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5.1 Non-Equilibrium p-n Junctions: Bands
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S.M. Sze, « Semiconductor devices, physics and technology »
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5.1 Quasi Fermi Levels: Reverse-Blocking Mode
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5.1 Currents in p-n diodes
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5.1 Currents in p-n diodes

Shockley equation
(ideal diode law)

| [A]
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5.1 Initial Conclusions

1) The dark current in a p-n diode is the integral of
thermal generation in:
1)  the diffusion region of the electrons in P
(typical length L, : a few tens of micrometers)
II) the depletion region, with a strong electric field
(typical length W: a few tenths of micrometers)
I11) the diffusion region of the holesin N

(typical length L a few tens of micrometers)

2) The dark current of a silicon p-n diode at room temperature is dominated by
generation in the depletion zone.

It is not the current of an ideal diode!
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5.2 Photodiode: PRINCIPLE

A two-step process to detect light:

1) Optical generation of electron-hole pairs
= absorption of light by matter

2) Collection of charge carriers

= extraction of carriers by the electrical field of the junction or by diffusion (main
process in solar cells)

aqua | C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes Slide 9 =Pr-L



5.2 Absorption

For silicon

Absorption coefficient o [em™]
[wu]o/) yidep uonelsusd
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Wavelength [nm]

Approximation:  ®em=1(Aum) = 107:2-5.52
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5.2 Absorption and Generation Rate

Po R= Reflection coefficient
* | TP=(1-R).P,
R.P, - T= Transmission coefficient
S R
S= Surface of the detector
< Absorbing material
—_— -

Same discussion as in 1.49
and Exercise 2.2

g(x)= generation rate of carriers

G,¢= generation rate per surface

:P(x)/S.a — EL.(l_R).e—WC.a [—13 }
hv S hv cm” - S
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5.2 Typical Structure of a p-n Photodiode

Opening + ARC
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N I

S. Donati, « Photodetectors, devices, circuits and applications »
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5.2 Schematic Diagram of the Working Principle

Now subiject to light!
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(Brownian motion)
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5.2 Current in photodiodes

Same as discussion §5.1 but I =]p

now under illumination ]ph Generation and extraction

A _ of photocarriers

iyh_‘_z VIV]

Dark = thermal

q
____________ —Jpn = — (E) M+ N+ M) - Popt

Photocurrent!
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5.2 Continuity Equations of the Minority Carriers

ly==5-q-] G, (x)dx
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5.2 Solutions for the Photocurrent - : °
hd XIO Xy Xmax
- \I=1,+1,=—1,—L(n,+n,+n,)-(1-R)-P
General case: — L ph d I (771 Ny My ) 0
Shallow junction Deep substrate
Specific case: x,<<L and Xmax Xn>>Ly
Main results:
ny=e " -(1—e ") My = g 56 201
Vi 1 1+ CZLp See Exercise 2.2!
With recombination at the surface: Without recombination at the surface:
—ax —ax
n, = I—e _e—axp 77]:1_60‘19
OCXp
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5.2 Interpretation: Quantum Efficiency n,

VAN
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5.2 1(V) Plot
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Take-Home Messages/W5-1

5.1 p-n junction:

* Explain the working principle of a p-n junction?

5.2 p-n Photodiodes:

* Explain the working principle and structure of a p-n photodiode.

 Where should the light be absorbed to be correctly detected ?
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5.3 PIN Photodiode

n+

Q: How can the depletion region size Intrinsic region: very low doping
and My be increased?
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5.3 PIN: Broad and Homogeneous Electric Field

) PN I’LIN E-field

Ebrctne Neld §

UR:criny Digld

OO e e e ol

Quantum efficiency increased
especially in the red and NIR

J. Wilson, J.F.B. Hawkes, « Optoelectronics, an introduction »
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5.3 Examples of Quantum Efficiency
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5.3 Heterojunctions for Photodiodes

| ]
s

Eihﬂwf—k1P P+

INGaAs |

InP n (Small) Direct
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In P N+ sufficient (1-5 um)

K

S. Donati, « Photodetectors, devices, circuits and applications »
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5.3 Heterojunctions for Photodiodes

