=Pi-L

Image Processing

Chapter 8
Image transforms

Prof. Michael Unser, LIB
Prof. Dimitri Van De Ville, MIP
Dr. Daniel Sage, LIB

March-April 2025



CONTENT
= 8.1 Introduction
= 8.2 Optimal transforms
= 8.3 Classical 2D transforms
= 8.4 Wavelet transforms
= 8.5 Generalized filtering

= 8.6 Image coding

8-2



Transform-domain processing

m Abstract Hilbert-space formulation m Constructing the image vector

Image space: ‘H=RY or H =/(y(Z?

ALAIY

a: image vector

y: transformed image

= Invertible linear operator

y=A-x & x=Aly v
| - f0,0] ],
= General transform requirements £[1,0]
_ > 1st row
- Fast transform (FFT-like algorithm) ;
) f[K o 17 O] ’
- Orthonormality T — £10,1] N
Al =A% And ]| = [yl : > 2nd row
/




Image transforms: applications

m Data processing { Generalized filter
Examples X
- image enhancement —> A

- denoising
- Wiener filter

............................................................................................................

m Data COMPIreSSION ..

Transform image coder

Examples of coders
- JPEG
- MPEG
- EZW

m Data analysis

Examples
- texture analysis X A y
- feature detection

Featu re
extraction

Pattern description
—
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Transform types

Block-by-block versus global

m Block transforms

Example: 8 x 8 DCT

m Global transforms

Example: wavelet transform

...........................................

...........................................




m Decomposition using basis functions

“basis” <—» square transform matrix

A A

=

= Decomposition using frames

“Frame” <— rectangular transform matrix

A A

=

(non-unique)

e.g., pseudo-inverse:

AT =@ATA)1AT

Preferred application: coding

Preferred applications
- generalized filtering
- data analysis
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Review of linear algebra H=CV

Signal/image vector: © = (z1,...,TN) = : c CN

LN

N
Representation in the canonical basis: x = Z r;e; with [e;]; = d;_;
1=1
e; = (0,0,...,1,0,...,0)

N
Inner-product in CV:  (u,v) = Zufvi = u'lw
=1

Hermitian transpose: Al — (AT) = (A*)T, [AH} = [A]*,

Unitary matrices
Definition: the N x N matrix U is unitary iff. U ! = U?

Example: U — [ cosf —sinf ]

sinf cosf
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Basis vectors

The vectors uq, us, ..., uy € C form a basis of C" iff. they are linearly independent

auy +---+anyuy =0 = a1

0

The N x N matrix U = { U] U

)
G, = U"U is positive-definite

(w1, ur)

Gram matrix: G, =

_ <’lLN,’Ll,1>

Orthonormal basis & (u;,u;) = d;—;

::CLN:O

UN } is invertible

<u17uN>

~U"U

(un,un) |

s G,=UfUu=1
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Transforms and inner product

m Linear transform as a change of basis

Consider the basis U = { U1  Us

.

Question: how do we get the y;’s from the x;’s?

Answer: by linear transform

x=U-y

=

m |dentification of inner products

Y1

YN

aii

ani

aiN

aANN

y=U""'

Transform matrix: A = U~ =

T1

TN

£

e T

\ 4
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Dual basis

-Gl
Linear transform: y=A -« with A=U"'= : (N x N matrix)
Dualbasis: U =[ @ s --- an |= (U‘l)H (= A")  (unique)
: ~ H ~ :
Analysis formula: y=U =« & Yy, = (u;,x), (i=1,...,N)
N N
Synthesis formula: x = Zyzuz =U -y & T = Z<’ZLZ, ) u;
i=1 i=1
Biorthogonality (=biorthonormality)
[ (T,u1) oo (Tn,un) |
~ H : : ~1 ~
U U = : : U U=1 <& (ui,uj>:5i_j
_ <{I’N7u1> <ﬂ’N?uN> _
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Orthogonal transforms

m Orthonormal basis < <'U,Z', Uj> — 57;_]' &S u; = uy

G,=UHU =TI U-"  (own dual
(

U
U

-
~

U =
{ Uy -+ UN ] IS unitary

» Orthonormal transform: U~ ! =U"

y=U"z & yi = (u;, x)

m Reconstruction formula ws

e-Uy & o= (wau B

\ 4
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Transforms: equivalent notations

