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Emphasis of lecture

daqua

Think of the full chain and include the illuminator and
back-end processing as well.

See also Week 1 slide “Take-home Messages/W1-2: Components of
an optical system”

Choose detector as function of measurement set-up.

Explore new applications enabled by enhanced detector
features (e.g. single-photon detector arrays).
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3.1 Time-of-Flight Measurements
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3D imaging in scanning

or flash mode
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Usually: small # of back-reflected photons
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3.1 Time-of-Flight Measurements
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Time-correlated single-photon counting (TCSPC)
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3.1 Examples of Range Finders/Photon counters based on CMOS SPAD

QUENCHING

Market “push”- available off-the-
shelf

QUENCHING

OR Tree

QUENCHING

QUENCHING

PS

QUENCHING

QUENCHING

COUNTERS

VL53L5, Compact Integrated
Module

» Class 1 certified 940nm invisible
VCSEL

» 61° diagonal, square FoV
Ranging Capabilities

» Up-to 64 (8x8) ranging zones

» Up-to 4m ranging per zone

LG

e Ll LIl IBITIIIIIIIIIIIE
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3.1 Examples of 3D-imagers

Light Detection and Ranging

/ | | . [G. Wetzstein, ISSW 2018]
cm/mm ievel precision [Velodyne, 2018, https://www.youtube.com/watch?v=KxWrWPpSES8I]
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3.2.1 Lock-in Amplifier: Principle

V.(t) =R - cos(2nf;t + ¢p¢),V,.(t) = cos(2mf,-t)

Mixing: V. (t) - V.(t)

-> Two components at (fs-f;) and (fs+£;-).

If f-=fs: (fs-fr)= 0 Hz and (fs+f)=2f. -> DC component is

measurement goal* (in-phase component, X), the 2f component

can be cancelled with an appropriate low-pass filter

R, ©,. calculated by transformation from Cartesian to Polar coords

EN Wikipedia Lock-in amplifier; Zurich Instruments Lock-in white paper

V(1) R
» DUT » lock-in [/
@ o amplifier |
_ V_(t) ©
sine wave
generator
b . .
mixer LP filter
input signal V(t) X
pr - Ny
oscillator 3 .
reference 1
~ N
LV (t —
signal V, (t) 900 =
> — \ >
\/r (t) ® Y
mixer LP filter
*contribution from any signal
that is not at the same
frequency as the reference
signal is attenuated close to
zero.
=PrL
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https://en.wikipedia.org/wiki/Attenuation

3.2.1 Lock-in Amplifier: Examples

Stanford Research Instruments,
Analog Lock-in

By Nuno Nogueira
(Nmnogueira) - Self-made, CC
BY-SA 2.5,
https://en.wikipedia.org/w/index.
php?curid=13431432

HF2 Series 2iows, @ SN\ 7/ /s
—~s -
- N, T~

®e.

Zurich
Instruments

Zurich Instruments, Digital Lock-

N ® @

00 9@ @@@®

EN Wikipedia Lock-in amplifier
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3.2.2 Direct Detection — C
W
>
ADC card PC
) Interface
—» Labview
SPECTRUM
ampli
Signal External perturbations
1/f noise
White noise
sh f

daqua
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3.2.2 Direct vs. synchronous detection

Direct detection

Synchronous detection

daqua

~DC signal

mixer

cos(2m- f, -t
Modulate close to ( fO )

light source
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3.2.3 Synchronous Detection: Spectral Analysis (sinusoidal modulation)

A s © sl
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v
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3.3 Electronics: AM Radio
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3.3 Similar Method in Optics: Heterodyne Detection

Stability is critical +
Polarization to be adjusted!

/
IF Signal £l Local tunable laser
“intermediate frequency” ANAAANAN
L‘ < <
> f
C l
__A_)
A A

IF = A
Ton \/f

Ap=1pm Fiber
1GHz = AA=3 pm
ANAAANAN > > —
Emitting Laser Modulator
Photodiode as (de)mixer and
low pass filter!
2 A
Ao Ao
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3.4 Interferometers: Homodyne detectors

Very long coherence length

«Homodyne»

Michelson Mach-Zehnder

PD 1__>’_ Active
BNE

Acti
\)\ ctive

\4

Reference

Change in refractive index (or change in length)
Reference - phase variation A@ -2 sinusoidal intensity variations
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3.4 Michelson Interferometer

At
PD | ‘ 4
/
Laser \ . Loy .
A )/\6. —>
"L
|‘O
L 4
10
\4 ®
Very long — R
coherence length L
Reference

