r r r

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
∇ = + θ + +

∂ ∂ θ ∂θ ∂θ θ ∂φ



• The solutions of the Schrödinger equation in spherical coordinates are:

where: 

The hydrogen-like atom

( ) ( )
0

3
22 1 0

, , 1 ,
0 0

1 !2 2( , , ) ( ) ,
2 ( )!

Zrl
naZrl

n l m n l l mna

n lZ Zrr L e Y
na n n l na

−
+

− −

− −   ψ θ ϕ = θ ϕ   +   

( )

2
100

0 2

2 1
1

0

,

2 4

1 2 2 2
0

4 0.5 10 m   (Bohr radius)

2( ) : generalized Laguerre polynomial

, :  spherical armonic

: Ionization energy
32

e

l
n l

l m

e

a
m e

r
nr

m Z eE

L

Y

−

+
− −

πε
= ≅ ×

θ ϕ

= −
π ε





2 4

2 2 2 2
0

1
32

= −
π ε 
e

n
m Z eE

n

Note: The simple Schrödinger equation for the hydrogen-like atom 
have quite complicated solutions (eigenfunctions), but simple eigenvalues.
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The hydrogen-like atom

( )
( )

0

3
22 1 0

1
0 0

,
1 !2 2( )

2 ( )!

Zrl
naZrl

n l nal n
n lZ ZrL e

na n n l na
R r

−
+

− −

− −   =    +   

• The solutions of the Schrödinger equation of the hydrogen-like atom 
in spherical coordinates can be expressed in the form:

( ) ( ), , , ,( , , ) ,n l m l n l mr R r Yψ θ ϕ = θ ϕ

( )
( )

:  radial part of the solution

:  angular part of the solution

,

,

n l

l m

R r
Y r
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The hydrogen-like atom
Some solutions
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Energy (Hamiltonian) operator

Atomic Structure

2 2 2 2
2 2

2 2 2 2 2
0

The energy (hamiltonian) operator for the hydrogen-like atom expressed in spherical coordinates is
1 1 1              where: ( ) (sin )

2 4 sin sin

Example: Ave

e

ZeH r
m r r r r r r
∇ ∂ ∂ ∂ ∂ ∂

= − − ∇ = + θ + +
πε ∂ ∂ θ ∂θ ∂θ θ ∂φ



2 4

, , , , , , , , 2 2 2 2
0

rage (expectation value) energy of the eigenfunctions of the hydrogen-like atom :
1

32

Specific example: Energy of the ground state (n=1, l=0, m=0) of 

e
n l m n l m n l m n l m n

m Z eH H H dV E
n

= ψ ψ = ψ ψ = − =
π ε∫



0 0

0

3/2 3/22 2 2
/ /

1,0.0 1,0,0
0 0 0

3/2 2 2 2
/

0 0 0

the hydrogen atom

1 1 1 1
2 4

1 1 1 1                          =
2 4

r a r a

ex y z

r a

e

ZeH e e dxdydz
a m r a

Zee
a m r a

+∞ +∞ −∞
− −

=−∞ =−∞ =−∞

−

     ∇
ψ ψ = − − =     πεπ π     

    ∇
− −    πεπ π    

∫ ∫ ∫




0

3/22
/ 2

0 0 0

4

2 2 2
0

sin

                         =.............................=
32

r a

r

e

e r d d dr

m e

+∞ π π
−

= θ= φ=


θ θ φ =



−
π ε

∫ ∫ ∫


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The hydrogen-like atom

4

2 2 2 2
0

1Z=1    
32

⇒ = −
π ε 

e
n

m eE
n

4

1 2 2 2
0

= 13.6 eV
32

meE = − −
π ε 

Energy levels for the hydrogen atom (Z=1)

NOTE: The experimental values for the hydrogen 
atom energy differ from these theoretical values 
by less than 0.0001 eV!! 
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Angular momentum operators                         

There are three angular momentum operators: 
• Total angular momentum (usually denoted J)
• Orbital angular momentum (usually denoted L)
• Spin angular momentum (usually denoted S) 

The total angular momentum J for a “effectively closed system” is conserved.

(“Effectively closed system”: no external forces or torques act on the system).

L and S are not generally conserved even in a “effectively closed system”.

(Spin–orbit interaction allows angular momentum to transfer back and forth between L
and S, with the total J remaining constant).
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Angular momentum operators 

49

The   can be obtained as follow:
In classical mechanics

                                 where  is the position and  is the momentum

Since, in quantum mechanics, 

orbital angular momentum operator

= ×

L

L r p r p

spin angular momentum operator 

to

 
              

ˆ ˆ ˆ                            where  

The  is an intrinsic property of many particles, with no classical equivalent.

The 

i

i
x x z

= − ∇ ⇒
∂ ∂ ∂

= − ×∇ ∇ = + +
∂ ∂ ∂

p

L r x y z

S





.tal angular momentum o  isp   erator J = L + S



Angular momentum operators                         

2
2 2

2 2

T

s

orbhe  in spherical coordinates can be written as

sin cot co ,     cos cot sin

l

,      

1

ita  angular momentum oper s

1si

t

n
sin sin

a or

x y zL i L i L i

L

   ∂ ∂ ∂ ∂ ∂
= φ + θ φ = − φ + θ φ = −   ∂θ ∂φ ∂θ ∂φ ∂φ   

∂ ∂ ∂ = θ + θ ∂θ ∂θ θ ∂φ 

  



2 2
, , , , , , , ,

Example: Orbital angular momentum of the eigenfunctions of the hydrogen-like atom :

( 1)                        

This demonstrate that effectively that the quan
n l m n l m n l m z n l mL l l L m

 
 
 

ψ ψ = + ψ ψ = 

2
2,1,0

0

tum number  and  are associated with the orbital
angular moment module and projection along the z-axis.

1 1Specific example: Lets compute the expectation value of   and  for state 
4 2z

l m

L L
a

 
ψ = 

π  
0

0 0

0

3/2
/2

0

3/2 3/22
/2 /22 2 2 2

2,1,0 2,1,0 2 2
0 0 0 0

3/2
/2

2,1,0 2,1,0
0 0

cos

1 1 1 1 1 1cos sin cos sin 2
sin sin4 2 4 2

1 1 cos (
4 2

r a

r a r a

r a
z

r e
a

r rL e e r d d dr
a a a a

rL e i
a a

−

− −

−

θ

    ∂ ∂ ∂ ψ ψ = θ θ + θ θ θ φ =     θ ∂θ ∂θ θ ∂φπ π     

 
ψ ψ = θ − 

π  

∫

∫

 

0

3/2
/2 2

0 0

1 1) cos sin 0
4 2

r ar e r d d dr
a a

− ∂
θ θ θ φ = ∂φ π  


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2

1. An  has an intrinsic angular momentum (called spin) given by (1/2)

2. An  in a atom also an orbital angular momentum ( 1)

3. The total angular momentum of an  is the "vector 

l l +

electron

electron

atom





combination" 
     of intrisic and orbital angular momentum of the  electrons in the atoms. 
     
4. A  has an energy ,  a linear momentum  / ,  and an intrinsic angular momentum  
(and eventual

cω ωphoton   

ly also an orbital angular momentum up to several times ).  

5. A  can induce transitions between two atomic states with the condition that energy, linear momentum and 
total angular momentum are

photon



 conserved.

Notes on orbital and spin angular momentum
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The hydrogen-like atom

Name Values Significance

n Principal 
number n = 1, 2, 3, 4, … Energy

l
Orbital 
momentum 
number

l = 0, 1, …, n-1

Orbital
angular
momentum
(orbital shape)

m
Magnetic
quantum
number

ml = -l, -l+1 …, 
+l-1, +l

Orbital
angular
momentum
z-axis proj.

2 2 ( 1)L l l= +

zL m= 

2 4

2 2 2 2
0

1
32

= = −
π ε 
e

n
m Z eH E

n

Quantum numbers
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( )
2

2

0 0

( ) sin , ,D r r dr d r d
π π

= θ θ ψ θ ϕ ϕ∫ ∫

Radial distribution of probability of presence of an electron

n l
1s 1 0
2s 2 0
3s 3 0

n l
3d 3 2
3p 3 1
3s 3 0

Atomic Structure

2
100

0 2

4 0.5 10 m   (Bohr radius)
e

a a
m e

−πε
= = ≅ ×



The hydrogen-like atom: orbitals representation
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Radial position operator

2

, , , , , , , , 02

The radial position operator is  

Example: Average (expectation value) radial position of the eigenfunctions of the hydrogen-like atom :

1 ( 1)1 1
2

 + = ψ ψ = ψ ψ = + −    
∫n l m n l m n l m n l m

r

n l lr r r dV a
Z n

0

0 0

3/2
/

1,0.0
0

3/2 3/2
/ /

1,0.0 1,0,0
0 0

Specific example: Energy of the ground state (n=1,l=0,m=0) of the hydrogen atom

1 1

1 1 1 1

         

−

+∞ +∞ −∞
− −

=−∞ =−∞ =−∞

 
ψ =  

π  

   
= ψ ψ = =   

π π   
∫ ∫ ∫

r a

r a r a

x y z

e
a

r r e r e dxdydz
a a

0 0

3/2 3/22
/ / 2

0
0 00 0 0

0

1 1 1 1                 = sin ........ (3 2)

The expectation value (3 2)  is an estimation of the radius of an hydrogen atom in the ground 

+∞ π π
− −

= θ= φ=

   
θ θ φ = =   

π π   

=

∫ ∫ ∫ r a r a

r

e r e r d d dr a
a a

r a

0

state.
The Bohr radius  corresponds to the maximum of ( ) for an hydrogen atom in the ground state. a D r

Atomic Structure 54



The hydrogen-like atom: orbitals representation

2D intensity map of the probability density

http://vladimirkalitvianski.files.wordpress.com/2010/12/hydrogen_orbitals1.jpg

/ 2
(i.e., plane zy) 
ϕ = π
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3D surface corresponding to a certain probability (typically 90%) to find the
electron inside the volume delimited by this surface

Atomic Structure

The hydrogen-like atom: orbitals representation

56

Note 1:
Red: positive sign of the wavefunction
Blu: negative sign of the wavefunction
The probability is, of course, always a positive number.

Note 2: 
There are multiple valid surfaces enclosing 90% of the 
probability.
The selection of a single surface is often based on a
surface where the probability density function is 
constant and enclose 90% of the total probability.



Hydrogen-like atom: shells, subshells,orbitals

Atomic Structure

Equivalent notations to indicate in a different way the states (n,l,m)
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The real atom

The hydrogen-like atom:
- one electron with charge -e
- one nucleus with charge +Ze

The real atom:
- Z electrons, each with charge -e
- one nucleus with charge +Ze
- electrons are interacting with each other
- the orbital and the spin angular momentum of the electrons are interacting

Solving the Schrodinger equation for the real atom Hamiltonian is very difficult.

It is easier to:
1) Assume that the hydrogen-like atom gives the possible (states, wavefunctions, orbitals) also 

for the real atom.
2) Introduce some ad-hoc rules to describe the way the possible hydrogen-like orbitals are filled 

with the Z electrons of the real atom.

This approx. approach (i.e., hydrogen-like atom orbitals + rules) allows to explain most of the
physical, chemical, optical, … properties of the real atoms without solving the complex
Hamiltonian of the real atoms.

2 2

02 4πε
= −

e

p Ze
m r

H

2 2 2

1 1 10 0
( ) ( )

2 4 4= = < =
= − + + ⋅ ξ∑ ∑ ∑ ∑πε πε −

Z Z Z Zi
i i i

i i i j ie i i j

p Ze eH r
m r r r

l s
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The hydrogen-like atom and the real atom

Hydrogen-like atom Real atom

The energy of the possible states
depends only on n and Z.

The energy of the possible states
depends on n, Z, and l (at least).

Atomic Structure

2 4

2 2 2 2
0

1
32

= −
π ε 
e

n
m Z eE

n
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Pauli Exclusion 
Principle

Each orbital contains a 
maximum of two electrons
which must be of opposite 
spin.

Build-up Principle Electrons fill lower energy 
orbitals first.

Hund's Rule No pairing up. Only when all 
the orbitals are half filled will 
pairing-up occur.

Madelung's Rule Orbitals fill to minimize n + l.
For identical n+l, 
minimization of n.

The RULES

Atomic Structure

The real atom
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The real atom

Atomic Structure 61



The real atom
For a hydrogen like-atoms: minimize n  (because E depends only on n)

For a real atoms: minimize n+l;  for identical n+l, minimize n       (Madelung’s Rule)

Atomic Structure

n+l=1       2       3      4      5       6        7      8   
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Nanotechnology
Nanoscale phenomena

Molecular structure and band structure

Molecular Structure and Band Structure 63



Molecular structure and band structure: Outline

 Molecular structure

 Band structure

To understand the transition from atoms to molecules to solids
we will look mainly to:

 Electronic configuration of the atoms
 Electronegativity of the atoms

This will allow us to understand the basics of: 

 Molecular structure 
 Covalent, ionic, and hydrogen bonding
 Polarity of the molecules
 Band structure
 Intermolecular interactions
…
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Why and how atoms forms molecules ?

