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Exercise 5.1: Schematic Diagram of a Digital Optical Communication System

optical SM fiber
λ=1.3 / 1.5 µm
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MX: Multiplexer; LD: Laser Diode; 
(A-)PD: (Avalanche-) Photodiode;

SM: Single Mode; DMX: Demultiplexer;
SW: Switch

SW
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Exercise 5.1: Bandwidth Limits of PDs

1. RC-constant:
τRC=2(Rs+RL)C
(Ri >> RL)

2. Drift of carriers in the depletion
layer:

τdrift = W/vc

W: width of depletion layer
vc: carrier velocity (107cm/sec)

3. Diffusion of carriers to the
p-n junction:

τdiff = d2/D
d: distance to depletion layer
D: diffusion constant

Ri

Rs

RLC
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Exercise 5.1: PIN: Diagram of the Working Principle

P N
γ
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Exercise 5.1: PIN Heterojunction

P-doped 
AlGaAs
or InP

N-doped
AlGaAs
or InP

Undoped
GaAs or
InGaAs

γ

P I N

W

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 𝑊𝑊

𝜏𝜏𝑅𝑅𝑅𝑅 ≈
1
𝑊𝑊

| C. Bruschini | 2024 Optical Detectors: Week 5 ‒ Photodiodes (Solutions Ex5) 6



Slideaqualab

W W

Exercise 5.1: InGaAs PIN Heterojunction Photodiode

InGaAs/InP photodiode
Opto Speed

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 𝑊𝑊

Decreased W

Decreased absorption
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Exercise 5.1: Continuous Detection: High Speed Digital Transmission

CtotRL 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠

V

1) At the beginning of the bit:

The current loads the capacitor

2) Once the capacitor is charged:

The current flows through the resistor

Number of electrons stored in the capacitor:
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m: # of generated electrons
per bit
M: amplification before the 
electronics (e.g. avalanche or 
optical amplification)
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Exercise 5.1: Bit Error Rate (BER)
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• On-off keying system: bits “0“ and “1“

0

1

• BER: probability of error per bit
• If p0 =probability of mistaking a “ 0“ for a “ 1“

& p1 =probability of mistaking a “1” for a “0”,  then

BER = p0 /2 + p1/2 (BER definition)
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Exercise 5.1: Ideal  BER  (1)
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𝑛̄𝑛𝑎𝑎 = 1/2 𝑛̄𝑛

𝑛̄𝑛

0
0 001 1

 If an average of n̄ photons is transmitted by a laser diode, the
probability of detecting n photons is given by: 𝑝𝑝 𝑛𝑛 = �𝑛𝑛𝑛𝑛

exp(−�𝑛𝑛)
𝑛𝑛!

Ideal = limited by the optical signal shot noise

 How many photons per “1” bit are needed to guarantee a BER of 10-9?



Slideaqualab

Exercise 5.1: Ideal BER: Example

Because of the shot noise on each “1” bit, it takes 
20 photons per “1” to guarantee a BER of 10-9. 

�𝑛𝑛 = 20

𝑝𝑝(0) = exp( − �𝑛𝑛) = 2 ⋅ 10−9
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ℎ𝜐𝜐 . 1

𝑥𝑥�109�𝑛𝑛𝑎𝑎 =
𝑃𝑃
ℎ𝜈𝜈

𝑇𝑇

𝑝𝑝 𝑛𝑛 = �𝑛𝑛𝑛𝑛
exp(−�𝑛𝑛)

𝑛𝑛!
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Exercise 5.1: Receiver Sensitivity of Ideal Digital Systems

• The receiver sensitivity of digital systems is 
defined as the average number of photons 
per bit required to achieve a certain BER 
(usually 10-9).

• For an ideal receiver, 10 photons per bit are
required to achieve a BER of 10-9 .
(20 photons for “1“ bits).
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log(BER)

na

�𝑛𝑛𝑎𝑎 = −
1
2

ln( 2 ⋅ 𝐵𝐵𝐵𝐵𝐵𝐵)

�𝑛𝑛𝑎𝑎
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Exercise 5.1: Real Receiver: Sensitivity of a Receiver with Gaussian Noise

• Average number of photo-electrons:
(ηi: quantum efficiency) 

• Gaussian noise of a photo-detector circuit characterized by a zero mean and an rms

value of σq (noise parameter) within a bandwith ∆f.

�𝑚𝑚 = 𝜂𝜂𝑖𝑖 �𝑛𝑛

𝜇𝜇1 − 𝜇𝜇0 = �𝑚𝑚 𝑀𝑀

𝜇𝜇0 s0

s1

0 001 1
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«Signal degradation—Jitter», Optical System Tutorials
http://optiwave.com/resources/applications-resources/optical-system-signal-degradation-jitter/

Eye diagram, NRZ (Non-Return to Zero)

Exercise 5.1: Eye Diagram

→ 𝑄𝑄 = 𝜇𝜇1 − 𝜇𝜇0 / 𝜎𝜎0 + 𝜎𝜎1 → 𝐵𝐵𝐵𝐵𝐵𝐵

V

f(V)

Histogram

µ0

µ1

σ0

σ1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≅ 2.3 ⋅ 𝜎𝜎
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http://optiwave.com/resources/applications-resources/optical-system-signal-degradation-jitter/
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Exercise 5.1: High-Speed Detectors (1)

u2t: 40 GBits/s 

“NRZ: non-return to zero” “RZ: return to zero”
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3mW