- Counting of interference fringes
- High resolution in a single fringe

Detection of very small AL (nm) possible!
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3.4 Optical Coherence Tomography (OCT)

daqua

White source
(LED)
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/

N

/

Reference

Coherence time = time delay during which the light is still able to
interfere with a delayed copy of itself

PD——D|——

Low coherence source = large bandwidth = very short
coherence length

Coherence length (/2):  ,; Ao Ao
s 4 AX
: L
I‘O
Envelope detection around L,
Slide 20 =P
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3.4 Optical Coherence Tomography (OCT)

Very short coherence length

Example with 3 reflection layers

Depth (z)
Diffraction envelope

Beam
splitter

/ '

Sample

L

>

Coherence

length
v

—>

Broad spectral source
(weak temporal coherence)
h 4
|

L
I
=

1

1

1

1
Reference

Interference pattern

Displacement of the Diffraction envelope =
reference mirror (2) tomographic slice

{mmi
Translation in Z

Time-domain OCT (scanning reference mirror)

aqua | C. Bruschini | 2024 Optical Detectors: Week 3 — Optical Methods, Selected Examples Slide 21 =Pr-L


http://www.lesia.obspm.fr/Resultats-et-images.html

3.4 Optical Coherence Tomography (OCT)

ZEISS CIRRUS 6000 OCT
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3.4 Optical Coherence Tomography (OCT)

Vitreous

Choroid

Retinal Pigment Epithelium’

) CASEY EYE

CC BY 2.0, By NextOptics - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=525623 https://commons.wikimedia.org/w/index.php?curid=137658957
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3.4 More Optical Coherence Tomography (OCT)
[] r-ll 1 y \ A | I
Detection Process
Time Domain
Spectrometer based
Scanning Reference
1 = reference e=== mirror
mirror
J l : Sample J L : Sample
l' - |,
(—— AN N | (N 00 I L
” ¥ - «
8BS ! | B85’ ! | ’
Broad -band : Broad -band :
light source . ' light source f=T l
Photo %’ g
de(ector- Diffraction oy
grating 1-D detector

Interference signal (FD)

interference signal (TD)

a
>
L.

Intensity {(arb.)
Intensity (arb.)

Reference mirror displacement (M) Frequency (MHz)

Detection of
photo-electron number
during integration time Ta_scan

rainer.leitgeb@meduniwien.ac.at

Detection of
photo-electron current
with bandwidth B

=PrL

Fourier Domain

Swept source based

Narrow
- line width

Reference
mirror

sweeping

light source '
Photo

detector-

Mirror image

A ) A

a

Intensity (dB)

-2 0 +2
Depth (mm)

Detection of

photo-electron current

with bandwidth B
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3.5 2D Position-Sensitive Detectors

a) PSD

I

b) Quad cell c) Camera

NN B S B R

(Fa +ip)— (g +ic) (fa +ig)—(ip +ic)

X =

‘-A'H-E"'EC'HD

Y =
"-A*'"-B"H-C"H-D

Intensity profile
— Centroid

A. Cordes, A. Davidson “Detectors: CMOS cameras allow robust active stabilization of laser beams”, Laser Focus World, 2011
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3.5 Example: AFM

Atomic Force Microscopy (AFM)

4 quadrant
photo detector

Cantilever
~ deflection
measurement

Light Source

Position Sensitive Detector Laser

#

Focusing Optics
T Cantilever

‘ [ Z Feedback
¥ \ g 2 xyz_

stage

Asylum Research, « Combined AFM/optical », app. note 12

http://en.wikipedia.org/wiki/File:AFMsetup.jpg
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Take-Home Messages/W3-1

3.1 Synchronous detection:

* Explain the principle of “synchronous detection”.

 What are its advantages? Which detectors would you use?
3.2 Interferometers/OCT:

* Provide examples of interferometers.

 What are the working principles of interferometers/OCT devices? Which detectors would
you use’?

3.3 Optical position sensors:
e Explain optical position sensors.

* Give example of such sensor’s applications.
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3.6 3D Imaging using Structured Light

| Structured Light 3D Surface Imaging Techniques |

light
shaped stripe object —)[ Sequential Projections (Multi-Shots) ]
object pixel rl
W/ —)[ Binary Code ]
A\ -
- 3 él Gray Code ] | [i | l
stripe . matrix 7 l Phase Shift J I I I I I |
[ number AN Y camera —>{  Hybrid: Gray code + Phaseshift | "".-"'t"
: _}[ Continuous Varying Pattern (Single Shot) ] 1""'".""."'
/ camera

pixel

H-[ Rainbow 3D Camera ] ..
—)[ Continuously Varying Color Code -

—)L Stripe Indexing (Single Shot) ]

it
i

—

Color Coded Stripes

|

Segmented Stripes

o
triangulation base — Gray Scale Coded Stripes
o

| ) SIS ) W

http://en.wikipedia.org /wiki/Structured-light 3D scanner tadat o s "Il“ll
—>|  Gridindexing (single Shot) ]
H{ Pseudo Random Binary-Dots
aa0
-l =

%l Mini-Patterns as Codewords %5

J. Geng, « Structured-light 3D surface imaging: —1 SolarCodmi m
a tutorial », Advances in Optics and Photonics 3, 128-160 (2011) —>{ 2D color Coded Dot Array -

| Hybrid Methods ] IR Wl
Any curvature will deform the straight lines...