Why:
• To minimize the total energy (i.e., to achieve a more stable configuration).
Atoms are most stable if they have a completely filled or empty outer layer of electrons.

How:
• When atoms interact to form a chemical bond, only their outer regions are in contact.
For this reason, when we study chemical bonding, we are concerned primarily
with the most external (valence) electrons of the atoms.

• Atoms will:
gain or lose electrons (ionic compounds)
share electrons          (covalent compounds)

trying to make completely filled or empty “layers”.
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How we compute the molecular structure ?

 In general, no exact analytical solutions exists for the wavefunctions representing
the structure of molecules.

We can apply different methods to find approximate analytical solutions:

- Molecular orbitals with linear combination of atomic orbitals (MO-LCAO) methods
MO-LCAO methods are based on the assumption that the molecular wavefunctions
are the sum of atomic-like wavefunctions.

- Valence band (VB) methods
VB methods are based on the assumption that the molecular wavefunctions are
the product of atomic-like wavefunctions. 

 To simplify the Hamiltonian of the molecule, all methods apply the Born-Oppenheimer (BO) 
approximation. 
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Born-Oppenheimer approximation                         

The Born-Oppenheimer (BO) approximation consists in assuming that the complete wavefunction decribing
the molecule  is given by :

:  Solution of the Schrödinger

total

total electronic nuclear

electronic

ψ

ψ = ψ ψ

ψ  equation with H containing only the electronic variables

:   Solution of the Schrödinger equation with H containing only the nuclear variables

This means, in practice, that to find the "electron

nuclearψ

ic" molecular wavefunction we consider only 
the "electronic" Hamiltonian (i.e., the nuclei are considered as fixed in space with zero kinetic energy).  

The BO approximation success is due to the high ratio between nuclear and electronic masses. It simplify 
the computation because it simplify the Hamiltonian and reduce the number of spatial variables.

NOTE:To explain the "vibrational" energy levels of a molecule we have, of course, 
to consider the complete wavefunction  because the nuclei are actually changing their relative 
position in a molecular "vibration".

totalψ
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Born-Oppenheimer approximation                         

12r

1Ar

2 Ar
2Br

1Br
ABr

Nucleus A

Nucleus B

Electron 1

Electron 2

( ) ( )
2

2 2 2 2 2 2
2 2 2 2 2

1 2 2 2 2
0 1 1 2 2 12

The complete Hamiltonian for the hydrogen molecule H  is:

1 1 1 1 1 1ˆ                     where    
2 2 4A B i

A e A B A B AB i i i

eH
m m r r r r r r x y z

  ∂ ∂ ∂
= − ∇ + ∇ − ∇ + ∇ − + + + − − ∇ = + + πε ∂ ∂ ∂ 

 

H H

Hydrogen molecule

( )
2 2

2 2
1 2

0 1 1 2 2 12

In the Born-Oppenheimer approximation the "electronic" Hamiltonian is

1 1 1 1 1 1ˆ   
2 4

We solve the "electronic" Hamiltonian for a given distance between the 

 
= − ∇ + ∇ − + + + − − πε  



e A B A B AB

eH
m r r r r r r

nuclei .
The actual value of  is the one which minimize the energy of the system. 

AB

AB

r
r

Example: The Hydrogen molecule H2
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Linear Combination of Atomic Orbitals (LCAO)

 First guess:

 Procedure:
 Choose "trial" coefficients ci,k

 Introduce ψm,k in Schrödinger eq. with the Hamiltonian of the 2 
atoms system 

 Calculate energy Ek

 Find {ci,k} that minimise Ek

 Normalize wavefunctions ψm,k

, , ,
1

N

m k i k a i
i

c
=

Ψ = Ψ∑

, ,

, ,

i k j k ij
ij

k
i k j k ij

ij

c c H
E

c c S
=

∑
∑

*
, ,ij a i a jS dV= Ψ Ψ∫

 

⋅

*
, ,

ˆ
ij a i a jH H dV= Ψ Ψ∫ Hii: Coulomb integral

Sij: Overlap integral (Sii = 1, Sij = 0 if i 
and j belongs to same atom)

,

,

 with 1... :  Solutions of Schrodinger eq. with Hamiltonian of the single atom A 
 with ( 1)... :  Solutions of Schrodinger eq. with Hamiltonian of the single atom B 

Ψ =

Ψ = +
a i

a i

i n
i n N

ˆ :  Total Hamiltonian of the 2 atoms systemH

Ĥ
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Linear Combination of Atomic Orbitals (LCAO)

, ,

Some details about the LCAO method:
The molecular wavefunction has to be solution of the Schrodinger equation
ˆ

ˆwhere  is the total Hamiltonian of the system of   atoms.
The expectation val

m k k m kH E

H n

Ψ = Ψ

* *
, , , ,

* , ,
, ,

*
, ,, ,

, , ,
1

*
,

ue for the energy is:
ˆ

Consequently, the energy is given by:

ˆ

where we assumed

and defined
ˆ

m k m k k m k m k

i k j k ij
m k m k ij

k
i k j k ijm k m k

ij

N

m k i k a i
i

ij a i

H dV E dV

c c HH dV
E

c c SdV

c

H

=

Ψ Ψ = Ψ Ψ

Ψ Ψ
= =

Ψ Ψ

Ψ = Ψ

= Ψ

∫ ∫

∑∫
∑∫

∑

,

*
, ,

a j

ij a i a j

H dV

S dV

Ψ

= Ψ Ψ

∫
∫

, ,

*
, , ,

The coefficients c  and  are obtained by:
1) Minimization of 

2) Normalization of  (i.e., 1)

i k j k

k

m k m k m k

c
E

dVΨ Ψ Ψ =∫
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The hydrogen molecule ion H2
+                                            

( )

2

2

2 2 2
2 2 2

1
0 1 1

The hydrogen molecule ion H  is the simplest molecule.

The complete Hamiltonian of the H  molecule is: 

1 1 1
2 2 4

In the Born-Oppenheimer approximation we negl

+

+

 
= − ∇ + ∇ − ∇ − + − πε  

 

A B
A e A B AB

eH
m m r r r

2 2
2
1

0 1 1

ect the kinetic energy of the nuclei and
we consider only the "electronic" Hamiltonian given by:

1 1 1
2 4

 
= − ∇ − + − πε  



el
e A B AB

eH
m r r r

1Ar
1Br

ABr
Nucleus A

Nucleus B

Electron 

2 2 2
2
1 2 2 2

1 1 1

∂ ∂ ∂
∇ = + +

∂ ∂ ∂x y z
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The hydrogen molecule ion H2
+                                            

2

, 1, 1 ,1 2, 1 ,2

If we apply the LCAO method to the H  we can assume that the molecular wavefunctions are
given by

                             (i.e., we consider only the ground state of the twm k k S k Sc c

+

Ψ = ψ + ψ

( ) ( )

( )

1 0 1 0/ /3 3
1 ,1 0 1 ,2 0

2

, 1 ,1 1 ,2
12

o atoms)

where: 

1 , 1    (1s state of the hydrogen atom).

Appling the LCAO method we get two possible wavefunctions for the H  molecule:

1        
2(1 )

A Br r r r
S S

m S S S

r e r e

S

− −

+

ψ = π ψ = π

ψ = ψ + ψ
+

( ), 1 ,1 1 ,2
12

2 2
12 12

, ,
0 0

11 22 1 ,1 1 ,1 1 ,2 1 ,2

1          
2(1 )

+                                                     
1 4 1 4

where: 

    (Energy of the 1s s

m A S S

m S m A
AB AB

S el S S el S

S

E H E He eE E
S r S r

E H H H H

ψ = ψ − ψ
−

+ −
= = +

+ πε − πε

= = = ψ ψ = ψ ψ

12 21 1 ,1 1 ,2

12 21 1 ,1 1 ,2 1 ,2 1 ,1

tate of the hydrogen atom)

                              (Overlap integral of the two atomic wavefunctions)S S

S el S S el S

S S S

H H H H

= = = ψ ψ

= = ψ ψ = ψ ψ
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The hydrogen molecule ion H2
+                                            

http://hyperphysics.phy-astr.gsu.edu

MO Exper.
Bond distance (Ǻ) 1.33 1.06

Binding energy (eV) -1.77 -2.8

E binding

R binding

ES

EA

En
er

gy
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Exper.:  From experimental results
MO:  From molecular orbital theory calculation 

(with LCAO with 1s wavefunctions as base).



The hydrogen molecule H2                                                      

The “electronic” Hamiltonian of a system consisting of two hydrogen atoms is:

( )
2 2

2 2
1 2

0 1 1 2 2 12

1 1 1 1 1 1ˆ
2 4

 
= − ∇ + ∇ − + + + − − πε  



e A B A B AB

eH
m r r r r r r

12r

1Ar

2 Ar
2Br

1Br
ABr

Nucleus A

Nucleus B

Electron 1

Electron 2

MO VB Exper.
Bond distance (Ǻ) 0.72 0.71 0.74

Binding energy (eV) 5.0 5.2 4.75

Exper./Exact:  From experimental results
VB:  From valence band theory calculations
MO:  From molecular orbital theory calculation 

(with LCAO with 1s wavefunctions as base).
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The hydrogen molecule H2                                                      

H H

H2
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The hydrogen molecule H2                                                      

Molecular Structure and Band Structure

HOMO and LUMO are somehow the "precursors" of the valence 
& conduction band of an insulating / semiconducting crystals.
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LCAO: Simple rules for strong bond
 Close values of corresponding energies of the atomic wave functions
 Large overlap integral S
 ΨA and ΨB must have identical symmetry along bond axis

π*π

σ*σ

S ≈ 0 S < 0S > 0

s - s

s - p

p - p

p - p

non-bondingbonding antibonding
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Shape of some molecular orbitals

The shape of the molecular orbitals is 
obtained from the shape of the atomic 
orbitals which are combined.
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Why hydrogen molecules H2 exists ? 

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch02/heliummo01.jpg

For H2 we have to place 2 electrons.

The lower energy state is with 2 electrons
into the bonding molecular orbital.

The total energy of the H2 molecule
is lower than the total energy of the H atoms separated  

the H atoms prefers to form H2 molecules
instead of remain  separated.

∆E
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Why helium molecules He2 does not exist ? 

He 
atomic 
orbital

He 
atomic 
orbital

He2
molecular 
orbitals

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch02/heliummo01.jpg

Same diagram of hydrogen H2 molecules. 
(same atomic orbitals, the 1s orbitals).

For He2 we have to place 4 electrons.
2 electrons into the bonding molecular orbital.
2 electrons into the anti-bonding molecular orbital.

It can be computed that ∆E* > ∆E.
 the total energy of the two 
He atom separated is lower than the 
total energy of the He2 molecule.
 the He atoms prefers to stay separated !!
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Molecular orbitals of some molecules                    

HLi

N2

Two of the three Li electrons remains close
to each of the Li atoms in a almost unperturbed 1s state of 
the Li atom.The third Li electron goes  into a MO together 
with the H electron. 
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Molecular orbitals of some molecules                  

http://www.lsbu.ac.uk/water/images/h2o-orbs.gif

H2O (water)

Molecular Structure and Band Structure

http://www1.lsbu.ac.uk/water/h2o_orbitals.html
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Interactions between atoms and molecules            

Type Strength
(kJ/mol)

Example Simplified description

Covalent 
bond

Intramolecular
Interatomic

Strong
(100-
1000)

H2 Two atoms share valence electrons. The electrons of one 
atom are attracted by both nuclei.

Ionic 
bond

Intramolecular
Interatomic

Strong Na+Cl- The electrons are not shared. One atom accepts or donates 
one or more of its valence electrons to another atom. 
Electrostatic attractions between the ions.

Metallic 
bond

Interatomic Strong Au Metallic atoms that share valence electrons with many 
others. Each atom donates electrons to a “sea” of electrons. 

Hydrogen-
bond

Intermolecular
Intramolecular

Weak
(5-30)

Between H2O
molecules 

Dipole-dipole interactions (between permanent dipoles). 
Forms between bonded hydrogen atoms and opposite 
charged molecules.