1mW

0.1mW

Exercise 5.1: High-Speed Detectors (2)

u2t: 40 GBits/s 

Increasing 
input power

Better SNR
“open eyes”

3mW

1mW

0.1mW
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Exercise 5.1: High Speed PIN Detectors (3)

Heinrich Hertz Institut (HHI): up to 160 GBit/s

NRZ

| C. Bruschini | 2024 Optical Detectors: Week 5 ‒ Photodiodes (Solutions Ex5) 18



Slideaqualab 19Optical Detectors: Week 5 ‒ Photodiodes (Solutions Ex5)

Outline

5.1 Fast photodiodes

5.2 PIN Heterostructure photodiodes

| C. Bruschini | 2024



Slideaqualab 20Optical Detectors: Week 5 ‒ Photodiodes (Solutions Ex5)

Exercise 5.2: PIN Heterostructure Photodiode 

| C. Bruschini | 2024

In1-xGaxAsyP1-y system on an InP substrate

a) To grow a monocrystal, we have to preserve the lattice of the InP substrate. 
This involves satisfying the following relationship:

b) In this case (“lattice matched to InP”) the gap can be changed 
according to:

𝑥𝑥 =
0.4562 ⋅ 𝑦𝑦

1 − 0.031 ⋅ 𝑦𝑦

𝐸𝐸𝑔𝑔 𝑦𝑦 = 1.35 − 0.72 ⋅ 𝑦𝑦 + 0.12 ⋅ 𝑦𝑦2 𝑒𝑒𝑒𝑒
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Exercise 5.2: PIN Heterostructure Photodiodes

| C. Bruschini | 2024

This type of photodiode was designed for optical telecommunications and has to 
work at wavelengths between 1.50 µm and 1.60 µm. Its diameter is 10 µm, 
corresponding to that of a single mode fiber optic cable. 

A) Considering a superficial layer with the following composition: In1-xGaxAsyP1-y, 
with y=0.84. 
Sketch the quantum efficiency for front and back illumination. What is the 
main difference? 

B) Estimate the width W of the intrinsic InGaAs region to optimize the bandwidth 
using a load resistance of RL = 50 Ω.   
(use ε = 12 and vsat = 105 m/s)
Does the diode have to be polarized, and if so, why?
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InGaAsP
matched to InP

InP

In0.53Ga0.47As

Agrawal, « Long-wavelength semiconductor lasers », VNR

𝑥𝑥 =
0.4562 ⋅ 𝑦𝑦

1 − 0.031 ⋅ 𝑦𝑦
≅ 0.45 ⋅ 𝑦𝑦

Exercise 5.2: Complement: In1-xGaxAsyP1-y Heterostructures
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Refractive index

InGaAs

InP

InGaAsP

Bandgap

Agrawal, « Long-wavelength semiconductor lasers », VNR

Exercise 5.2: In1-xGaxAsyP1-y Matched to InP

InP

InGaAs

InGaAsP

𝐸𝐸𝑔𝑔 𝑦𝑦 = 1.35 − 0.72 ⋅ 𝑦𝑦 + 0.12 ⋅ 𝑦𝑦2 𝑒𝑒𝑒𝑒
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Exercise 5.2: PIN Structure and Bands

Ev Ec

λg=1.65 µm

λg=1.50 µm

λg=0.92 µmn=3.18

absorbing

n=3.5
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Exercise 5.2: PIN Heterostructure Photodiodes

A) Quantum Efficiency

With front illumination, the diode is sensitive between 1.50 and 1.65 µm
With back illumination, the diode is sensitive over a wider region between 0.92 and 1.65 µm
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Exercise 5.2: PIN Heterostructure Photodiodes

a) The capacity of the depletion zone: 𝐶𝐶𝑗𝑗 = 𝑆𝑆 ⋅
𝜀𝜀0𝜀𝜀
𝑊𝑊

= 𝜋𝜋
𝑑𝑑
2

2

⋅
𝜀𝜀0𝜀𝜀
𝑊𝑊

b) The cutoff frequency due to RC time: 𝑓𝑓2 =
1

4𝑅𝑅𝐿𝐿𝐶𝐶𝑗𝑗
=

𝑊𝑊
𝑅𝑅𝐿𝐿𝜋𝜋𝑑𝑑2𝜀𝜀0𝜀𝜀

c) The cutoff frenquency due to the drift time in the intrinsic zone: 𝑓𝑓2𝑑𝑑 =
1

2𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
≈
𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠
2𝑊𝑊

Optimal: 𝑓𝑓2 = 𝑓𝑓2𝑑𝑑 → 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑑𝑑 ⋅
𝜋𝜋
2
𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝐿𝐿𝜀𝜀0𝜀𝜀 ≅ 0.3 µ𝑚𝑚
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Exercise 5.2: Example

1
𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡

=
1
𝑓𝑓2

+
1
𝑓𝑓2𝑑𝑑

W  [m]

Cu
to

ff
fr

en
qu

en
cy

[H
z]

0.3 µm

80 GHz

Thin absorbing layer !!
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Exercise 5.2: Waveguide Photodiode (WG-PD)

G. Ghione, «Semiconductor
devices for high-speed 
optoelectronics», Chap. 4, 
Cambridge 

Large gap  lower refractive index  waveguide

P+ InP

P+ InGaAsP

i InGaAs

N+ InGaAsP

SI InP

Eg

n

Absorbing

n=3.18

n=3.5

n=3.5

n=3.18 Optical 
mode

Refractive index
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