A
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http://en.wikipedia.org/wiki/Structured-light_3D_scanner

3.6 Structured Light: Examples/1

Toin fiphie Seios Hatm jals gdun s

S war——
sl A S || Bttt Dt | St R e

L . , J. Geng, « Structured-light 3D surface imaging:
http://en.wikipedia.org/wiki/Structured-light 3D_scanner a tutorial », Advances in Optics and Photonics 3, 128-160 (2011)

aqua | C. Bruschini | 2024 Optical Detectors: Week 3 — Optical Methods, Selected Examples Slide 31 =Pr-L



http://en.wikipedia.org/wiki/Structured-light_3D_scanner

3.6 Structured Light: Examples/2
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3.7 The Propagation of Light

A) Propagation to infinity
Point source: at = = plane wave point — 7 S
Move the point laterally: different
angle = phase shift
Plane wave

L — o

B) With a lens at the focal point

Basically the same effect! point

Approximation:

Fourier transform!

il

Plane wave

[
»

L=f
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3.7 Vision and Photography «at infinity»

A) Vision I oo
— Image
== -
Object —>
Wave
. . | FT > IFT
ourler plane
B) Photography P - / R
) L — oo ‘
) —>
e —>
—> Image
Object —>
Wave
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3.7 Basics of Fourier Optics: 4f Setup

lllumination (2f)
A

Point source

Condensor

http://micro.magnet.fsu.edu/primer/java/digitali

maging/processing/fouriertransform/index.html

daqua
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Could implement
purely optical
image processing!
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http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/fouriertransform/index.html

3.7 Fourier Optics — Smooth (4f): Low Pass Filter

IHunﬂn?Uon(Zﬂ

)

n

v

»

Point source

Condensor

A. Phillips, American Journal of Physics, 37, 536 (1969).
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3.7 Fourier Optics — Phase Contrast (4f): Zernike

Example: almost transparent cell, Phase object
small n contrast but effect on >
the phase

>
ki
=
~
N
¥

v
A
vy

5
2
=
N

ek
+
N
@
o
77
~
=
=
~
o I

Frederik Zernike
Nobel Prize in
Physics
1953

Before filtering: small phase difference, intensity = 1

After filtering: strong intensity difference
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3.8 Microscopy: Annular [llumination

Point g L,
illumination ]
(hard to g 7%

implement in

° +F> Zero order light (undeflected)

® 7% Deflected light

practice) S v % Zero order blocked = darkfield
- - T
. e o]0)
= o) % 3 S © Zero order /2 shifted = phase contrast
\M % ° Zero order light
Annular K | % 7§L‘
illumination T T . .
. : Jﬁ' Deflected light
(ring = cone of light) IA% % 7% U/ é criected s
Increased brightness
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3.8 Darkfield Microscopy («Edge Enhancement»)

Annulus ! OBJECT ! filter | IMAGE
diaphragm I ! ! I | |
| | | | [ | |
i | i i | i |
| | ! | |
| |
-0 | |
| | |
| |
| [
i | —=
| f |
| | |
an \_ | _/
] | N
i | i i i
— f — f — f | f | f i F—
| ol | | [ | [
@ +— GZJ o 4§ Q
- O 5 o O an
) L O 5 L ©
§S) o) o) 3 O =
(e O L |- h—
o ®) a
)

T. Lasser, M. Leutenegger, « Cours Biomicroscopy Il », 2012, STI, EPFL
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3.8 Phase Contrast Microscopy: Zernike

Annulus ! OBJECT ! Phase ! IMAGE
diaphragm I | I plate I [
| | | | | | |
i i i i i i i
| I | | | |
_ ___ | ]
-0 | l |
| |
! |
|
|
| 1
| !
nx \_ I J\—‘_\_-T —— |
i _ | U= —
| ! ! ! I ! _
— f I f | f ! f | f ! I
I I I I I I |
8 4+ g = _§ Q
3 3 G - 3 o
2 o) 2 3 ) £
S O kS o o £
@) O a

T. Lasser, M. Leutenegger, « Cours Biomicroscopy Il », 2012, STI, EPFL
daqua
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3.8 Microscopy Examples

Upright microscope

Digital Camera
Output(s)

e .