Van der 
Walls 
forces

Intermolecular
Interatomic

Weak Between
two
graphite
sheets 

Dipole-dipole interactions.
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Thermal energy:   
0.026 eV     @ 300  KBk T T≅ =

1000 kJ/mol    10 eV/molecule
100 kJ/mol       1 eV/molecule
10 kJ/mol        0.1 eV/molecule

→
→
→



Interactions between atoms and molecules            
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Interactions between atoms and molecules 

85

Hydrogen-
bond

Van der Walls 
forces



Ionic bond and covalent bond

Ionic bonds:
«Pure» (unrealistic) ionic bond: electrons are localized on one of the two atoms in the bond.

Pure ionic bonds can be understood by classical physics. 

The forces between the atoms are characterized by isotropic continuum electrostatic potentials.
Their magnitude is proportional to the charge difference.

Covalent bonds:
The electron density within a bond is not assigned to individual atoms, but is instead delocalized between
atoms.

Covalent bonds are understood by quantum mechanics theories. 
(valence bond (VB) or molecular orbital (MO) theory). 

Covalent bonds may have directed anisotropic properties.
These may have their own names, such as sigma bond and pi bond.

Note:
In general, atoms form bonds that are intermediates between ionic and covalent, 
depending on the relative electronegativity of the atoms involved. 
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Covalent bond: Examples

http://kgortney.pbworks.com/f/1288884584/lewisCovalentBonding.gif

• Covalent elements: 
H2, Li2, B2, C2, N2, O2, F2, Cl2, S8, P4, I2, 
diamond, graphite, silicon,….

•Covalent compounds: 
H2O, NH2, CH4, H3C-CH3, H2C=CH2, 
SiO2, CO2, N2O4, NO2, SO2, SO2,…
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http://image.tutorvista.com/cms/images/44/bond-energy-table.JPG
http://www.chem.umass.edu/genchem/whelan/class_images/111_Bond_Energies.jpg

Covalent bond: Length and energy           

Molecular Structure and Band Structure 88

Thermal energy:   
0.026 eV     @ 300  KBk T T≅ =

1000 kJ/mol     10 eV/molecule
100 kJ/mol         1 eV/molecule

→
→



Covalent bond: Polar and non-polar molecules

C OO

NH
H

H

POLAR (PERMANENT MOLECULAR ELECTRIC DIPOLE)

NON POLAR (NO MOLECULAR ELECTRIC DIPOLE)

RED: NEGATIVE CHARGE, BLUE: POSITIVE CHARGE
Molecular Structure and Band Structure 89



Covalent bond: Resonance moleculare structures

An example of resonance is the benzene molecule (C6H6):

If one of these resonance structures corresponded to the actual structure of benzene, there would 
be two different bond lengths between adjacent C atoms, one characteristic of the single bond 
and the other of the double bond. In fact, the distance between all adjacent C atoms in benzene is 
140 pm, which is shorter than a C-C bond (154 pm) and longer than a C=C bond (133 pm). So it 
is neither a double bond nor a single bond.
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Atomic electronegativity

Atoms on the left  tends to donate electrons to become more stable.
Atoms on the right tends to accept electrons to become more stable.

Molecular Structure and Band Structure

“Donors” side “Acceptors” side
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Electronegativity and bond type
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Ionic bond: Examples

• Ionic bonds commonly form between atoms of the 1st column and the 7th,  and between the 
2nd column and the 6th. (high difference in electronegativity).
• Example: NaCl

http://hyperphysics.phy-astr.gsu.edu
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Ionic bond: Examples

Note: Ionic bonding is not only 
constrained to pairs of atoms.

Al2O3

Mg3N2

Li2O

CaO

LiF
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Hydrogen bonding

• Definition of hydrogen bonding (IUPAC, 2011):
« The hydrogen bond is an attractive interaction between a hydrogen atom from a molecule 
or a molecular fragment X–H in which X is more electronegative than H, and an atom or 
a group of atoms in the same or a different molecule, in which there is evidence of bond formation ».

• A hydrogen bond is the electromagnetic attractive interaction of a hydrogen atom and an electronegative 
atom, such as nitrogen, oxygen or fluorine, that comes from another molecule or chemical group. It is not a 
true chemical bond. The hydrogen has a polar bonding to another electronegative atom to create the bond. 

• Hydrogen bonds occur between molecules (intermolecularly), or within different parts of a single 
molecule (intramolecularly).

• The hydrogen bond (typically 5 to 30 kJ/mole, up to 160 kJ/mole) is stronger than a van der Waals 
interaction, but weaker than covalent and ionic bonds. 

• It occurs in inorganic molecules (water,…), organic molecules (DNA, proteins,..).

•The length of hydrogen bonds depends on bond strength, temperature, and pressure.

http://en.wikipedia.org/wiki/Hydrogen_bond
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Hydrogen bonding

http://www.ndt-ed.org

Properties of the hydrogen bond in water
Bond strength:  ≈23 kJ/mol
Partially covalent character
Distances: O…H: ≈ 200 pm, O-H : 95 pm 

"To which molecule or atom does a hydrogen
nucleus belong?" 
Compare interatomic distances in the X−H 
(covalent) system and Y…H (hydrogen bond) 
systems: 
X−H distance is typically ≈110 pm
Y…H distance is ≈160 to 200 pm. 
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The Hydrogen bond in DNA

Backbone
Covalent-bonded: strong bond

Wikipedia

Interbase pairing
Hydrogen bonds: weaker bond 

(easy cleaving / reassembly of 
both strands for transcription)
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K

Adenine-Thymine: 20 kJ/mol     0.2 eV/bond
Guanine-Cytosine: 60 k
Thermal ene

J/mol     
 

0.6 eV/bon
0rgy:  0.026 eV     

d
@ 30   Bk T T

≅ →
≅

=
→

≅



From molecular orbitals to band structure

Kelsall_R.W.,_Hamley_I.W.,_Geaghegan_M._Nanoscale_Science_and_Technology__2005
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From molecular orbitals to band structure

Molecular Structure and Band Structure

Usually moving from
single atom to clusters of atoms
to nanocrystals to macrocrystals 
the bandgap becomes
smaller.
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B = benzene
N = naphtalene
A = anthracene
T = tetracene
P = pentacene

Gas

Crystal

Crystal

Gas

Band structure: Gas vs. Crystal
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Band structure in 3D, 2D, 1D, 0D objects

zL = 0 z yL = L = 0 z y xL = L = L = 0

≅zL 0 ≅ ≅z yL L 0 z≅ ≅ ≅z yL L L 0

http://www-opto.e-technik.uni-ulm.de
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Band structure in 3D, 2D, 1D, 0D objects

0

2
2

0

      (0, ) &  (0, ) &  z (0, )
Assuming                                   ( )

      elsewhere

the Schrödinger equation is:     ( ) ( ) ( )
2

or, equivalently:                       

e

V x L y L L
V

V E
m

∈ ∈ ∈
= ∞

′− ∇ ψ + ψ = ψ

−

x

x x x

2
2

0

( ) ( )
2

                                                   
Due to the infinitely high wall of the potential, we have the following boundary conditions
on the wavefunctions:             

e

E
m

E E V

∇ ψ = ψ

′= −

x x

1/21/2 1/2

   ( ) 0 for (( ,0) ( , ), ( ,0) ( , ), ( ,0) ( , ))

2 2 2These boundary conditions impose that:      ( ) sin( )sin( )sin( )

Substituting this function int

x y z

x y z
x y z

L L L

k x k y k z
L L L

ψ = ∈ −∞ ∪ ∞ −∞ ∪ ∞ −∞ ∪ ∞

    
ψ =           

x x

x

( )
2

2 2 2

o the Schrödinger  equation we get:   
2 2 2             ,  ,                ( , , )

2 x y z x x y y z z x y z
e x y z

E k k k k n k n k n n n n
m L L L

π π π
= + + = ± = ± = ± ∈




Simple assumptions:
• Electrons confined by an infinitely high potential walls in three dimensions. 
• Constant potential within the walls. 
• No interactions between the electrons. 
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Band structure in 3D objects

0

3/2

2
2

     (0, ) &  (0, ) &  z (0, )
Assuming                  ( )

      elsewhere

2we get:                     ( ) sin( )si  

 

n( )sin( )

2

x y z

x y
e

V x L y L L
V

k x k y k z
L

E k k
m

∈ ∈ ∈
= ∞

 ψ =  
 

= +

3D OBJECT (Bulk, macroscopic object

x

)

x

 ( )
2

2 2 2

3

, 1 , , 1 , , 1 ,

2 2 2=        ,  ,             ( , , )
2

2Each state occupy a volume in the k-space: ( )( )( )

The density of available state

z x x y y z z x y z
e

k x n x n y n y n z n z n

k k k n k n k n n n n
m L L L

v k k k k k k
L+ + +

π π π
+ = ± = ± = ± ∈

π = − − − =  
 





( ) 3

3 3

2
2

2

s about the energy ( ) is:               ( )  

4 / 3
The number of states in a k-space sphere of radius  and volume V  is:    

(2 ) /

2Since                            
2

s

k
k s

k

e

e

dNg E g E
dE

kVk N
v L

mE k k E
m

≡

π
≡ =

π

= → =




3/23
1/2

2 2

1/2

2   ( )
2

The density of states ( ) for electrons confined in a 3D object  is proportional to . 

emLg E E

g E E

 → =  π  
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0

If  we consider 0 the electrons are confined in two dimensions. 
     (0, ) &  (0, ) & 0

Assuming                                   ( )
      elsewhere

we g

,  

zL
V x L y L z

V

= ⇒

∈ ∈ =
= ∞

2D OBJECT (Quantum well thin fil

x

m)

( )

2

2
2 2

, 1 ,

2et:                                       ( ) sin( )sin( )

2 2             ,  ,           ( , )
2

Each state occupy a surface in the k-space: s ( )(

x y

x y x x y y x y
e

k x n x n

k x k y
L

E k k k n k n n n
m L L

k k+

 ψ =  
 

π π
= + = ± = ± ∈

= −

x





2

, 1 ,

2

2

2)

The density of available states about the energy ( ) is:               ( )  

The number of states in a k-space circle of radius  and surface  is:    
(2 / )

S

y n y n

s

k
k s

k

k k
L

dNg E g E
dE

S kk S N
s L

+

π − =  
 

≡

π
≡ =

π
2 2

2
2 2

2ince                               ( )
2 2

The density of states ( ) for electrons confined in a 2D object is constant.  
  

e e

e

m mLE k k E g E
m

g E

= → = → =
π



 

Band structure in 2D objects
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0

If  we consider 0 the electrons are confined in one dimension. 

     (0, ) &  0
Assuming                                   ( )

      elsewhere

we get:  

= = ⇒

∈ = =
= ∞

z yL L

V x L y z
V

1D OBJECT (Quantum wire, nan )

x

owire

( )

2

2
2

, 1 ,

2                                     ( ) sin( )

2             ,           
2

2Each state occupy a surface in the k-space: s ( )

The density of available

+

 ψ =  
 

π
= = ± ∈

π = − =  
 





x

x x x x
e

k x n x n

k x
L

E k k n n
m L

k k
L

x

2
2

2

 states about the energy ( ) is:               ( )  

The number of states in a k-space line of  length   is:    
(2 / )

2 2Since                               ( )
2 2

=

= =
π

= → = → =
π





s

k
k s

k

e

e

dNg E g E
dE

L kL N
l L

m mLE k k E g E
m 2

1

 

The density of states ( ) for electroncs confined in a 1D object is proportional to 1/ . 



e

E

g E E

Band structure in 1D objects
wikimedia.org
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Band structure in 1D and 2D objects

http://hyperphysics.phy-astr.gsu.edu

Finite 
barrier 

Infinite
barrier 

The density of 
states decreases 
when the energy 
increases. 

1D

2D Wavefunction of a 2D well
with nx=4 and ny=4 
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Band structure in 0D objects

0      ((0, ), (0, ), (0, ))
Assuming                                                   ( )

      elsewhere

we get:   

,  
A "0D" object is a very small "3D" object.

V L L L
V

∈
= ∞

0D OBJECT (Quantum dot nanoparti

x
x

cle)

( )

3/2

2
2 2 2

2                                                    ( ) sin( )sin( )sin( ) 

2 2 2                              ,  ,                ( , , )
2

Fo

x y z

x y z x x y y z z x y z
e

k x k y k z
L

E k k k k n k n k n n n n
m L L L

 ψ =  
 
π π π

= + + = ± = ± = ± ∈

x





rmally we get the same solution as in the 3D case. 

However for a 0D object the energy separation between available states is much larger (see later).
The density of states curve g(E) is a series of delta function  
(or, more realistically, narrow lines) well separeted one from the others. 
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Band structure: from 3D to 0D

( )
2

2 2 2 2 2 2                                 ,  ,                ( , , )
2

In a "macroscopic object" (3D):          , ,  are in the "micrometer and larger range

x y z x x y y z z x y z
e x y z

x y z

E k k k k n k n k n n n n
m L L L

L L L

π π π
= + + = ± = ± = ± ∈




".
                                                              for energy levels lebelled by ,  and  are small.