2D Sequences #,(Z?) Vectors RV
Input image x|k, ] x
Transform coefficients Ym,n (7]
Basis functions Cmonlk, ] u;
Analysis functions Cmonlk, ] W;
Transform formula Z vk, okl y=A = 0"z
Inner products Ym.n = (Pmons L)ty y; = (U;, x)
Reconstruction formula x|k, l] = Zym,n Cmnlk, ] x=U-y
Invertibility condition (Grrres Gt 1t ) = Oomeon o U'U=1
Orthonormality Ommn = Pm.n U=U
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8.2 OPTIMAL TRANSFORMS

= 2nd-order statistics
= Karhunen-Loeve transform
= Circulant matrices and DFT
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Motivation: face recognition
= Training process with normalized data

.
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2nd order vector statistics

Random vector = (z1,...,zx) € RY

Multivariate probability density function: p(x)

= Expectation operator: E{f(x)} = f(x)p(x)dz,---day
RN
SO
= Mean vector: m, = ; = F{x} = x-p(x)dr;---dey  (IN-vector)
RN
| MmN

= Covariance matrix: C, =FE {(a: — E{x}) - (x — E{w})T} (symmetric, N x N)
Covariances: [Cx]i,j = F {(Z‘z — mz><$] — mj)} = E{SBZZUJ} — m;m;

Variances: [Cx]z.,i = Var{z;} = F {(Cvz' - mz’)Q} =L {557,2} —m;
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Empirical statistics
Image as a vector = (z1,...,zx) € RY
Observed set of images: {xi}, (k=1,..., K)

K
A 1
Empirical expectation operator: E {f(x)} = Z f(xx)

K
k=1
e | & | &E
Average image: 1M, = : = F{x} = I7e ]; Tk, m; = I%e l;wzk
- mN — B B

Scatter matrix (empirical covariance)

S,=F { (CB — E{w}) : (az — E{w})T} symmetric N x N matrix

K
— E {CE;BT} — E{m}E’{x}T — (;{ kax£> — ’fhx’ﬂbf
k=1

K
Scatter{x;} = E {(:cq; — mi)Q} = Z (i — mi)Q (sum of squares)
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Linear transform of random vector variables

= Linear transform: = = (zq,...,z2n) €RY — y=(y1,...,ym) €RM

T
y = Ax where A= { Uy - Uy } (M x N matrix)

or yi=ulx={(u;,x), (i=1,...,M)

= Mean/average vectors: E{y} = F{Ax} = AE{x} = m,=Am,

Likewise, 1, = Am,
= Covariance/scatter matrices: E{(y — F{y}) - (y — E{y})T} =C,=AC,A"

Likewise, S, = AS,A"

Justification: C, = E{(Am —AE{z)) - (Azx — AE{a:})T} —A. E{(m ~ Bla)) - (z — E{x})T} AT

= Dispersion measures: Var{y;} = u! C,u;
Likewise, Scatter{y;} = u! S, u;
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Karhunen-Loeve transform

{a}: N-vector process with known covariance matrix C,
m Eigenvectors of symmetric matrix C,

Defining property: C, - v, = \yv,, (n=1,...,N)

Orthonormality of eigenvectors: (v, Vyn) = dim—n

Ordered eigenvalues: A\; > Ay > --- > Ay with )\, = v C,v,
m Karhunen-Loéve transform of {x}

H
Axrr = { v -+ UN }

c, v, =\v, < Cx:{vl ’UN}'