Fluorescence

Lamphouse
Observation
Tubes

Eyepiece
(Ocular Lenses)
Filter Turret

UV Shield

Circuit
Control Stage
Beard Condenser
a Field Diaphragm
| = L Base
Tungsten= Collector i
Halogen - Filters
Lamphouse

aqua | C. Bruschini | 2024

Optical Detectors: Week 3 — Optical Methods, Selected Examples

Inverted microscope

Olympus IX70
Inverted Tissue Culture
Microscope Tungsten
Halogen
Peltier-Cooled Lamphouse
CCD Camera
M!nverted
. croscope
T Eondens%rlill.arr?phouse
ar

Eyepiece

! DIC Prism and Phase Ring

Condenser Turret

> Mercury/Xenon
ArcrEam

% : Phototube H-::rusinlqFI

Prisms
‘ Specimen
Binocular ,&q Stage — .
Observation £ .

Tube - ‘* -‘l

Beamsplitter
4

&

38-Millimeter
Camera
System

Microscope
Electrical
Control System

Stage Focus H Microscope
Mechanism Base/Frame
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3.8 Microscopy Examples: Darkfield and phase contrast

" INVERTED
BRIGHTFIELD BRIGHTFIELD

L1 G. Fantner, EPFL, MICRO-428 Week 6

https://www.youtube.com/watch?v=vr4tYUnaHNQ
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3.8 I\/Ilcroscopy Examples of dlfferent modes

L) G. Fantner, EPFL, MICRO-428 Week 6

Brightfield Darkfield Phase- cantrast
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3.8 More Microscopy set-ups

Main fluorescence microscopy modalities: 3D imaging and sectioning

Widefield Total Internal Reflection Confocal
(TIRF)

s o/
= ™

R. tapkiewicz, Univ. Warsaw, 2024
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3.9 Microscopy: Superresolution techniques

A microscope has a maximum (spatial)

Real Space - -
L] — L[] [} ] ] all c
bandwidth = Abbe diffraction limit! 3 Low y 5 n
5 Frequency — High Q 0 Abbe
= ' N Prequency T g Diffraction
= g _ Limit
. j Frequency
c 0
° E |
ow
OTF 0
Frequency g 11d
- » 1 4 >
0.5 Positi Spatial Frequenc
@ (Mic?g’llnleotgrs) (k) (Recﬁ:rical Migromexars)

In 2D the bandwidth can be plotted in Fourier space as a circle = the larger the circle, the
higher the achievable spatial resolution.

L) G. Fantner, EPFL, MICRO-428 Week 6

')

Power spectrum with  Result of inverse Power spectrum with Result of inverse
mask that filters low transform mask that passes low transform
frequencies frequencies EPEL
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Original image



3.9 Superresolution technjgu

How to break Abbe’s limit?
- break at least one of

Abbe’s assumptions

« Linear response
« Uniform illumination
- Far-field detection

« Time independent
image

 Classical light
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STORM frames

o Tl

STORM image

STED

SIM\ISM
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L) R. tapkiewicz, Univ| Warsaw, 20P4
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3.9 Structured lllumination Microscopy (SIM)

Frequency mixing is done by illuminating the sample
not with a uniform illumination, but with a striped
pattern of known frequency.

! b'%/ i,
- »n

chos(wsamplex) X cos(w;x)
A

Ag

L1 G. Fantner, EPFL, MICRO-428 Week 6

= TCOS ((wsample - a)l-u)x) + TwCOS (((Usample + (,()iu)x)

Side 50  EPFL
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3.9 Structured IIIumlnatlon Microscopy (SIM)

Microscope
removes high
/ frequencies
e

A coS(Wsamprex) X cos(wiyx)
A,
(l)
= ——COS ((wsample (Uzll)x) T TCOS ((wsample + wlu)x)

2

)

L) G. Fantner, EPFL, MICRO-428 Week 6

aqua | C. Bruschini | 2024 Opfical Detectors: Week 3 — Optical Met ™ Slide 51 =PrL



52

3.9 Structured lllumination Microscopy (SIM)

We can do the structured illumination with different displacements and rotations.