In a "quantum well" (2D):                     is in the "nanometer range". 
   

x y z

z

E n n n

L

∆

                                                           ,  are in the "micrometer and larger range".
                                                              for energy levels lebelled

x y zL L L
E

>>

∆  by  is large.
                                                              for energy levels lebelled by  and  is small.

In a "quantum wire" (1D):                     and  are in the "nano

z

x y

y z

n
E n n

L L

∆

meter range". 
                                                              ,    is in the "micrometer and larger range".
                                                              for ener

x y zL L L
E

>>

∆ gy levels lebelled by  and  is large.
                                                              for energy levels lebelled by  is small.

In a "quantum dot" (0D):                      , ,

y z

x

x y

n n
E n

L L L

∆

 are in the "nanometer range".
                                                               for energy levels lebelled by ,  and  are large.

z

x y zE n n n∆

Molecular Structure and Band Structure 108



( )
2

2 2 2

, 1 , , 1 , ,

Lets assume that . Since:

2 2 2             ,  ,                ( , , )
2

Each state occupy a volume in the k-space: ( )( )(+ +

= = =

π π π
= + + = ± = ± = ± ∈

= − −





x y z

x y z x x y y z z x y z
e

k x n x n y n y n z n

L L L L

E k k k k n k n k n n n n
m L L L

v k k k k k ( )33

1 ,

3

22)

Due to the Pauli exclusion principle, the  electrons contained in the real space volume  

2occupy , at =0 K, a sphere of volume  in the k-space of volume:            

+

ππ − = = 
 

=

=

z n

F F

k
L V

N V L

T V V
3

2
33

2 2 2
2

2

3 3The radius of this sphere in the k-space  is:                               
4

3The energy on the surface of this sphere in the k-space  is:     
2 2

π 
 
 

π
= =

π

 π
= =  

 

 

F F F

F F F
e e

N
L

Nk k V
V

NE E k
m m V

2/3

, ,  are called the Fermi volume, Fermi wavevector, and Fermi energy, respectively. 
The k-space sphere is called the Fermi sphere.

=0:  Electrons occupy all states inside the Fermi sphere, leav

F F FV k E

T ing empty all those outside of it.
0: Elettrons occupy also states outside the Fermi sphere, up to an energy of the order of  

           (leaving some energy states empty down to an energy of t
≠ +F BT E k T

he order of ).−F BE k T

Band structure: Fermi quantities in 3D objects
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Band structure: energy separation

( )
11/3

1
2 4/3

The difference between two energy level energy on the Fermi surface is:         

3( ) ( )

For a  sized object with 1 m  and electron densitiy

 

e
F F

mNE E g E V
V

L

−

−   ∆ ≅ =    π  
≅ µmicrom

3D OBJECT

eter



29 3

29 10

5

 (N/V) 10  m  (metal), we have:
( ) 10 J 10 eV

The energy separation is much smaller than the termal energy 
even at low temperatures (at 1 K,  9 10  eV)  

 The quantization of the energ

F

B

B

E E
k T

k T

−

− −

−

≅

∆ ≅ ≅

≅ × →
→

29 3

20 1

y levels is not experimentally observable.  

For a  sized object with 1 nm  and electron densitiy (N/V) 10  m  (metal), we have:
( ) 10 J 10 eV

The energy separation is comparable to t
F

L
E E

−

− −

≅ ≅

∆ ≅ ≅

nanometer

5

he termal energy  at 300 K
and much larger at low temperatures (at 1 K,  9 10  eV)  

The quantization of the energy levels is experimentally observable.    

(for semiconductors where N/V is smal

B

B

k T
k T −≅ × →

→

3ler the energy separation is larger ( ( ) 1/ / ))  FE E N V∆ ∝
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Band structure in 3D, 2D, 1D, 0D objects

http://www.photonics.com/images/spectra/features/2008/January/Invisage_Fig1.jpg
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Band structure: a more general approach

The conduction electrons are not perfectly free even in metals,  since they move through the regular 
crystalline array of ions.

In first approximation we can assume that the electrons feel only the spat
( )

( ) ( )

2
2

1

ially periodic potential 
produced by the ions , with  

 =  
for all Bravais lattice vectors  (translational vectors of the crystal structure).
 
Consequently, the Hamiltonian is

2

eN

i
ie

U

U U

H
m =

+

= − ∇ +∑

r

r r R
R



2
2

( )

This Hamiltonian is the sum of single particle Hamiltonian. 
Consequently as starting point we can solve the one-particle Schrödinger equation: 

( ) ( ) ( )
2

Note that we are negl

i i i
e

U

U E
m

 
− ∇ + ψ = ψ 

 

x

x x x

etting:
- the interations between the electrons,
- the presence of impurities,  vacancies, and misplaced ions
- the finite size of the crystal  
- the "local nature" of some electron ion interactions
- the

−
 thermal vibrations of the ions

......
Molecular Structure and Band Structure

Example: 
Na
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Band structure: a more general approach

( ) ( ), , , ,

It can be shown (Bloch theorem) that the solutions of the Schrödinger equation for the one electron in a periodic potential can be chosen to have the form:
( )         with:     i

n n n ne u u u⋅ψ = =k r
k k kr r r ( )

                                                  is any allowed vector obtained with a constant potential (see before)

Note 1: In absence of the periodic potential the wavefunction is the plane w

+k r R
k

( ),

, , ,

ave  
               describes the deformation of the wavefunction due to the periodic potential.

Note 2: ( ) - ( )   is not the momentum of an electron with wavefunction (

i

n

n n n

e
u

i

⋅

⇒

ψ ∇ ψ ≠ ⇒ ψ

k r

k

k k k

r

x x k k x

 

, ,

2

, , ,

)

Note 3: ( ) ( )

The Schrödinger equation becomes:

1 ( ) ( ) ( )
2

A complete knowledge of the band structure requires the solution of the eigenvalue  pr

i
n n

n n n
e

e

U u r E u r
m i

⋅ψ + = ψ

  − ∇ + + =  
   

k R
k k

k k k

r R r

k x



oblem for each vector  
of the primitive cell of the reciprocal lattice (or the Brillouin zone). Calculations are usually performed only for 
some special, high-symmetry directions of the Brillouin zon

k

e, and the dispersion curves of Bloch electrons are also 
displayed only along these directions. These curves represent the "band structure" of the crystal under study.
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Band structure: a more general approach

http://what-when-how.com/wp-content/uploads

GaAs (semicond.) 

Si (semicond.) 

Molecular Structure and Band Structure

Rappresentation of Energy vs k
(energy values along some directions of the k-space)
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Nanotechnology
Nanoscale phenomena

Intermolecular forces and surface phenomena
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Interactions between atoms and molecules

Type Strength
(kJ/mol)

Example Simplified description

Covalent 
bond

Intramolecular
Interatomic

Strong
(100-
1000)

H2 Two atoms share valence electrons. The electrons of one 
atom are attracted by both nuclei.

Ionic 
bond

Intramolecular
Interatomic

Strong Na+Cl- The electrons are not shared. One atom accepts or donates 
one or more of its valence electrons to another atom. 
Electrostatic attractions between the ions.

Metallic 
bond

Interatomic Strong Au, Al, Cu,
Fe, Mg, .. 

Metallic atoms that share valence electrons with many 
others. Each atom donates electrons to a “sea” of electrons. 

Hydrogen-
bond

Intermolecular
Intramolecular

Weak
(5-30)

Between H2O
molecules 

Dipole-dipole interactions (between permanent dipoles). 
Forms between bonded hydrogen atoms and opposite 
charged molecules.

Van der 
Walls 
forces

Intermolecular
Interatomic

Weak Between
two
graphite
sheets 

Dipole-dipole interactions.
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Van der Waals (VdW) forces

Intermolecular Forces and Surface Phenomena

Keesom forces:   
permanent electric dipole –
permanent electric dipole

Debye forces: 
permanent electric dipole –
induced electric dipole

London forces: 
induced electric dipole –
induced electric dipole

The charge distribution in the molecules changes with time, 
determining at certains instants a non zero electric dipole, which 
can induce a dielectric dipole in a another molecule. 
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Van der Waals (VdW) forces: London dispersion

London dispersion forces is a weak intermolecular force arising from 
quantum induced instantaneous polarization multipoles in molecules 
(between molecules without  permanent multipole moments).

London forces are exhibited because of the correlated movements of the 
electrons in interacting molecules. Because the electrons from different 
molecules tends to avoiding each other, electron density in a molecule 
becomes redistributed in proximity to another molecule. 
This is frequently described as formation of "instantaneous dipoles" that 
attract each other. 

London forces are the only attractive intermolecular force present between 
neutral atoms (e.g., a noble gas). Without London forces, there would be 
no attractive force between noble gas atoms, and they wouldn't exist in 
liquid form.

London forces become stronger as the atom or molecule are larger. This is 
due to the increased polarizability of molecules with larger, more dispersed 
electron clouds. This trend is exemplified by the halogens (from smallest to 
largest: F2, Cl2, Br2, I2). At room temperature: Fluorine and chlorine are 
gases, bromine is a liquid, and iodine is a solid.

http://images.flatworldknowledge.com/averillfwk/averillfwk-fig11_005.jpg
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Van der Waals (VdW) forces: key facts

Van der Waals forces:

• sometimes used as a synonym for the totality of intermolecular forces.

• include attractions and repulsions between atoms, molecules,…,

• include the interactions between electric dipoles but also multipoles

• often described by the Lennard-Jones potential as approximate model 
for the isotropic part of a total repulsion plus attraction force as a function of distance.

• relatively weak compared to chemical bonds (covalent, ionic, metallic).

• play a fundamental role in structural biology, polymer science,
nanotechnology, surface science, and condensed matter physics.

• responsible for physisorption, capillarity forces, forces between
noble gases atoms, forces between nanoparticles, …. 

http://en.wikipedia.org/wiki/Van_der_Waals_force
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Local VdW forces: examples

Graphite 

Benzene (solid) 

Often different types of dipole-dipole 
interations are present at the same time
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Local VdW forces: examples

http://www.science.uwaterloo.ca/~cchieh/cact/fig/interaction.gif
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 The Lennard-Jones potential is an intermolecular pair potential between two neutral atoms or 
molecules: 

 m = 6 (attractive long-range term: Van der Waals forces)
 n = 12 (repulsive short-range term: Pauli repulsion due to overlapping orbitals)
 Typically: rmin ≈ 0.5 nm

12 612 6
min min

12 ( ) 4 2r rW r
r r r r

  σ σ       = ε − = ε −         
             

Argon
ϵ/kB= 119.8 K
ϵ=1.65x10-21 J=0.01 eV
σ= 0.3405 nm

rmin

r =|r1−r2| 
W12(r): intermolecular pair potential
σ: value of r at which W12(r)=0 
rmin: value of r at which W12(r) is minimum
ϵ : well depth energy

Lennard-Jones potential key-facts:
 Accurate model for noble gases
 Good approximation for neutral atoms and molecules
 Mathematically simple (fast calculations)
 Predicts a hexagonal close-packing of atoms

Intermolecular Forces and Surface Phenomena

Lennard-Jones potential
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Macroscopic vdW: Hamaker constant

 For two atoms or molecules
 (At long distance, r >> rmin):

 For two solids
 VdW interactions are (double) summed 

over all atoms in both volumes:

( )
12 6 6

min min min
6

7

2 2

( ) 1( )

r r r CW r
r r r r

W rF r
r r

      = ε − ≅ − ε = −      
       

∂
= − ∝

∂

( )
( )
1 2

1 2

,
12 6

V1 V2 ,

= −∑∑


P P

P P

C
W D

r D

Potential: 

Force: 

W
WF
r

∂
= −

∂

P1

Note: We assume that many-body interactions and retardation effects are negligible.
(i.e., the forces are additive and non-retarded)

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011), p. 253
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Macroscopic vdW: Hamaker constant

 If both volumes are homogenous:

( )
( )

12 12 1 2 2 16
V1 V2 12

1 2

12

1

, :  density of materials 1 and 2  (i.e., atoms or molucules per unit of volume)

:  interaction constant for an atom or molecule in material 1and an atom or molecule

W D C dV dV
r D

C

= − ρ ρ

ρ ρ

∫ ∫ 

6
12 12 min12

 in material 2 
        ( 2 ( ) )C r= ε

 If we define the Hamaker constant A12:

( )
( )

2 12
12 1 2 12 12 2 162

V1 V2 12

1    ≡ −π ρ ρ ⇒ = −
π ∫ ∫ 

AA C W D dV dV
r D

Unit: energy (in the order of 10-20 J)
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Macroscopic VdW – many body and retardation effects
Hamaker extended the intermolecular VdW force to macroscopic bodies by:
- simple pairwise summation of vdW interactions between the molecules of the interacting bodies 
(neglecting many-body interactions effects).

