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Exercise 2.1: Quantum Efficiency and Detectivity

Consider a semiconductor photodiode with a band gap E, and an ideal quantum
efficiency.

Sketch:
e its quantum efficiency n and
* its responsivity R,

as a function of the wavelength of the incident photons.

Consider the noise N to be independent of wavelength.

Sketch its detectivity as a function of its wavelength.
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Exercise 2.1: Quantum Efficiency
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Exercise 2.1: Quantum Efficiency: Example
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Exercise 2.1: Spectral Dependence of the Responsivity
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Exercise 2.2: Responsivity and Depth

The absorption coefficient of silicon can be approximated as acm—1(lum) ~ 10727554

Consider two detectors and two wavelengths (A=450nm and A =600nm).
The first detector is sensitive between x;,, = 0.05pum and xy4q,,, = 0.3um.
The second detector is sensitive between x,,,= 0.9um and X, 4, = 4pm.
The reflection coefficient is 10%.

Calculate the responsivity R,and the quantum efficiency of both detectors at the

abovementioned wavelenghts.
Xup ><down

Py

* | T.Py=(1-R).P,

R.Py -
e —

Absorbing material
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Exercise 2.2: Absorption and Generation Rate

X
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Exercise 2.2: Quantum Efficiency

For photodetectors the quantum efficiency is defined as follows:

‘number of optically generated electrons

T’l:

‘number of incident photons

It takes into account: Relationship with responsivity

- reflection
- absorption — Is/q
- recombination PS/hV

- and electron scattering
It does not consider:

. . I
- internal gain — R, ==
I
- avalanche phenomena, ... P, h v

S
)
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Exercise 2.2: Absorption by silicon
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Exercise 2.2: Absorption, Responsivity and Quantum Efficiency

Absorption:

Generation rate:

Photocurrent:

Responsivity:

Quantum efficiency
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Exercise 2.2: Interpretation: Quantum Efficiency
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Exercise 2.2: Numerical Values

a(450) = 5.3-10* em™?

a(600) =7.9-10% cm™?

“Superficial” detector “Deep” detector
R, [A/W] n % R, [A/W] n %
A=450nm 0.183 51% 0.003 0.8%
A=600nm 0.074 15.5 % 0.194 40 %
Raso/Reoo 2.5 3.3 0.014 0.02
N4s0/Ms00
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Exercise 2.2: Responsivity and Quantum Efficiency
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Exercise 2.3: Optimal Internal Gain

We would like to detect an optical signal with P,=25 pW
using a detector with a variable internal gain G

(for example an avalanche photodiode).

Its responsivity is R=0.4 A/W,

its bandwidth is Af=1 MHz,
and its excess noise factor is F=G3, _—’ SZ m—) —I>—

Internal amplifier

Determine as a function of its gain G:
a) The amplified photocurrent I,(G).
b) The shot noise of this current.

The electronics generate an rms noise of Al_=100 pA.
c) Calculate the total noise Ai,, as a function of the gain.
d) Determine the signal to noise ratio as a function of gain.

e) What s the optimal gain G, ?
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Exercise 2.3: Internal Gain (1)

Primary photocurrent:

Amplified photocurrent:

Shot noise of the
amplified signal:

Total noise:

Signal-to-Noise ratio:
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Exercise 2.3: Internal Gain (2)
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Exercise 2.3: Internal Gain (3)
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Exercise 2.4: Light sources statistics

Questions

* Which kind of light sources exist?
 How are their statistical emission properties?

* Recap: shot noise
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Exercise 2.4: Poisson Distribution vs. Light Sources

* Non-classical light: Sub-Poissonian -> antibunched (anticorrelated)

Laser Light

= Coherent light source (Laser): Poissonian, random spacing (uncorrelated)

»= Thermal Light: Super-Poissonian, Bose-Einstein distribution with zero ...
counts as most probable count (bunched, positively correlated)
However, in practice it defaults to Gaussian due to the very low ..
coherence time, O(ps), and the corresponding experimental difficulties \i\ e
Experimentally one can use pseudothermal light*. hi."'--..___ﬁ
https://demonstrations.wolfram.com/PhotonNumberDistributions/ S
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*E.g. scattering of a laser beam on a

http://physics.gu.se/~tfkhj/lecture_X_differential _transmission-2.pdf . .
rotating ground glass disc

https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf
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Exercise 2.4: Light sources statistics

n = average photon number

Non-classical light: Sub-Poissonian <+n

Coherent light source (Laser): Poissonian

nn

"
P(n) = ;e‘”,a =n

For large photon numbers, the relative fluctuations o /n tend to O
Thermal Light: Super-Poissonian, Bose-Einstein distribution

ﬁn
(n+ 1)ntt’

oc=+n2+7n (forT < t,)>Vn

For large photon numbers, the relative fluctuations o/n tend to 1

P(n) = (1 — e~hw/ksT)g=nhw/kyT — 71 = (eho/ksT _ 1)‘1’

Advanced Lab Course (F-Praktikum), Exp. 45, Photon Statistics, v. Aug. 21 2017
http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf
https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf
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Pseudothermal light source

T. Stagner et al., Step-by-step guide to reduce spatial
Ll Coherence of laser light using a rotating ground glass
diffuser, OSA Applied Optics 56 (2017).
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