100
Can be undoped d d Si | Ge InGaAs
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or InP =
Y 5
> & 60—
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_____________________________________________ .
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«Small» vs large bandgap (see also §1.5 Bandgaps:
InP: bandgap 1.35 ey, cut-off 0.92 um)
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5.4 Case Study: Color Sensors

Double photodiode
Electrode

Insulator o @

r—

N

P 5I

&)

N KAKO, Sensors and Actuators, 4 (1983) 655 - 660

PNP transistor, two junctions in reverse one on top
of the other = 1st diode: blue (surface), 2" diode:
red (depth)
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Example of application: flame colour detection (blue
= ok; yellow = too little oxygen)
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5.4 Color Sensors

Bipolar PNP structure in reverse-bias
(transistor in «cut-off mode»)

PD1

Both junctions in
reverse PD?

| |
1
N KAKO, Sensors and Actuators, 4 (1983) 655 - 660 2
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5.4 Foveon X3: Pixel Design on Silicon

N _‘<]i_j[>,_|_'<h; Foveon r‘jx g i =
- SO

\__niid ] 4 i
pwel  \_BLUE PHOTON f-2pm
COLLECTION
06um
e '{\EHEEH PHOTOM
i J/ | 2 um
puvus \_ ERPTON

Three junctions in reverse!

No colour filters.
R.F. Lyon and P. M. Hubel: « Eyeing the camera: into the next century », 10th Color Imaging Conference, 2002
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5.4 Spectral Response

0.7 | [ I 0.7
0.6 — 0.6p
0.5 0.5h
0.4 0.4
0.3 0.3f
0.2 0.2k
0.1 0.1f

0 45

Our simple model

Any other sensor
behaving like this?

'] '] 3 ']
400 450 500 550 600 650 700

Foveon publication:
Measurements and model

P. Hubel: «Foveon technology and the changing landscape of digital cameras », 13th IS&T Color Imaging Conference pp. 314-317, 2005
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5.4 Human Vision

The Retina

Nerve (| Nuclei Spectral response of the cones
Fibres ||| i

Light i

Ganglion Horizontal
Large Cells Cells

The Human Eye

Wavelength (nm)

Aqueous Humour

- \
|

Comea —s Lens Optic Nerve

,*\ http://www.photo.net/photo/edscott/vis00010.htm

Iris Fovea

Vitreous Humour
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5.4 An example from nature: the Mantis shrimp

¥
E Broadband light ,w::“': F
I

e FR
PV =k = B T S

LPO—f g :
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R
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OPV5 — N
[ oy 1 1 [
| FH'¢_' II : II : : |II : II|
DH'135¢ :] __.'I | I'-‘_ 1 ‘I _f' [} '\._‘
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Mantis shrimp—inspired organic photodetector for simultaneous hyperspectral and polarimetric
imaging, Volume: 7, Issue: 10, DOI: (10.1126/sciadv.abe3196)
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5.4 Vertical or Mosaic Structure

daqua

Foveon X3® Capture

A Fovean X3 direct image
sansar fealures thres
saparale layers ol pixel
sanzars embaddad in silicon,

colors ara caglured,

ol

Sinoa silicon abzorbs dilferemn
wavelenglhs of light at difterznt
deplhs, each layer records a
dilferent colar, Because the layers
are slackad logather, all lhraa

http://www.foveon.com/article.php?a=113

Foveon Polaroid x530

Ag @ razull, enly Foveon %3 diracl
image sensars capture rad, graan, and
Bilue light at every pixel kocatian,

4.5 Megapixels ——

Mosaic Capture

In conventional systems,
clor filters are apglied 1o a
singla layar of pixal sansars
in a tilad mesaic pattern.

http://www.foveon.com/article.php?a=69
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TN

Ths filters let anly one wawvalangth
of light=rad, graan, or blue= pass

through te any givan pixal kocation,
allowding it to record anby one colar,

Sigma SD14

Bayer filter 14.1 Megapixels

—

I.III HEHNEN
mmmn T TEEE
HEEE R aaan

A5 a rasult, mosaic sensors caplurs
anly 25% of the red and blus light, and
Just 50% of tha green.

http://www.sigma-photo.com/cameras/

«RAW» mode vs 3x fitted/interpolated
colour pixels (vs monochrome!)
Optical Detectors: Week 5 — Photodiodes

5.5 Megapoints

4.7 Megapoints
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Take-Home Messages/W5-2

5.3 pin photodiodes:

 What are the advantages of PIN photodiodes for the photon detection?