- neglecting the finiteness of the speed of light (neglecting retardation effects).
In some situations retardation effects are important also down to nanoscale distances.

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011)
Intermolecular Forces and Surface Phenomena 125



VdW forces: Hamaker constant of some materials

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011),p.263 

Parsegian Van der Waals Forces, (2016),p.19 

Intermolecular Forces and Surface Phenomena

( )

28 -3 21
1 2 min

6 78 6 2 20
12 min 12 1 2 12

Example: Water: 3 10 m ,  10 J,  0.3 nm

2 10 Jm 10 J

r

C r A C

−

− −

ρ ≅ ρ ≅ × ε ≅

= ε ⇒ = π ρ ρ



 
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VdW forces: Hamaker constant of some materials

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011),p.263 
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Macroscopic VdW - spheres

 Sphere – Surface:

12
12              for 

6
≅ − <<

A RW D R
D

 Example: Sphere Teflon (PTFE) (R=50 nm) – Surface Teflon (PTFE)

20 12

20 12

Distance 10 nm:       3 10  J,           3 10  N
Distance 5 nm:         6 10  J,           13 10  N

D W F
D W F

− −

− −

= ≅ × ≅ ×

= ≅ × ≅ ×

Intermolecular Forces and Surface Phenomena

18 17

12 11

50 nm         10  kg,     10  N

5 m           10  kg,     10  N
(at nanoscale the gravitational force is 
much weaker

Note: Gravitational force on a PTFE nanospheres: 

grav

grav

r m F mg

r m F mg

− −

− −

= ⇒ ≅ ≅ ≅

= µ ⇒ ≅ ≅ ≅

 than the VdW force)

2112 12
122                          38 10 J

6
−= − = − = ×

dW A RF A
dD D
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Macroscopic VdW - spheres

 Sphere - Sphere: general case (arbitrary D/R ratio)

 Sphere - Sphere: case D<<R1,R2

1 2

1 2

R RR
R R

=
+

12
1 2 12For , :      

6
A RD R R W

D
<< ≅ −

This is interesting for
nanoparticles VdW interactions
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Macroscopic VdW – summary of results

2
1 2 12

1 2

12

The Hamaker constant is defined as      where:
, :   number of atoms (molecules) 

             per unit of volume in the two bodies
:         coefficient in the atom-atom 

             (mol

A C

C

≡ π ρ ρ
ρ ρ

ecule-molecule) pair potential

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011), p. 255

Note 1:
Van der Waals interaction energy W and force F between macroscopic bodies:
A positive  F negative   attraction
A negative  F positive  repulsion

Note 2:
Van der Waals force decreases with decreasing particle size (R). 
Inertial forces, such as gravity, decrease to a greater extent. 
Hence, van der Waals forces become dominant for very small particles.
The van der Waals force of adhesion is also dependent on the surface 
topography. If there are surface asperities, that results in a greater total area of 
contact.
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VdW - application to real gases

( )
2

  nP a V nb n R T
V

  + − =  
   

 Ideal gas law: 
R : ideal gas constant = 8.31 J/K mol ; T : temperature
n : number of moles ; P: pressure; V : volume

 Van der Waals correction to the ideal gas law:
a : intermolecular forces (attractive only)
b : molecular volume of the gas

Gas a
[kPa/

(mol/l)2]

b
[l/mol]

He 3.5 0.024

H2 24.8 0.027

N2 141 0.039

CH4 228 0.043

CO2 364 0.043

Intermolecular Forces and Surface Phenomena

PV nRT=
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Physi- vs. Chemisorption: comparison

Physisorption Chemisorption
Origin of 

interaction
Van der Waals force (no 

common electronic orbitals)
Chemical bonds (common 

electronic orbitals)

Strength Weak Strong

Enthalpy
Exothermic (release of energy)

|∆Hp| < 20 kJ/mol
Exothermic (release of energy)

|∆Hp| > 100 kJ/mol

Equilibrium 
distance

0.4 to 0.6 nm 
(long-range interaction)

<0.3 nm 
(short-range interaction; 

formation of molecular bonds)

Specificity Low High

Temperature 
dependence High close to boiling point Formation depends on 

activation energy

Adsorption=retention of species (atoms, molecules, ions) on surface
Absorption=retention of species (atoms, molecules, ions) in volume
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Physi- vs. Chemisorption: comparison

 Physical adsorption usually before 
chemical adsorption

 Eact = activation energy for chemical 
absorption

 Depending on the position of the 2 curves, 
chimisorption thermally activated or not
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Gas adsorption isotherms
Question
 Quantity of adsorbed gas vs P (at T=const.) ?
Important issues:
 Nature of adsorption (physical or chemical)
Models:
 Different models (Langmuir, Freundlich,…)

Gas pressure P
(or concentration in a liquid c)

Am
ou

nt
 o

f 
ad

so
rb

ed
 g

as Isotherm of adsorption = 
amount of adsorbed gas 

vs. gas pressure 
(or concentration in liquid)

at a fixed temperature
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Langmuir isotherm: simplified derivation of the equation

Adsorption Rate
(1 )

Desorption Rate

Equilibrium Condition

= − θ

= θ

=

ads ads

des des

des ads

v k P

v k

v v 1
ads L

des ads L

k P K P
k k P K P

θ = =
+ +

ads
L

des

kK
k

=

: Fraction of occupied sites 
:  Pressure of the gas above the surface

θ
P

Assumptions of the Langmuir isotherm adsorption model:
1. Molecules adsorb on the surface (but not on each other, i.e. less than a monolayer) 
2. Adsorbed molecules do not interact with each other 
3. The surface is homogeneous: all locations adsorb molecules with the same probability.
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Langmuir isotherm - temperature effect
From kinetic theory and thermodynamic consideration we get:

Consequences (quite intuitive):
 KL increases for stronger bonding (larger Q).
 Stronger bonding needs less pressure for same coverage.
 KL decreases with increasing temperature (thermal activation profile)
 Increasing temperature needs more pressure for same coverage.

( )

( )
0

0

exp /
           

2

exp /
2

B A
des ad

B

A Bad
L

des B

Q k T
k k

mk T

Q k TkK
k mk T

− σ
= =

τ π

σ τ
⇒ = =

π

0
12 15

:  molecular cross-section
: heat of adsoption
: surface bond 

    vibration time ((10 10 )s)
: molecular mass

A

Q

m

− −

σ

τ

÷

HJ Butt,K Graf,M Kappl, Physics and Chemistry of Interfaces, 2003
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Pure chemisorption and intermediate case

Pure chemisorption
 Negative enthalpy, ∆Hc < -100 kJ/mol
 Covalent / ionic / metallic
 Distance < 3Å

Examples:
O2 on metals
Thiols on Au

Thiols on Au

Intermolecular Forces and Surface Phenomena

Weak chemisorption + hydrogen bond
 ∆H2…n ≈ 44 kJ/mol
 ∆H1 ≈ 25 kJ/mol

Example:
H2O on SiO2 surface
(creation of silanol sites on SiO2 ,
physical absorption of more H2O layers)

H2O on SiO2 surface

http://ars.els-cdn.com/content/image/1-s2.0-S1387181107007433-gr5.jpg

SiO2 ⇄ SiO–H ⇄ SiO–H∙∙∙H2O
H2O

HT

H2O

HT
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Surface tension (or energy)

The concept of “surface tension” is important to understand adhesion and wetting phenomena. 

Surface tension (or energy) definition:

Energy to create a unitary surface A at constant temperature T, pressure P, 
and chemical potential µ. G is the Gibbs free energy (G=U+PV-TS). S is the entropy,
U is the internal energy.
The work required to increase a surface by dA is dW=γdA.

Units of the surface tension γ: N/m 
(force per unit of length [N/m] or energy per unit surface [J/m2=Nm/m2=N/m]

, ,T P

G
A µ

∂ γ ≡  ∂ 

"missing / different links"

Surface tension: usually refers to liquid. Surface energy: refers also to solids.
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Note 1:
The internal energy U of a system is the total energy 
contained within it, including:
1.Kinetic energy of molecules (due to translation, 
rotation, and vibration).
2.Potential energy from intermolecular and atomic 
forces (chemical bonds, electrostatic interactions)

Note 2: 
ΔG<0: Spontaneous process (reaction occurs naturally)
ΔG>0: Non-spontaneous process (requires energy input)
ΔG=0: System is at equilibrium



Surface tension: Adhesion & cohesion work 

Work of adhesion and cohesion in vacuum are the reversible work done
to separate two surfaces or media from contact to infinity in vacuum.

 The work (per unit of area) to separate two materials 1 and 2 is the adhesion work and it is 
given by:

12 1 2 12

1

2

12

(1, 2)

:  surface tension of material 1                
:  surface tension of material 2
: interfacial tension between material 1 and material 2

(i.e., energy per unit of surface requi

ADW W= = γ + γ − γ

γ
γ
γ

red to separate material 1 
from material 1 into a medium of material 2).

 The work (per unit of area) to separate into two parts a material (to create a surface of double 
area) is the cohesion work and it is given by

11 1(1,1) 2CW W= = γ

Note: since all media attract each other in vacuum W11 and W12 are always positive.
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Surface tension: Adhesion & cohesion work

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011)

Definition of various energy terms associated 
with the adhesion of solid surfaces and the 
surface change in liquids.

Note that W and γ are idealized 
thermodynamic quantities,
assuming reversibility and smooth surfaces.

In practice only with liquids can the area be 
changed gradually and reversibly. 

For solids, the adhesion and cohesion and 
debonding processes involve plastic 
deformation  with the dissipation of  
irreversible energy as heat.

Note the positive sign of W (i.e., W>0) for 
the work of  adhesion/cohesion. 
The reference state of zero energy
is the contact state.
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Surface and intefacial energies

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011)
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Surface tension: values

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011)

Water
Ethylene glycol
Xylene
Butyl acetate
White Spirit

72.2 mN/m
48.4 mN/m
32.0 mN/m
27.6 mN/m
26.0 mN/m

Melamine resin (HMMM)
Epoxy
Polyester
Polyacrylate
Long oil alkyd

58.0 mN/m
47.0 mN/m
41.3 mN/m
35.0 mN/m
26.0 mN/m

Glass
Steel, pre-treated
Polystyrol
PVC
Polyethylene
Polypropylene
PTFE

70.0 mN/m
45.0 mN/m
42.0 mN/m
39.5 mN/m
33.2 mN/m
28.0 mN/m
19.0 mN/m
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Surface tension: some notes

1. When the process of increasing the surface area of a medium takes place in a foreign vapor, such as laboratory air, some 
adsorption of vapor molecules (e.g., water, hydrocarbons) may take place on the newly created surface. This lowers γS and γL
from their values in vacuum, and the surface energies in vapor are denoted by γSV and γLV. 

Examples: 
mica cleaved in high a vacuum:           γS=4500 mJ/m2

mica cleaved in humid laboratory air:   γSV =300 mJ/m2

2. The intermolecular forces that determine the surface energy of a substance are the same as those that determine its latent
heat and boiling point.  Substances such as metals with high boiling points (TB >2000 C) usually have high surface energies (γ
> 1000 mJ/m2), while lower boiling point substances have lower surface energies. 

Examples: 
Mercury: γ=485 mJ/m2, TB=357 C; Water: γ=73 mJ/m2, TB = 100 C; 
Argon: γ=13.2mJ/m2, TB=-186 C; and Hydrogen: γ=2.3 mJ/m2, TB=-253 C. 

3. Surfaces separation: two different path with same net change in energy but different adhesion forces.
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Surface tension: some notes

Israelachvili, 
Intermolecular and surface forces, 3rd ed. (2011)

http://www.kruss.de/uploads/pics/06-appl-applikation-bild2_01.gif

Simple experimental set-up to measure 
surface tension (for liquids)

Different ways of looking
at the origin of surface
tension.
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Surface tension: examples

Beading of rain water on a waxy 
surface, such as a leaf. Water adheres 
weakly to wax and strongly to itself, so 
water clusters into drops. 
Surface tension gives them their near-
spherical shape, because a sphere 
has the smallest possible surface area 
to volume ratio (energy minumum)

Flotation of objects denser than water 
occurs when the object is nonwettable and 
its weight is small enough to be borne by 
the forces arising from 
surface tension. The gravity force per unit 
of surface is weaker than the surface 
tension. 