Using S, instead of C, = Principal components (PC)
8-18



Properties of the KLT

. . H
Decorrelation: Cxrr = Akt - Cy - Agpr =

Maximum energy compaction

Var{y;} = \; = v!C,v;: maximum variance or scatter

Var{yn} = Ay = v¥C,vy: minimum variance or scatter

\ 4

X1
Minimum basis-restriction error
H
Orthonormal transform: A = [ U1 -+  UN }
Subspace approximation: x, = Z(ui, ) Uu; (n < N)
=1 N N N
Basis-restriction error: E {|lx —@.[*} = > E{lyil’} = > wuiCoui> > A\
1=n-+1 1=n-+1 1=n—+1

Best approximation: The KLT minimizes the basis-restriction error for 1 < n < V.
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KLT optimality: General variance-based criterion

Theorem: Among all orthonormal transforms, the KLT optimizes the criterion

In = Z G (u;lCrupy,) = Z G (Var{y,,}), forn< N
m=1

m=1

where G(-) is any monotonic concave or convex function.

Examples:

G(0?) = o* = basis-restriction error

1
G(0?) = max {0, 5 log, (o /D)} = bit rate for distortion D
(Gaussian process)

G(o?) = log(o?) = variance product

N N
Determinant inequality: det(C',) = H Ay < H Clnn
N——

on
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Application of the KLT: face recognition
= Eigenfaces

Mean Eigenvectors of scatter matrix
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Application of the KLT: face recognition

= Eigenfaces

Mean Eigenvectors of
scatter matrix

Each face has its “face space” coordinates
from which it can be reconstructed:




Application of the KLT: face recognition
= Navigate in “face space”

aif BEHfisams
: B 5

Leading eigenvectors v, of scatter matrix

alb =8 HE0EEEE

Reconstruct mean + 3 \/ v,

O e ATl

Reconstruct mean - 3\/ v,
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From KLT to variational autoencoders
m KLT:

encoder (analysis) = inner products with eigenvectors v,
decoder (synthesis) = reconstruction with eigenvectors v,

m Variational autoencoder
encoder and decoder become non-linear with the aim that latent space

Latent

representations map faces/images to Encoder LM Decoder
> <

<
a standard normal distribution v

Example: interpolation in latent
space between two sketch drawings

b T B A Y o] B
2 DY ke O
T

7%\ %\q%ﬁ/%/%%%%\\ %??’%Qﬁ
Input Data Encoded Data Reconstructed Data

[Ha and Eck, ICLR 2018] 8-24




Circulant and Toeplitz matrices

m Circulant matrices o 1D
h[0] hll] - AN —1] |
AN —1] h[0] A[]

W] R[2] hIN —1] 0]

1D convolution with periodic boundary conditions:  yper[k] = (h * Zper)[k] & y=Chx

m Toeplitz matrices
-r[()] ril] .- r[N—l]_

r[—1] r[0]
T, = & (Trli; =rlj—1

Covariance matrix of a stationary process: FE {z[i|*x[j|} = r.[i — j] & C,=T!

Ty
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DFT and circulant matrices

m Discrete Fourier transform (DFT)

H
N x N matrix: Fy = [ Uy -+ UpN ]
Basis vectors:  wu,, = (¢,[0], @nl[l], ..., pn[N —1])
_ 1 . 2(n — 1)
with @, [k] = ——=e&/“"%, W, =
m Diagonalization property
Theorem: The DFT diagonalizes all circulant matrices
C), = F% -diag(\i,...,\n) - Fn
N-1
\, = Ufchun _ Z h[k]e—J(n—l)wok — g (ej(n—l)wo) with wy = 2W7T
k=0

= FFT-based convolution algorithm

y:Ch-a::Fﬁ°diag()\1,...,)\N)'FNCU
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Optimality of DFT for stationary processes

m Covariance of a wide-sense stationary process
Shift-invariant structure: Vk,l € Z, FE{z[k|z[l]} = ri[k —]
= The covariance matrix is a symmetric Toeplitz matrix: C, = E{xzx!} =T,

Asymptotic behavior

Limit process: let the block size NV tend to infinity

Toeplitz matrix — Circulant matrix of infinite dimension

(provided r[k] has sufficient decay; e.g., 7z € £1)

Theorem: The DFT diagonalizes Toeplitz matrices as the block size IV tends to infinity.
|t is therefore asymptotically equivalent to the KLT.