5.4 Heterojunctions:

 Why are heterojunctions used to fabricate high-performance photodiodes?

5.5 Colour sensors:

e Describe the photon absorption in a semiconductor as function of the wavelength of the light.

* How can a color sensor be fabricated with photodiodes?

aqua | C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes Slide 36 =Pr-L



Outline

5.1 p-njunctions (review)

5.2 p-n photodiodes

5.3 PIN photodiodes

5.4 Case study: color sensors

5.5 Solar cells

5.6 Electronic circuits, cut-off frequencies, noise

5.7 Avalanche photodiodes

aqua | C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes Slide 37 =Pr-L



5.5 Solar Cells

Power = shaded area

P,=U-1I (rectangle) — direct power
‘ I generation
Optimal load resistance R_:
RC — Vmax
/| !

\ max

2 [Veo
l
_ aal
r s

LS _4) = X
Im: — SZI v H::

P, =V -1, =V

e

R, P

ph bi 1~ opt
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5.5 Maximum Efficiency of Solar Cells

Monocrystaline Si

v, =077V
0.8 0.8
\ |
06 : 0.6
2 Thermal \ i
IS losses \ :
g 04 : 04
© N
= |
5 \
Z /\ 02
Optimum & N\
' Not absom

0.5 1 13 f'

Wavelength [um]

Thermal losses: we generate «only»

Niot = 31 % (Eg=1 1 eV) the bandgap energy
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Spontaneous
de-excitation

Phaton 2
E>E,

A. Labouret, M. Villoz,
« installations photovoltaiques »,
Dunod, 2012

Side 40  EPFL



5.5 Equivalent Circuit of a Photodiode

R4 = differential
(shunt) resistance =

61,
1/ —=
/5V
—0
—0
C, = junction

capacitance

R, = load resistance
R. = series contact
resistance
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‘lphgz ‘ 4= Cj R

gain

- Dark current: | (thermal generation)

- Photocurrent: | =I5, ac* lsigoc + log

Optical Detectors: Week 5 — Photodiodes
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5.6 Measuring Circuit (1): Load Resistance

) (VD_Vout)
) ,| |
N VA - T
+ Vo
T —o0 ;\
R, I Vout R, high
O
1 SRR N\
B R, low
Only rough measurements |

Vour = Ry, -1 possible, small dynamic range Load line (slope): 1/R,
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5.6 Measuring Circuit (2): Transimpedance amplifier (TIA) i

hv < 4

VD i i ..:
21 1 .
vm (o -
————————————— > ++ -A —0 i
. i 1vout ", o
Equivalent load resistor: ___° . . .—i
B e s |
RfI:Vin_Vout:(l'l'A)'Vin —A - Vin =|Vour = =Ry -1
Load line: 1/R,
R R Im d linearity (R, small)
f _ _ prove earity (R, sma
V. =——I=R,-] = | Rj =———
mTA+1 L L= a+1

with high gain (R¢large)
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5.6 Measuring Circuit (3): Transimpedance and Logarithmic Output

hV _quut
Diode | ];[0,6 kT
: lzg current:
D kT
f V.. =V,——In(l) <0
t_ u» ou q
L Lo
_|_
L 1Vout Vo = L inCly)
= . q
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5.6 Measuring Circuit (4): Integration and Current-to-Voltage Conversion

3T APS — basic idea of CMOS camera pixel (one single pixel shown here)

Vout

A

) 2 |
4,
Ln ‘\\
Q) .
— 1) Integration
P al
, l— g <
+ I el « . —/
e | ‘ ! \
\
\
\