Intermolecular Forces and Surface Phenomena
https://en.m.wikipedia.org
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Let's assume that we slightly increase the contact angle by . This perturbation induces a variation of the
liquid-vapor surface ,  the liquid-solid surface , and the solid-vapour surface  rLV SL SVA A A

δθ
δ δ elated by:

cos      and    
The energy increments related to surfaces is:

      =( cos ( ))
Without other contributions (

LV SL SL SV

LV LV SL SL SV SV LV LV SL SL SV SL

LV SL SV SL

A A A A

W A A A A A A
A

δ = θ δ δ = −δ

δ = γ δ + γ δ + γ δ = γ δ + γ δ − γ δ =
γ θ + γ − γ δ

e.g., gravity)
to the energy variation, the equilibrium condition 
 0      
determines
( cos ( )) 0
and, hence,

cos
which is the Young  equation.

LV SL SV SL

LV SL SV

W

A

δ =

γ θ + γ − γ δ =

γ θ + γ = γ

NOTES:
- The Young equation is strictly valid only in thermodynamic equilibrium 

(i.e., in presence of a saturated vapor of the liquid).
- The Young equation is also valid if we replace the gas with a second 

immiscible liquid (e.g., contact angle of a drop of water on a solid surface in oil).

Young  equation
cosγ θ + γ = γLV SL SV

Liquid

Solid

Vapour
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Surface tension and contact angle: simple theory
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Surface tension and contact angle: notes

 The contact angle is the same on all surfaces (including, for example, the curved surface inside a 
capillary). 

http://ej.iop.org/images/1464-4258/7/8/L02/Full/9737801.jpg

 The contact angle can drastically modified by: 
- chemical or topographical modification of the solid surface
- solutes into the liquid

H.J. Butt,K. Graf, M.Kappl,_Physics_and_Chemistry_of_Interfaces__2003
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Contact angle: “reciprocity” and molecularly thin films
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Surface tension and contact angle

Young Equation
cos

cos

SV SL LV

SV SL

LV

γ = γ + γ θ
γ − γ

θ =
γ

Israelachvili, Intermolecular and surface forces, 3rd ed. (2011)

Intermolecular Forces and Surface Phenomena

SV SLγ >> γ SV SLγ γ SV SLγ << γ

Note:
If   we would have cos >1 !!. 
Is  physically possible ? No. 

SV SL LV

SV SL LV

γ − γ > γ θ
γ − γ > γ

The Young equation is intuitively given by the balance of forces at the contact line between liquid, solid, and vapour
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Contact Angle vs Adhesion and cohesion

( ) ( )AD CW SL W L>>

( ) ( )AD CW SL W L>

( ) ( )AD CW SL W L=

( ) ( )AD CW SL W L<

( ) ( )AD CW SL W L<<
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Surface tension in nanoparticles

For small clusters how close are the values of γ to those of bulk surfaces ?

The magnitude of the effective surface energy for a very small cluster 
is within 15% of that of the planar macroscopic surface 
of closed-packed molecules !

Israelachvili,Intermolecular and Surface Forces, 3rd, 2011, page 423

2 2 2

2 2 2

2 2 2

Planar surface:     3 / 4 0.43 /  J/m  
                  
Single atom:         12 / 2(4 ) 0.48 /  J/m  
             
13-atoms cluster:  7 12 / 2(4 (3 ) ) 0.37 /  J/m

 : pair energy molecular i

w a w a

w a w a

w a w a

w

γ ≅ ≅

γ ≅ π ≅

γ ≅ × π ≅

nteraction
 :  molecular radius a
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Surface tension in nanoparticles

Notes: 
The previous calculations assumed that atoms and molecules interacts via additive pair potentials (no 
retardation, no many-body interactions). This is correct for molecular solids and liquids (i.e., composed of 
molecules held together by the van der Waals forces) but generally wrong for metallic, semiconducting, 
covalent, ionic, and hydrogen-bonding compounds. 

However, several metals and semiconductors nanoparticles behaves like van der Waal substances. 

Examples:
-Gold droplets melting point is 1336 K for large particles, 1000 K for 4 nm diameter particles, 500 K for 2.5 nm 
particles. Very small Au clusters behaves like van der Waals solids (the metallic bond is no more the most 
significant).

- Water droplets with less than 20 molecules are probably in the liquid state already at 200 K, due to the 
inability of a H-bonding network to develop in these clusters. A related phenomena is also present in thin 
water films: between 0 and -20 °C the surface of ice has a thin layer of water on it (responsible for the low 
friction of ice).

Israelachvili,Intermolecular and Surface Forces, 3rd, 2011, page 423)
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Melting of nanoparticles
At a given temperature T the Gibbs free energy G for a nanoparticle is given by:

2/3NG NG fN∞= + γ
:  Geometrical factor (it depends on the nanoparticle shape)
:  surface tension per atom
:  volume energy per atom for the nanoparticle in a given phase
:  volume energy per atom for the bulk material i

f

G
G∞

γ

2/3

n a given phase
:  number of atoms in the nanoparticle

:  number of atoms on the surface of the nanoparticle
N
fN

The surface tension  is usually weakly dependent on temperature 
(in a given phase)

γ

The equilibrium between the phase 1 and the phase 2 is governed by the equation
2/3

1 2 1 2 1 2( ) ( ) ( )N G G N G G fN∞ ∞− = − + γ − γ

1 2

1 2

1 2

:  Equilibrium between the two phases (phase transition)
:  Phase 2 is favored
:  Phase 1 is favored

G G
G G
G G

=
>
<
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Melting of nanoparticles

For 
= -                    ,  are positive costant

                                               is temperature independent
Consequently, at the phase transition, we have:
0

∞ ∞−
γ

=

L SG G a bT a b

N

inorganic solids :

2/3

2/3

1/3 1/3 1/3

( ) ( )                       (for the nanoparticle)
0 ( ) ( )                     (for the bulk material)
Hence:

1 1 1( ) ( )      (beca

∞ ∞ ∞

∞
∞

− + γ − γ

= − + γ − γ

 
− = γ − γ − ≅ γ − γ 

 

m L S

m L S

m m L S L S

a bT fN
N a bT fN

f fT T
b N N b N

use )∞ N N

The melting point depends on the difference   and the size of the particle.
Since usually    

The melting temperature of a nanoparticle is lower than the one of a bulk material

Since 

L S

L S m mT T

T

∞

γ − γ
γ < γ ⇒ < ⇒

⇒

1/31/   ( 1) ( )
The melting temperature decreases if the particle size decreases.

m m m mT N T N T N∞− ∝ ⇒ − < ⇒
⇒
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Melting of nanoparticles

( ) [ ]

( )
( )

1/3

1/3

Comparison with experimental results:

/ ( ) 1 / 2

:  nanoparticle radius 
2

(4 / 3)
0 for inorganic materials  (value from 0.4 nm to 3.3 nm) 

∞ ∞

∞

∞

= + γ − γ = − α

α = γ − γ
πρ

α > ⇒ <

m m L S m

S L
m

m m

T T f bN T R

R
f

bT

T T

α (nm)
(theory)

α (nm)
(exper.)

Al 933 1.14 0.6

Au 1336 0.92 0.96

In 429.4 1.95 0.974

Sn 505.1 1.57 1.476

(K)mT ∞

Note 1: 
By coating the nanoparticle or introducing the nanoparticle in a matrix
we change the surface tension and, consequently, the melting point.

Note 2: 
Nanoparticles of very small size (2 nm and below) are usually not spherical
(they form regular polyedra such as dodecahedron, icosadreon,… )
For non-spherical nanoparticles the ratio surface/volume is larger and the
variation of melting temperature with the size is larger and dependent on the 
shape of the nanoparticle.
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Nanoparticles: magic numbers

Magic numbers: small nanoparticles can be 
more stable (or less stable) 
if composed by a specific number of atoms.

Pb cluster
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Growth of thin films on a substrate

adatom cohesive force 
stronger than 
surface adhesive force. 

adatom cohesive force 
weaker than 
surface adhesive force. 

S: Substrate
F: Film
S/F: Substrate/Film interface

Two steps process. 

0∆γ > 1: 0,  2: 0∆γ < ∆γ >
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Stranski–Krastanov growth (SK) follows a two step process: initially, complete films of adsorbates, up to several monolayers thick, grow in a layer-by-
layer fashion on a crystal substrate. Beyond a critical layer thickness growth continues through the nucleation and coalescence of adsorbate islands.
While initial film growth follows a Frank-van der Merve (FM) mechanism, non-trivial amounts of strain energy accumulate in the deposited layers. 
At a critical thickness, it is energetically favorable to nucleate islands and further growth occurs by a  Volmer-Weber (VW) type mechanism. 

Intermolecular Forces and Surface Phenomena

Growth of thin films on a substrate
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Growth of thin films on a substrate

Change in the cluster 
shape during growth
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Nanotechnology 
Nanoscale phenomena

Examples of Nanoscale Phenomena
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Tunneling current: quick overview

161

Key-facts: 
• Tunneling of electrons, or any particle, across a classically forbidden region of space (a barrier higher than their 
kinetic energy) is possible in quantum mechanics and is a direct consequence of the wave nature of the particle.
• The electrons of a metallic tip can cross the vacuum barrier to the adjacent surface if the distance between them is 
sufficiently small and the barrier height is not infinitely large. To establish a net current in one direction, for example 
from tip to sample, a bias voltage must be applied between the electrodes.

d

d

z
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2 2

02

1

One-dimensional Schrodinger equation for an electron of mass  incident upon a barrier ( )

( ) ( ) ( ) ( )
2

The solutions for this electron approaching the barrier from the left are

( )

m U x

x U x x E x
m x

x

∂
− Ψ + Ψ = Ψ

∂

Ψ =



( ) ( )
( ) ( )
( )

0

2 0

3 0

exp +Bexp         where 2 /         (before the barrier)

( ) exp +Dexp         where 2 ( ) /  (in the barrier)

( ) exp                             where 2 /   (after the bar

A ikx ikx k mE

x C x x m U E

x F ikx k mE

− =

Ψ = κ −κ κ = −

Ψ = =





 rier)

A: Amplitude incoming wave, B: Amplitude reflected wave, F: Amplitude transmitted wave
Examples of Nanoscale Phenomena

Tunneling current: elementary qualitative model
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Tunneling current: elementary qualitative model
2

2The transmission of the wavefunction through the barrier is:            

Imposing the following continuity conditions:                                  =     and   =  exp(- )

                  

F
T

A
A C F C d

=

κ
2

0
2

2 ( )
                               exp( 2 ) exp( 2 )

The  trasmission probability depends on the electron energy, barrier height, and barrier widht.  

F m U E
T d d

A
−

⇒ = = − κ = −


Let's consider the specific case of an STM, with tip and sample made of the same metallic material. 

2If the applied voltage  is small compared to the workfunction ( << )

The tunneling current i

mV eV Φ
Φ ⇒ κ ≅



s due to electrons going from the filled state on one side to 
to the empty states at the same energy on the other side (elastic tunneling).
The total number of filled states available on one side having energy above those
empty on the other side is approx. given by ( )
Consequently, the tunneling current is :

2( ) ( ) exp( 2 )

 

F

F F

E V

mI T E V E V d

ρ

Φ
∝ ρ = ρ −


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Tunneling current: elementary qualitative model

2

More in general, if the tip and the sample are not made with the same material,

: distance tip-sample
( ) :  density of states at the Fermi energy in the sam

(

ple mate

) ( )

rial
( ) :  den

s F

d
s t F

F

F

t

I V E
d

E

E e

E

− κ∝

ρ

ρ ρ

ρ

( )
sity of states at the Fermi energy in the tip material

2 / 2 /   for  

( + )/2     (average work-function)

Notes:
  a small variation of distance generate a  large variation of  !

2

s t

ad

m eV m eV

I e I−

κ = Φ − ≅ Φ Φ

Φ = Φ Φ

∝ ⇒

  

19 1 1/2 1 1/2/ 2.5 10 m J 1 Å eV
Scanning tunneling microscope: Vertical resolution: better than 0.01 Å
                                                    Lateral resolution: atomic resolution

m − − − −≅ × ≅

d
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Tunneling current: spectroscopy of density of states

Examples of Nanoscale Phenomena

( ) ( )
0

eV

s F t FI E eV E d∝ ρ + + ε ρ + ε ε∫
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Tunneling current: spectroscopy of density of states

Occupied states

Unoccupied states Unoccupied states

Occupied states

Unoccupied states

Occupied states

Unoccupied states

Occupied states
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Tunneling current: manipulation and imaging
Iron on Copper (111) 

http://www.almaden.ibm.com/vis/stm/images/stm15.jpg

http://www.almaden.ibm.com/vis/stm/images/stm10.jpg

Xenon on Nickel (110) 

Manipulation and imaging of single atoms 
(and of electron density interferences)
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Examples of Nanoscale Phenomena

Conductance quantization: first observed in 1988.
1. B. J. van Wees et al."Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas" 
Physical Review Letters 60, 848-850, 1988. 
D. A. Wharam et. Al. "One-dimensional transport and the quantisation of the ballistic resistance," 
Journal of Physics C: Solid State Physics 21, L209-L214, 1988. 