Justification: T,,u — (ry*xu)[k]  (aperiodic convolution)

The Fourier exponentials e’“* are the “eigen-sequences” of shift-invariant systems

= Fourier domain formulation of Wiener filter for stationary processes
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8.3 CLASSICAL 2D TRANSFORMS

= Separable transforms
= Discrete Cosine transform (DCT)
= Other transforms
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Separable transforms

m Indexing

2D digital image: (k=0,..., K —1;1=0,...,L —1)
2D basis functions: (m=1,...,K; n=1,...,L)

m Separable basis functions: ¢, |k, | = ©mlk] - @nll]

Example: DFT

A 2mt(m—1)k 2w (n—1)1 .2n(m—1)k .2t(n—1)1
J(<K>+<L>>_1 <K>‘1J<L>

1
Omnlk,l] = \/ﬁe = % NG

m Image decomposition

zlk,l] = Z Zy[man] m [K]enl]

m=1n=1
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Separable transform: matrix formalism

m Row transform

Basis vectors:  w,, = (¢ [0], om|1], ..., ©m[K —1])

H
K x K matrix: AR:{ul uK]

m Column transform

Basis vectors: v, = (¢,[0], nll], ..., @n|L —1])

L x Lmatrix: Ac=| vy --- wp

m Separable 2D transform

| App1[0] Ager[l] - Arpi[L—1]

A a0 o AppolL—1

A=Ap®Ap = 7210 2l =
| Arpr|0] Arpr|[L —1]
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Separable transform: implementation

Input:  flk, ] with (k=0,....K—-1;1=0,...,L—1)

Transformed image: g¢lk, (]

For 7 = 0, L-1 {
x = getrow(f,7);
Yy = AgX; (* fast algorithm *)
putrow(g, 5,¥);

}

For ¢ = 0, K-1 {
x = getcol(g,1);
y = Acx; (x fast algorithm *)
putcol(g,%,y);

}

etc...(for 3D or more)
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Discrete Cosine transform (DCT)

DCT: prototype of an orthogonal block transform

m Basis functions

( 1 _1
omlt =4V "
m ] = /2 m(k+1)(m—-1
k Kcos( ( 22(( )>, m e {2,...,K}
0%0_ _0%0 0%0_ _0%0
°, Ooo oo ooo ooo ©o %
oo0000oo OO0000oo

4
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Discrete Cosine transform (DCT)

DCT: prototype of an orthogonal block transform

m Basis functions

omlk] =

m Properties

9

— m =1

\/%cos (W(k—'—z[)((ml)), m e {2,...,K}

= Good approximation of KLT for strongly correlated stationary processes

= Excellent energy compaction

= Fast FFT-like algorithm; real computations

Theorem [U., 1984]. The DCT transform is asymptotically (as the block size N goes
to infinity) equivalent to the KLT for all wide-sense stationary processes.