2) Reading
3) Reset

o ()
| Q0000 C Col. sel.
j(' eelee ——©
\ Vout,read t
R vout /I\
hv ‘ ‘
‘o)
=2 \—y—) 1 T
Source Follower out,rea C C
NMOS transistors ¢ c 0
Charge integration

Slide 46  EPFL

| C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes

daqua



5.6 Cut-off Frequencies

1) The cutoff frequency of the equivalent circyit is: :IR
> gain
f — 1 :> X |phSZ [ |d:: CJ A
© 4R, +R,)C, )
2) The drift time in the depletion region induces a cutoff frequency:
NW/ ~ 1 _ VSle .
Ty =W 1V = f2d:2.z_d o Typically ~ t,=10 ps
3) The diffusion time in diffusion regions is very long:
rzL—2:>le—D Typically ~ t,=100
p =7 Y ypically ~ t5= ns

aqua | C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes Slide 47 =PrL



5.6 Equivalent Circuit with Noise Sources

daqua

Ry AV, gain A
I AL, ‘1 Aly == ~
ph P SZ d G Ry noise F,
oo o
+ B l—
S/N)?
Photonic (shot) noise: Fq = &/ )2m
AIZ :2q(|10|+|1b , d|)Af ermal noise on e
ph ackgroun resistances:

AV# = 4kTRA
Dark current noise: S sAf

2 _
Maari? = 23 gyl (/™" + 1)Af AVZ = 4KTR,Af

NB: for a practical diode: I = I,(e?V/"¥T — 1) with T = ideality factor [1 — 2]
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5.6 Dynamic Range

daqua

{Typ. Ta=25'C, FULL ILLUMINATION)
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nq/hv

10—2 12

[

Slope 1/R;

Ly

}//’.m
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LA e 5
l_.li_r e lem Ty O o 5

j——

Small R, = less saturation effect
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5.6 Photodiodes: Summary

Quantum Efficiency:  almost optimal >90%

Gain no 1

Noise electronic Load resistance
Voltage zero or small 0-10 V reverse
Spectrum adaptable UV -VIS- IR

Compatible with CMOS = cameras (see the respective chapters)

aqua | C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes Slide 50 =PrL



Outline

5.1 p-njunctions (review)

5.2 p-n photodiodes

5.3 PIN photodiodes

5.4 Case study: color sensors

5.5 Solar cells

5.6 Electronic circuits, cut-off frequencies, noise

5.7 Avalanche photodiodes

aqua | C. Bruschini | 2024 Optical Detectors: Week 5 — Photodiodes Slide 51 =Pr-L



5.7 Avalanche Effect

o = ionisation coefficient E
of electrons [1/cm]
(much more efficient than holes)

Avalanche

Breaks a bond = e/h pair creation

Nl

w Bi-carriers !
Silicon: ﬂ
k= ﬁ ~0.1
a
- . Self-sustained
, : ¢ above V!
B = ionisation coefficient |
of holes [1/cm] 1/ B
<€
Field E

S.M. Sze, « Semiconductor devices, physics and technology »
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5.7 1(V) Plot

/ V., APD:avalanche not yetself-sustained
SPAD | APD . PD
V . D TS —h >

gs —— - -TTTTT IHma)
B

o @ o0

g & £

] ; § af-

o £ s Q0

c 5 4 2 n

&3 2 |~ FORWARD

CONDUCTION

-~

/

| Ly ' I 1 | I | | A1 | VIV
-6 -5 -4 -3 -2 -1 0| 1
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5.7 Structure with a Guard Ring

Oxide Guard ring
Metal ~—iiy
| [T
nt —
A
n
)—-
X

Metal

Y \ Strong field (at corners)

Current [A]

Avoids latch-up at the boundaries

(lightning-rod effect)

IR e i S 2000
02~ . .