Conductance quantization: experimental evidence
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Conductance quantization: conditions
Conditions to observe conductance quantization:

• Low temperature (kBT small with respect to 
energy separation of the possible states)

• Ballistic transport
• 1D electron system (nanowire)

Conductance quantization can be observed by: 
• changing the voltage applied across the nanowire
• changing the nanowire lateral dimensions 

(e.g., by a gate voltage acting on a channel)

In both cases the conductance changes by steps having the following amplitude:

In Quantum Point Contacts (constrictions between two electrically conducting regions
with a width comparable with the electron wavelength) the conductance changes by steps of
amplitude G0  and have absolute values given by:

2

0
2eG G
h

∆ = =

Examples of Nanoscale Phenomena

22 2                              ,    e W hG N N
h p

= ≅ λ =
λ
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Conductance quantization: simplified theory

The current in 3D wire of section  is given by:                      
( : number of electrons per unit of length of the wire partecipating to the current)  

We can tentatively write th

L

L

S I JS nevS n ev
n nS

= = =
≡

( ) ( )

( )( )

( )

1

1

1

e current an a 1D  wire as:              

/ :  the density of states per unit of length for a 1D wire

2The density of states of a 1D system is:                           
2

F

F

E eU
D

E

D

D

g E
I e v E dE

L

g E L

Lg E

+

≈

=
π

∫



( )

( ) ( )1

2The group velocity is, by definition, given by:              

Consequently:                                                                  

 and                                    

e

e

D

m
E

Ev E
m

Lg E v E

=

=
π

2

2 2

1                                           

2Finally                                                                          

F

F

E eU

E

e UI e dE

I e eG
U h

+

≈ =
π π

= ≈ =
π

∫
 


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Conductance quantization: As the gate voltage 
defining the constriction is made less negative, the 
width of the point contact increases continuously, but 
the number of propagating modes at the Fermi level 
increases stepwise.
•The conductance steps are smeared out when the 
thermal energy becomes comparable to the energy 
separation of the modes.

2
5 12 17.7 10

13 k
e
h

− −≅ × Ω ≅
Ω

http://sciencewise.info/definitions/Quantum_point_contact_by_Carlo_Beenakker

The gate voltage changes 
the «nanowire» width

Examples of Nanoscale Phenomena

Conductance quantization: experimental evidence
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A

B

Different 
«nanowire» 
widths

Examples of Nanoscale Phenomena

Conductance quantization: experimental evidence
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•Coulomb blockade (CB) is the increased resistance at small bias voltages of an electronic
device comprising at least one low-capacitance tunnel junction. Because of the CB, the 
resistances of devices are not constant at low bias voltages, but increase to infinity at the limit of 
zero bias voltage.

•An arrangement of two conductors with an insulating layer in between not only has a resistance, 
but also a finite capacitance. The tunnel junction behaves as a capacitor.

• Current through a tunnel junction is a series of events in which exactly one electron passes 
(tunnels) through the tunnel barrier. The tunnel junction capacitor is charged with one charge e by 
the tunnelling electron, causing a voltage buildup U=e/C , where C the capacitance of the 
junction. 

•If the capacitance is very small, the voltage buildup can be large enough to prevent another
electron from tunnelling. The electrical current is then suppressed at low bias voltages and the 
resistance of the device is no longer constant. 

•The increase of the differential resistance around zero bias is called the Coulomb blockade.

Examples of Nanoscale Phenomena

Coulomb blockade (CB) 
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• A simple device in which the Coulomb blockade can be observed is the so-called single electron transistor (SET).

• SET: two electrodes (drain and source), connected through tunnel junctions to one common electrode with a low self-capacitance, known as the 
island. The electrical potential of the island can be tuned by a third electrode (gate), capacitively coupled to the island with a relatively thick 
insulating layer (to prevent tunneling from the gate to the island).

• In the blocking state no accessible energy levels are within tunneling range of the electron on the source contact. All energy levels on the island 
electrode with lower energies are occupied.

When a positive voltage is applied to the gate electrode the energy levels of the island electrode are lowered. The electron can tunnel onto the 
island, occupying a previously vacant energy level. From there it can tunnel onto the drain electrode where it inelastically scatters and reaches the 
drain electrode Fermi level.

http://www.sp.phy.cam.ac.uk
http://upload.wikimedia.org

Examples of Nanoscale Phenomena

Single electron transistor (SET)
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2

To observe Coulomb blockade three criteria have to be met:
1. / 2
(otherwise electrons have enough energy to overcome Coulomb energy barrier)
2. / 2       
(otherwise electrons cross the island vi

B

V e C

k T e C

<

<

2

a thermal exictation)
3. / 26 k          
( :  tunneling resistance. This condition is obtained from the uncertainty 
principle and correspond to a situation where simultaneous tunneling events are

T

T

R h e
R

> ≅ Ω

 negligible)

http://www.lne.eu/en/r_and_d/images_r_and_d/electrical_metrology/etm_fig3.gif

2

2 15

0

Example: /   
requires, at =1 K, a capacitance 

/ 10 F=1 fF. 

Capacitance of a metallic sphere
in a dielectric medium : =4
For 100 nm, 4 0.1 fF  

B

B

r r

r

k T e C
T

C e k T

C R
R C

−

<

< ≅

ε πε ε
= ε = ⇒ ≅
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SET: general approx. features
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Single electron transistor (SET): a simple theory
The energy that determines the transport of electrons through single electron devices is
the Helmoltz's free energy =              

                 (Total energy stored in the device)
     

−
= +

a

a C K

F E W
E E E
W

2

                              (Work done by the power sources)     
/ 2                   (Energy required to charge an island with one electron)

=1/ ( )                 (Quantum kinetic energy o
=C

K F

E e C
E g E 2/3f the added electron, ( ) )
Usually we have (i.e., the quantization due the small size of the island is negligible)
The only transitions possible (at 0) are those where 0.

∝

= ∆ <


F

C K

g E V
E E

T F
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Single electron transistor (SET): a simple theory

0

2 1 0 2 0 2

1 2

1 1 1 2 2 2 1 2

 is induced by stray capacitances and impurities (background charge)
Total charge on the island: ( - ) ( - )
where -

/     ,   /    ,  +   
From these 

g g g g

b

q
q q q q C V V ne q C V V

n n n
V q C V q C V V V

= − + + = − + +

≡
= = =

( )2 0 1 0
1 2 1 2

equations we get:

,              ,    g b g g b g g
g

C C V C V ne q C V C V ne q
V V C C C C

C C Σ
Σ Σ

+ − + − + − +
= = = + +
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The Gate-Island oxide is much thicker than the Drain-Island and Source-Island oxide
(negligile tunneling from Gate to Island)
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( )( )

( )

1 2 0

2 1 0

The change in the free energy after a tunnel 
event in junction 1 and junction 2 are:

2

2
At =0, the possible (energetically favorable) 
tr

g b g g

b g g

e eF C C V C V ne q
C
e eF C V C V ne q

C
T

±

Σ

±

Σ

 ∆ = ± + − + − 
 

 ∆ = ± + − + 
 

1 2ansitions are those with  <0 or 0. 
These conditions generates the  
(also called  )

b g

F F
V V plots

Coulomb diamonds

± ±∆ ∆ <

( ) ( )

1 2
2 22 2 2 2

1 2 1 2

1 2

1 1 2 2

1 1 2 1 2

2 1 2 1 2

( , )        

2 2 2 2 2 2

/ /

( 1, ) ( , )
( , 1) ( , )

C

g g
C

g

b b

F n n E W
q Vq q V VE

C C C

W n eV C C n eV C C

F F n n F n n
F F n n F n n

Σ Σ

±

±

= −

= + + = + +

= − −

∆ = ± −

∆ = ± −
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Single electron transistor (SET): a simple theory
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Single electron transistor (SET): a simple theory

• In the region 0, tunneling is forbidden by the Coulomb blockade and the only stable charge state is the one with zero
electrons on the island.

• The regions 1,2,3.. are also a region of Coulomb blockade where the only stable charge state is one, two, three,…
electrons on the island.

• Within the regions 1,2,3,.. the conductance G is zero (no current flows from source to drain). At the interesection of these 
regions the G is not zero. Outside of these regions G is not zero.

• When a bias voltage is applied that is large enough to overcome the Coulomb blockade, current flows as electrons tunnel 
from the source onto the island and then from the island to the drain. 

Examples of Nanoscale Phenomena

G

Vsd

Vg

Vg0 1 2 3 4

1/2 3/2 5/2 7/2

0Vsd ≅
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SET: experiments

http://people.ccmr.cornell.edu

(a) Top-view SEM image of the device geometry, with gold source 
and drain electrodes on top of an oxidized aluminum gate. 
(b) Expanded view of the region outlined with a white rectangle in 
(a). A 10 nm gap made by electromigration is visible, along with 
deposited gold nanoparticles. 
(c) Circuit schematic for the Au-nanoparticle SET

http://www.rikenresearch.riken.jp/images/figures/hi_3678.jpg
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Nanomagnetism: Nanoscaled magnetic “objects”

Nanodots
Nanoparticles Nanowires

Ultrathin films and 
multilayers

Examples of Nanoscale Phenomena

Ultrathin complex multilayers
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2 eL B
e Lm=− ≈µ µ

( )2 1 3B B BS s sµ = µ + =µ ≈µ

v

r

L

µL

i
nuclues

electron

A

Intrinsic magnetic moment of an electron

Orbital magnetic moment of an electron

(classical picture: the electron 
rotates about itself (!?!) )
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Nanomagnetism: Microscopic sources of magnetic field
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24 29.3 10   Am2B
e

e
m

−µ ≡ ≅ ×

is called Bohr magneton. 



Nanomagnetism: Microscopic sources of magnetic field

v

r

L

µL

i
nuclues

electron

A

• Equilibrium between Coulomb force and centrifugal force:

    

e
4πε0r2 =me

v2

r ⇒ v =e 1
4πε0r

1
me

10 34

0
(for 10 m) 10 Js4

e
e

m rL rm v r L e− −= ⇒ = ≅ ≅πε 

2( )( )2 2 2 eL B
ev ev eiA r r Lr m= =− π =− =− ≈πµ µ

• Orbital angular momentum:

• The orbital magnetic moment is then:

2

Note: 

0.3 mAµ µ
π

  

B Bi
A r

Orbital magnetic moment of an electron
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• The magnetic moment of an atom with Z electrons is the "sum" of the magnetic moment 
of each electron ?

- Yes. We will see how the "sum" must be done.

• For an atom with many electrons, the magnetic moment is much larger than the Bohr 
magneton ?

- No. The biggest is only a few times the Bohr magneton (because filled shells have zero 
angular momentum).

• The magnetic moment of the nucleus is negligible with respect to that of the electron ?
- Yes. It is at least 1000 times smaller (because ) .

Questions:

    µ ∝1 m

Examples of Nanoscale Phenomena

Magnetic moment of an atom
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How to compute the total magnetic moment of an atom ?

185

i iatom iH Eψ = ψ

i iiµ = ψ µ ψ

1. Solve the Schrödinger equation for the atomic system (electrons + nucleus)

:    Wavefunction of state  (possible state of the system)i iψ
: Hamiltonian operator (total energy)atomH

:    Energy of state  (possible energy of the system)iE i

2. Compute the value of the magnetic moment for each state of the system

:    Magnetic moment operatorµ

2 2 2

2 2
1 1 1

      ( ) ( )
2

Z Z Z Zi
i i iatom

i i i j ii i j

p Ze eH r
m r r r= = < =

= − + + ⋅ ξ∑ ∑ ∑ ∑
−

l s

Spin-Orbit 
Interaction

(Anisotropy)

Electron-Electron
Coulomb interaction

(Exchange)

Electron-Nucleus
Coulomb interaction

Electron kinetic
energy
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Russel-Saunders Rule
The total angular momentum of the atom or ion is given by 
(valid more accurately for light atoms where the spin-orbit coupling is weaker than spin-spin and 
orbit-orbit couplings ):

1 1

Z Z
i i

i i= =
= + = +∑ ∑J L S L S

Hund Rules
1) The spin vectors Si are arranged to maximize total spin S
Physical interpretation: minimization of the exchange energy

2) The orbital vectors Li are arranged to maximize total momentum L
Physical interpretation: electrons with the same sign of angular momentum can
more easily «avoid» each other because they precess in the same direction.

