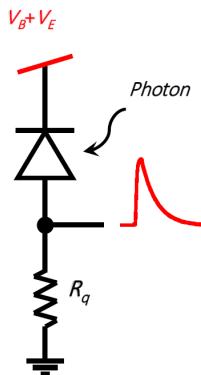
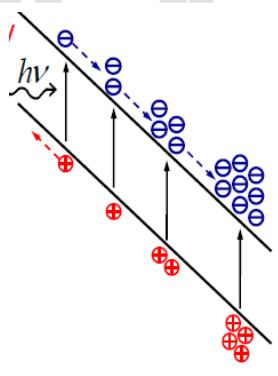


MICRO-523: Optical Detectors



Dr. C. Bruschini

January 16-17th, 2025

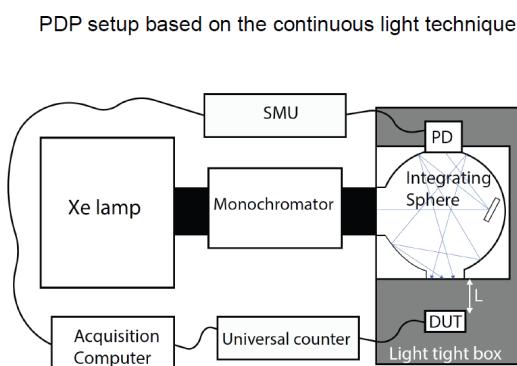
Question 11.1 SPAD Fundamentals: Working principles & Metrics

- i. [1 pt] SPAD operating principles:
 - How does a SPAD work?
 - Which are a SPAD's typical operation cycles and related time scales?
 - Which is the difference between a SPAD and an avalanche photodiode?
- ii. [1 pt] SPAD cross-section:
 - Draw at least one typical cross-section.
 - Identify anode/cathode, the p-n junction and the multiplication region.
- iii. [1 pt] SPAD as a digital device:
 - How can a SPAD be transformed into a digital photon detector?
 - How can such a device be typically used?
- iv. Bonus [0.25 pt]: Discuss two of the key SPAD metrics.

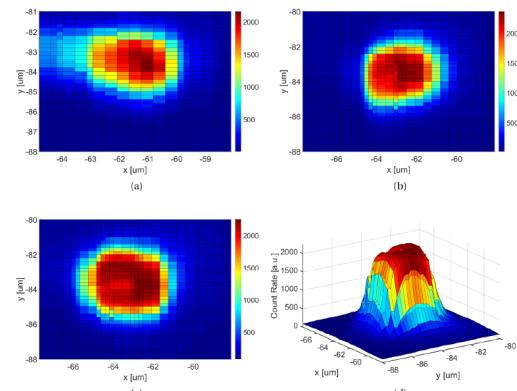
EXAMPLE

MICRO-523: Optical Detectors

Dr. C. Bruschini


January 16-17th, 2025

Question 11.2 SPAD Fundamentals: SPAD Metrics, device physics & metrology


Discuss the key SPAD metrics (PDP, DCR, afterpulsing, ...), the related Metrology and underlying physics.

- i. [1 pt] SPAD metrics:
 - Select two of the most important SPAD metrics and discuss them.
 - For each draw a typical response graph, e.g. PDP vs. wavelength, DCR vs. temperature, timing jitter, etc.
- ii. [1 pt] SPAD Metrology:
 - For the previously selected two metrics: discuss their metrology, i.e. how to measure them (one example provided below).
- iii. [1 pt] Noise sources:
 - Which are the main noise sources in single SPADs and SPAD arrays?
 - Discuss correlated vs. uncorrelated noise sources.
 - Provide quantitative examples.
- iv. Bonus [0.25 pt]: Briefly explain how an SiPM works and the main differences between analog and digital implementations.

EXAMPLE

Laser scanning of the SPAD active area at several excess bias voltages