A<~ 1600
A~ 1200
Y [microns]

X [microns]

— Avalanche could take place there
- introduce a (weakly doped) guard ring to reduce it

A. Pauchard et al., Sensors and Actuators 82 (2000) 128-134
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5.7 APD Structure: Reach-Through

S. Donati, « Photodetectors, devices, circuits and applications »
K E
p— FFl— = : = |
I
i+ , f
\_’,—( e ey

electron - | N
Si * Low doped regioh multiplicatimn] i drift

(C)

reach-through

N-Contact
(Cathode) 'ﬁﬁﬁ‘i’élinn Electric field strength E
SREon o
| P-Contact N
Incident (Anode) !
Avalanche
Photons SEREgion layer
il LI S
P ]
o = High voltage
N-Layer P-Layer I
http://micro.magnet.fsu.edu/primer/java/digitalimaging/avalanche/index.html Near IR structure, Hamamatsu, Handbook 2014, chap.3
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5.7 APD: Gain and Dark Current

Gain  Vep at room temp (stay below) Dark Current

10000 — M 10 nA (Typ.)

1 nA 60 'C

|

3
3

GAIN
;

¢
o]

DARK CURRENT

1 pA =

l

1
|
|
J
. 40 60 80 100 120 140 160 180

. 1W1A| :
1 1
80 100 120 140 160 180
- REVERSE VOLTAGE (V)
REVERSE VOLTAGE (V) Hamamatsu

Typically: 10-100 pA _
Typically: 100 SI APD series S238x
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5.7 APD: Noise and Excess Noise Factor F
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5.7 Reminder: Optimal Amplification

If noise is amplified more than the signal,
would it not be better not to amplify at all?

amplified signal

Total noise — 1 — XZ ) _| >_

Internal amp

Receiver circuit noise

amplifiéed noise

> Gain

1 G

opt

There is an optimal internal gain, at which the internal gain noise exceeds the receiver circuit noise.
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5.7 Front or Backside lllumination?

daqua

Frontside illumination

v IR
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1

f

P (AVA
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Q

7

y
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N+
P+

P+
N+

Backside illumination

\

hw
IR ﬁ VIS /

p-+

1

P LIQHT F\E’:SDF&F’T!GIJ$EGIDM

F[AUALAN CHE REGION

lé .

Electron injection is required for high gain and low (excess) noise
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(Typ. Ta=25 "C)

5.7 APD-structure in Silicon for the Near IR ? [ ]
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(Typ. Ta=25 "C)

5.7 Structure APD in Silicium for the Visible i
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5.7 Avalanche Photodiode: Summary

Quantum efficiency:  near-optimal > 90%

Gain average 50-200

Noise good dark current or signal shot noise
limited

Excess noise high F:3-5

Voltage high 10-200V

Spectrum adaptable UV - VIS - IR

Voltage stabilization Critical

Photon counting possible
Geiger mode and SPAD for digital detection
Technologically compatible with microelectronics
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Take-Home Messages/W5-3

5.6 Photodiode bandwidth & electronic circuits:

 Which phenomena limit the speed of a photodiode?

 Which electronic circuits are used with photodiodes? Describe their respective advantages.
* Describe the physical effects limiting the dynamics of a photodiode

5.7 Solar cells:

* How does a solar cell work?

5.8 Avalanche photodiode (APD):

* Describe an avalanche photodiode. Why is a « guard ring » required ?

 Whatis the « excess noise » in an avalanche photodiode? Explain the optimization of the internal gain as
function of the electronic noise
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Exercises — Week 5
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Exercise 5.1: High-speed photodiodes and BER

*  On-off keying system: bits “0“ and “1“

A

1 M
0 >

. BER: probability of error per bit

. If po=probability of mistaking a “ 0“ fora “ 1“
& p, =probability of mistaking a “1” for a “0”, then

BER = Po /2 + p1/2 (BER definition)
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Exercise 5.1: High-speed photodiodes and BER

Ideal = limited by the optical signal shot noise

» If an average of n photons is transmitted by a laser diode, the 1 exp(—n)
. . . . p(n) =n
probability of detecting n photons is given by:

n!