3) If a «shell», specified by (n,l), is:

Physical interpretation: minimization of the spin-orbit coupling. This rule is often not valid
(ok pour rare-earths but not for transition metals)

Less than half filled:  J L S             More than half filled:   J L S= − = +

exc i jE J= − ⋅S S
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In general:        (with )B≠ −µ =μ J J L+S

Total orbital magnetic moment: 
Total spin magnetic moment:     2
Total magnetic moment: ( 2 )

L B L B

S B S B

L S B

g
g

≡µ =−µ
≡µ ≅−µ

= + =−µ +

μ L L
μ S S

μ μ μ L S

Case 1:       J=0 and  partially filled shells  0 
Case 2:       J 0 and  partially filled shells  0

3 ( 1) ( 1)                  ( 1)              
2 2 ( 1)

Case 3:       J=0 a

B J J
S S L Lg J J g

J J

⇒ =
≠ ⇒ ≠

+ − +µ=µ + ≅ +
+

zero μ
one μ

nd  partially filled shells    0 (complex case)⇒ ≠one μ

Lμ

LS

J

Sμ

μ
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Rare earths ions

Transition metal ions

http://www7b.biglobe.ne.jp/~kcy05t/rare.html

The magnetic moment of an ion or atom predicted by 
the hydrogen-like atom model plus simple rules
is often not very accurate 
(especially for transition metal ions) 
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From atoms to solids

190

If the ions are not isolated, the 3d levels are often no more isoenergetic due to the interaction with the ligand 
atoms. If the energy required to pair up an electron in the lower energy state is smaller than the splitting than the 
low spin configuration is favored (and the ion has a smaller magnetic moment with respect to the isolated
condition). 



From atoms to solids
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= + + +total Zeeman Exchange Anisotropy DipolarH H H H H

2 0
0 5 3

,

3( )( ) ( )
( )

8< ≠

 ⋅ ⋅ ⋅µ
= µ − ⋅ − ⋅ − − 

π   
∑ ∑ ∑ ∑ i ij j ij i j

total i ij i j i i i
i i j i i j ì ij ij

H J k
r r

m r m r m m
H m m m m e

:  applied magnetic field
:  magnetic moment of atom i i

H
m
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Diamagnetism: Atoms or ions with zero magnetic moment:

Ex: water, diamond, graphite, copper, silver, bismuth, most organic compounds, solid noble gases
(He, Ne, Ar, Kr, Xe), ionic crystals (NaCl, LiF, ……), …

Paramagnetism: Atoms or ions with non-zero magnetic moment but weak interactions between them:

Ex: Solids with transition metal ions: CuSO4*5H20, FeCl3* 6H20,….

Pauli paramagnetism: Paramagnetism due to the spin of the conduction electrons.

Ex: Solid metals: Al, W, Li, Na, K, ….

Ferromagnetism, Antiferromagnetism, …: Atoms or ions with non-zero magnetic moment with strong
magnetic interactions between them.

Ex: Solid metals: Fe, Co, Ni, …..
Insulators: Y3Fe5O12, Fe3O4, Fe2O3…
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Type Typical values Physical Origin

Diamagnetism Non-interacting «induced» atomic magnetic
dipoles

Paramagnetism Orientation of non-interacting «permanent» 
atomic magnetic dipoles

Super-
paramagnetism

Orientation of non-interacting «permanent» 
large (many atoms) magnetic dipoles

Ferromagnetism Orientation + coupling + anisotropy of 
«permanent» atomic magnetic dipoles

610−−≈χ

)1010( 35 −− ÷+≈χ

210−+≈χ

( )60 10χ = + ÷

Types of magnetism =M Hχ

Several materials have different
behavior depending on temperature.

(e.g., ferromagnetic below the
Curie temperature, paramagnetic
above the Curie temperature)
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Types of magnetism
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DIAMAGNETIC PARAMAGNETIC FERROMAGNETIC
SOFT (IDEAL)

FERROMAGNETIC
HARD (IDEAL)

0=B

>>mB kT

   ↓B
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Types of magnetism
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M

0  (inside the material)µ<B H

0  (inside the material)µ>B H

0  (inside the material)µB H

0

(everywhere)
µ= +B H MM

M



Ferromagnetism

Ferrimagnetism

Antiferromagnetism

Same atoms with  parallel 
dipole orientation

Two kinds of atoms with 
antiparallel dipole orientation

Two kind of atoms with 
antiparallel dipole orientation
and exactly inverse values.

0total ≠M

0total ≠M

0total =M
Examples of Nanoscale Phenomena
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Superparamagnetism appears in ferromagnetic or ferrimagnetic single magnetic domain nanoparticles, 
having a diameter below 3 to 50 nm, depending on the materials. 

In a single nanoparticle:
1) The atomic magnetic moment are alligned in the same direction due to the exchange interaction.
2) Usually there are two stable orientations, antiparallel to each other and separated by an energy barrier, 

along the so called easy axis of the nanoparticle. This energy barrier is called
magnetic anisotropy energy. 

At finite temperature, there is a finite probability for the magnetization to flip and reverse its direction. 
The mean time between two flips, called the Néel relaxation time, is:

0

0

exp

: average time that it takes for the nanoparticle’s magnetization to randomly flip due to thermal fluctuations.
: is a characteristic time of the material,  called the   

N
B

N

KV
k T

attempt time

 
τ = τ  

 
τ

τ 9 10(typically:10  to 10  s).
:  nanoparticle’s magnetic anisotropy energy density           :  particle volume
 is the range from  to  , depending on , , and N

K V
V T K

− −

τ nanoseconds millions of years

easy axis
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Superparamagnetism
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Behaviour of Np ferromagnetic nanoparticules each  with Na atoms inside:

0
0i

i

=
=∑

B
m

i p
i

N m
→∞

→∑
B

m

Nanoparticle

Inside each nanoparticle the Na atoms have their magnetic moments all alligned in the same direction 
due to the exchange interaction. Each nanoparticle has a magnetic moment m of about NaµB

a Bm N m

Ensemble of nanoparticles in B=0 Ensemble of nanoparticles in large B
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Superparamagnetism
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An external magnetic field tends to “orient” the magnetic moment of the nanoparticle in the direction of the 
magnetic field.

In an ensemble of paramagnetic atoms: each atom is interacting with the external magnetic field but the 
interaction with the other atoms is negligible. The effective magnetic moment is the one of a single atom 
(about 1 µB). 
In an ensemble of superparamagnetic nanoparticles: inside each nanoparticle the atoms are strongly 
coupled by the exchange interaction and, hence, interact globally with the external magnetic field. The 
effective magnetic moment is about NaµB, where Na is the number of atoms in the nanoparticle.

The "volume averaged" magnetization of an  is

1( )
tanh( )

:  is the magnetic moment of a single nanoparticle ( )
:  Numbe

 
 

= = − 
 
 

≅ µ

p p

a B

p

N NmB kTM mL m mBV kT V mB
kT

m m N
N

ensemble of superparamagnetic nanoparticles

r of nanoparticles in the ensemble
:     Volume of the ensemble

1 1( ) : Langevin function
tanh( )

= −

V

L x
x x

Langevin function (red line), 
compared with tanh(x/3)(blue line). 
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Diameter

Time

Nano and microdots magnetism
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Single domain
unstable

Single domain
stable

Vortex
stable

Multidomain
stable
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Temperature
increase

Size increase
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Magnetic domains in nanodots

203Examples of Nanoscale Phenomena



0I ≠

0I =
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0.2 mm

Co thin film (20 nm)
(color scale=magnetization direction)

Bi0.6Tm2.4Ga1.15Fe3.85O12 (8 µm)

0.2 mm

Y3Fe5O12 (8 µm)
Examples of Nanoscale Phenomena
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Length Typ. Value
(nm)

Interatomic distance ~ 0.2
Domain size ~ 10- 104

Domain wall width ~ 1- ~ 102

Critical superparamagnetic
diameter

~ 1- ~ 102

Examples of Nanoscale Phenomena
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magnetite (Fe3O4)
greigite (Fe3S4) 

Magnetotactic bacteria

Homing pigeon beak

Examples of Nanoscale Phenomena
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Present: several particles (grains) per bit
Future: single particle per bit ?

Examples of Nanoscale Phenomena
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0

 
Magnetization flips direction often ( ) 
Information cannot be stored

Magnetization flips direction rarely ( )
Information can be stored

N

N

KV kT

KV kT

<< ⇒
τ ≅ τ ⇒

>> ⇒
τ →∞ ⇒

Easy-axis
(anisotropy axis)

Anisotropy Energy
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0

0

Relaxation time (average time to jump from one minumum to the other):

= exp( )     

Assuming 0.1 ns we have that:
=43  15 years
=40  9 months
=23  1 s

N
KV
kT

KV kT
KV kT
KV kT

τ τ

τ ≅
⇒ τ ≅
⇒ τ ≅
⇒ τ ≅



2012: 1 Tbit/inch2, i.e., 1 bit on (25 nm)2

2024: 1.5 Tbit/inch2

(25 nm)2

(2.5 µm)2

(250 nm)2

(25 µm)2

(250 µm)2
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Data storage: overview

211

HDD (Hard disk drive): magnetic storage device with spinning disks coated with a magnetic materials.
NAND (Flash memory): trapped electrons inside an insulated gate within a MOSFET transistor. Used in SSD, USB flash drives,….
LTO (Linear tape-open): magnetic tape storage technology. Used for data backup and archiving. 



MRAM (magnetoresistive RAM):
A new approach to magnetic data storage

Nanomagnetism: Magnetic data storage
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Quantum Hall effect in a 2D electron gas
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http://www.warwick.ac.uk/~phsbm/iqhe.gif

1 1         

: No. of squares in i-direction
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N
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classical Hall effect
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Quantum Hall effect in a 2D electron gas

( ) ( )

In , electrons in a magnetic field follow circular cyclotron orbits. 
These orbits are quantized. The energy l

=

evels (called Landau levels) of

1/ 2 1/ 2      

r

 

 these o bits are:

n c
eBE n n
m

= ω + +

ω

two dimensions

 

For strong magnetic fields,  many single particle states have the same energy 
For a sample of area , in magnetic field , the degeneracy of each Landa

 is the "classical" cyclotron frequency. 

.

c

n

B

eB
m

E
A

=

0 0

u level is:

For sufficiently strong ,  each Landau level may have so many statesthat all of the free electrons in the system, 
at low , sit in only

2 /                   : is the quantum of flux.
 
N

B
T

BA= Φ Φ

 a few Landau levels it is in this regime where one observes the quantum Hall effect.
Note: As for the Coulomb blockade in a 0D object, also for the quantum Hall effect in 2D object 
the energy levels discretization due to the "nanoscale size" is not the dominant phenomenon. 
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Casimir effect and force                        

215

The Casimir effect and force are considered, by most of the people, a purely 
quantum phenomena related to zero-point quantum 
fluctuations of the electromagnetic field.
(some people consider the Casimir force as a result of  quantum relativistic 
retarded van der Waals (London) forces).

The Casimir effect is present even in absence of a net charge, electric dipole or 
multipole (permanent or induced),  magnetic dipole, external fields, etc. etc. 

Example: Two uncharged metallic plates in a vacuum without any external 
electromagnetic field.

Classical description: since there are no charges and no external fields, there is 
no field nor forces between the plates.

Quantum electrodynamic description (QED): there are virtual photons between 
the plates which generate a net force (either attraction or repulsion depending 
on the arrangement of the plates and the materials between them).

The Casimir effect is present between infinite conductivity metallic plates but also for finite-conductivity metals and dielectrics
of different geometries.

In the nanoscale: The actractive force produces stiction (but could be used for actuation). In presence of fluids, it can be also
repulsive and, hence, could avoid stiction.

Examples of Nanoscale Phenomena



Casimir effect and force                        
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2

2 2

4

1.  Casimir force between 
( =0, perfect reflection, perfectly parallel, perfectly flat surfaces,  )

                                           ( 1.3
240 240c

T A d
c A cF

D

>>

π π
= = ×

two parallel "ideal" plates

 

( )

27 2

2

10 Nm )  

:  Distance between the two plates, :  surface of the plates

For = 1 m , 10 nm   0.13 N 
(which is, in principle, an easily measurable force but other forces 
or surface imperfection ma

c

D A

A D F

−

µ = ⇒ = µ

ke these measurements challenging)
Note: the Casimir equivalent pressure is / 130 kPa 1 atm !!cP F A= = ≅

2

3

2. Casimir force between an  
12           (for  and A= )                           

720
:  Distance between the sphere and the plane,

:  Surface of the p

c
cF R R D

D
D
A

π
= π >> ∞

"ideal" plate and an "ideal" sphere


late
:  radius of the sphereR
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Casimir effect and force                        

U. Mohideen et al., Phys. Rev. Lett. 81, 4549 (1998)
G. L. Klimchitskaya et al., Rev. Mod. Phys. 81, 1827 (2009)
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