Sample lllumination Moiré image |\
2 3 4 5

/D Lo
kJ'\ K P

kq
ko=2NA/A

corg Fantner

Il

f
f

))) | - A
¥

Each image with striped illumination expands the imaged Fourier space in a different
direction. Reassembling the Fourier transforms of the individual images results in information
with twice the frequency content.
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3.9 Single molecule localization microscop

STORM - Stochastic Optical Reconstruction
Microscopy

Basic principle: Separate spatially
overlapping light sources in time

- plot the centre of each light source as a
dot, sum them all up = reconstruct a
superresolved image.

1) G. Fantner, EPFL, MICRO-428 Week 6

>
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3.9 Single molecule localization microscopy
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Particle Detection Reconstruction

https://www.youtube.com/watch?v=RE70GuMCzww




3.9 Single molecule localization microscopy
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3.9 Single molecule localization microscopy

* = fluorescent probe

L1 G. Fantner, EPFL, MICRO-428 Week 6

http://bme240.eng.uci.edu/students/08s/mkotlarc/images/PALM2.JPG
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3.9 Single molecule localization microscopy

Eric Betzig's friend’s living room setup

<
2
>
PALM éé
(Photoactivated =
Localization -
Microscopy) 2
Localization g
MICrosco o
Py
E. Betzig et al. Science. 313 (5793): 1642-1645 (2006). Eric Betzig — Nobel Lecture. NobelPrize.org
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Take-Home Messages/W3-2

3.4 Fourier optics:

* In Fourier optics, explain the « 4F » setup and give an application example.

3.5 Microscopy:

* Explain different microscope configurations, in particular widefield vs. Scanning (confocal).
* Which detectors would you use for each implementation?

3.6 Superresolution Microscopy:

* Provide examples of underlying principles and implementations and corresponding
detectors.
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Appendix 3.1: Superresolution microscopy: STED
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A3.1: Superresolution microscopy: STED

STimulated Depletion Emission microscopy (STED)
e Scanning confocal microscopy technique

* Size of emitting area of the spot is reduced by depleting
fluorescence in specific regions of the sample while leaving
a centre focal spot active to emit fluorescence.
Excitation spot De-excitation spot Remaining fluorescence area

L] G. Fantner, EPFL, MICRO-428 Week 6
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Q

Conventional STED

A3.1: Superresolution microscopy: STED

Specimen plane

When scanning the STED beam, only the
fluorophores inside the excitation spot are excited.

Those fluorophores that also are inside the STED
doughnut are stimulated to emit. This emission
occurs at a wavelength red-shifted from the
normal fluorescence. These red shifted photons
can be filtered out from the detected signal.

Image plane

Only the fluorophores that fall inside the excitation
beam, but NOT in the STED doughnut are used for
Image reconstruction.

Digital image

0 Excitation
Wl SsTED

W Fluorescence
W Detected signal

O S, S, via fluorescence
@ S,” S, via SE [ORN

=}
=
>
=
@
=]
[}]
2
=

Vicidomini et al. Nature Methods volume 15, pages173—182(2018)

G. Fantner, EPFL, MICRO-428 Week 6
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Exercises — Week 3

aqualab | C. Bruschini | 2024 Optical Detectors: Week 3 — Optical Methods, Selected Examples Slide 65 =PrL



Exercise 3.1: Superresolution microscopy

Questions

* Which kind of different microscope configurations exist (in particular widefield
vs. Scanning confocal)?

- Which kind of microscopy superresolution techniques exist?

* Which type of photonic detector would you use?
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Exercise 3.2: Optical amplification noise effect on detection

ASE: amplified spontanoues emission

G: power gain
Erbium doped fiber amplifier (EDFA)

Ngp: spontaneous emission factor
h: Planck’s constant

B,: optical bandwidth

\V
laser

* Neglect all other noise terms apart from ASE

 Use for optical power P = |E|?

« Sketch the power spectral density [Watt/Hz] and highlight v, P, P4k, B, for G=0, G=25 and
G=100

* What is the ratio between the signal at frequency v and noise ? how can we improve the signal
to noise ratio?
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Exercise 3.3: Rain Sensor

Design a rain sensor for a car windshield
based on these experiments.

Hints: water presence = total internal reflection
What happens when there is a gap?
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Exercise 3.4: Sun Sensor

Hint: sun at e, a to be determined
Make it as easy as possible = PSD?

Design a sensor to measure the azimuth and the
I elevation of the sun!
¥

A potential application could be to guide a satellite.

Sensor

1) Location sensor:

-S.W. Janson «micro/nanotechnology for picosatellites», 22nd Annual AIAA/USU Conference on small
satellites, paper SSCO8-VII-6

2) Camera:

-N. Xie, A. Theuwissen, «Low-power high-accuracy micro-digital sun sensor by means of a CMOS image
sensor», Journal of Electronic Imaging 22(3), 033030 (Jul-Sep 2013)
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