- How many photons per “1” bit are needed to guarantee a BER of 10-9?
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Exercise 5.2: PIN Heterostructure Photodiode

In, Ga As P, system on an InP substrate
1-x X'y 1-y

a) To grow a monocrystal, we have to preserve the lattice of the InP substrate.
This involves satisfying the following relationship:

_ 0.4562-y
~1-0.031-y

X

b) In this case (“lattice matched to InP”) the gap can be changed according to:

E,(y) =135—072-y+0.12-y> [eV]
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Exercise 5.2: PIN Heterostructure Photodiode

Consider the PIN photodiode depicted below:

b CONTACT

FRONT METALIZATION

ILLUKINATION

Y
— -
ANTI-REFLECTION | nGeAs?

, STION
co,errmrs/ 'inGEﬁkﬂ\

/

45
A+ Inp } SUBSTRATE

Iy Ty

' A
BACK

ILLUKMIKATION
hy
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Exercise 5.2: PIN Heterostructure Photodiode

This type of photodiode was designed for optical telecommunications and has to
work at wavelengths between 1.50 um and 1.60 um. Its diameter is 10 um,
corresponding to that of a single mode fiber optic cable.

A) Considering a superficial layer with the following composition: In, ,Ga,As P
with y=0.84.
Sketch the quantum efficiency for front and back illumination. What is the
main difference?

1y

B) Estimate the width W of the intrinsic InGaAs region to optimize the bandwidth
using a load resistance of R = 50 Q.
(use € =12 and v, = 10° m/s)
Does the diode have to be polarized, and if so, why?
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Appendix 5.1: Band diagrams and pn junction
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A5.1 Fundamental equations (1)

1) Potential energy : | Epot = Eyge = (—q) - @ | The potential energy is the vacuum level

+ _ —_
2) Maxwell : div(E) = P _ 4 (p+Ng —n—Ng)

EoE EoE

1D = |E, « + fp - dx The electric field is the integral of the net charges

& = proportional

—_—

— aB — > 1 -
3) Maxwell : rot(E) = 3t =0 = E=—grad(p) = agrad(Evac)

1D —> 0Eyac The electric field is the slope of the vacuum level
E, <+ Ix
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A5.1 Fundamental equations (2)

4) Poisson equation : Ap =
from 2) and 3)

p__qg@+Ns—n—-Ng) 1

EgE EgE q

'_AEbm:

1D = p X +

agqua | C. Bruschini | 2024
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A5.1 Band diagram

Epot t E

<d—
<

—>

affinity

>

gap

E-field |

aqualab | C. Bruschini | 2024

Optical Detectors: Week 5 — Photodiodes

Slide 74

EPFL



A5.1 Band structure

Jonction p/n

E
| conduction il
band Q=@
O @ n
4 |7 | 8<Ls "
E. [ J
Drift
% EC &
- ‘E)_if.fusmnE
! O A N e C
E, o Ep
Valence Diffusi
band Husion A Ey
Drift

S.M. Sze, « Semiconductor devices, physics and technology »
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A5.1 Semiconductor doping

@@@ @_q@@ @@@
.@@@ :@::@: =@=fq@=
@@@ @@@ @@@

(a) (b) (c)

Three basic bond pictures of a semiconductor. (a) Intrinsic Si with no impurity. (b) n-type Si with donor
(phosphorus). (¢)p-type Si with acceptor (boron).

S.M. Sze, K.K. Ng, « Physics of Semiconductor devices », 3™ edition
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A5.1 Mass-action law

Nondegenerate semiconductors:

Eg 2
p+ n = NcNyexp T = n;

S.M. Sze, K.K. Ng, « Physics of Semiconductor devices », 3™

edition
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A5.1 Approximation and Interpretation: Blocking Junction

|deal diode: minority carrier profile Depletion region: Current due to generation
P :
“extraction” N |L” | w |LP|
: o—+p
E\ Wp P 4 - n
| L,
_: L, Pno Xn
n,o
! @ ]genzCI' j Uth (x)dx = q - Ugp(0) - W
(— —Xp
i =0 =0
1 np — n? n
n Mpo _ Uy = — - P L ~ __t
Jo=q  |Uppdx=q- L, - —= I T n+p+2n; 2T
n
Pno ] z_ﬁ.W,\,_". V. —V
Jo=a- [Undr=q-1,-22=1, gon == W T VW
P
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