= Good justification for JPEG
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m 8x8 DCT basis functions (zoom)

-
IIIII
S

-IIIII -II.Ilu II II I- |.:.:I ‘

m Main applications of the DCT

- Coding (JPEG industry standard)
- Adaptive filtering

8x8 block DCT transform
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Other transforms

m Sine transform

2 . (mm(k+1) B
K+1Sln( K1 ) (m=1,...,K)

= Good approximation of KLT for weakly-correlated stationary processes

pm k] =

= Fast FFT-like algorithm; O(K log K) real operations

.{
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Other transforms (Cont’d)

m Hadamard transform

1 U U 1 1 1
Recursive definition: Usy = — N N with Uy = —
V2| Uy Uy V211 -1

= Poor man’s version of sinusoidal (DFT-like) transform

= Very fast algorithm; O(K log K) integer adds

(1111
11 -1 1 -1
B=311 1 21 -1
\1 -1 -1 1
(11111111\
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
g1t -1 -1 1 1-1-1 1
ToFlL 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1

\
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WAVE
Other transforms (Cont’d) NOMBER _
0
I M_
—~ ]
m Hadamard transform , [ L
| T
Recursive definition: UQN:% ZN IZ_V ? ﬂ_l“"‘—HJrr_L' ;
2 Uy U M W
. L . s b N U
= Poor man’s version of sinusoidal (DFT-like) transfc -
I_LL _I’q o

= Very fast algorithm; O(K log K) integer adds S ’b = [‘;

m Slant transform o H{HH1++H

Somewhat exotic; never seen an application

m Haar transform (cf. Wavelet transform) R
= Average energy compaction, but that’s not the wh ' d d [j = h

= Ultra-fast algorithm; O(K) integer adds 05 468l0RR

Fig. 3. Slant-transform basis waveforms.
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Karhunen Loéve transform [1948/1960]
Haar transform [1910]

Walsh-Hadamard transform [1923]
Slant transform [Enomoto, Shibata, 1971]
I l Discrete CosineTransform (DCT)
v v I [Ahmet, Natarajan, Rao, 1974]
| ! |

P

N o B LN ) I N
T

Comparison of 1-d
basis functions for

block size N=§&§
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8.4 WAVELET TRANSFORM

= History

= Signal-processing perspective
= Multirate operations

= Perfect reconstruction filterbank
= Hilbert-space interpretation

= Orthogonal wavelet filters

= Computing wavelet transforms
= Wavelets: Further probing
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Famous waveleteer...

The Norwegian Academy of Science and Letters has decided
to award the Abel Prize for 2017 to

Yves Meyer o
of the Ecole normale supérieure Paris-Saclay, France PRIZE

“for his pivotal role in the development 2 O 17
of the mathematical theory of wavelets.”



Early start: Haar transform

1910: Alfred Haar invents his own transform

(Note: no fancy ftitle... “On the Theory of Orthogonal Function Systems”)

=
kil

Zur Theorie der orthogonalen Funktionensysteme.*)
(Erste Mitteilung.)

Von

Avrrep Haar in Géttingen.

Inhalt. Selto
Einleitung . . . . . . . . .. oo oo 331

Kapitel L.

Divergente Reihen.

§ 1. Bin allgemeines|Kriteriym . . . . . . . . . . ... .. . ... .. 335
§ 2. Anwendung auf|die Stupm-Liouvilleschen Reihem . . . .|, . . . . .. 339
§ 3. Aowendung auf|die Kugelfunktionen . . . . . . . . . |. J. ... .. 345

— I itel II.

' Theori¢ der Summalion.
§1. Bin Hilfgsatz . . . . .|. . . .|. .. .. ... ... ... ... . 849
§ 2. Anwendung auf die Theprie der [trigonometrischen und Sturm-Ifiouyilleschen

Rethem . . . . ... ... ... ... . ..... . ... 852
§ 3. Die Summation der Stupm-Liouvilleschen Reihen . . . . . . . . . 8686
§ 4. Verallgemeinerungen . . . . . . . . s ¢ 4 o v v 0 e e e e e 359

Kapitel III

. . Uber eine Klasse von orthogonalen Funktionensystemen,

- BaS|S funct|ons w = 2_2/2¢(x/22 _ k) § 1. Das orthogonale Funkbionensystem 7. . . . . . . . . . . . . . .« . . 361
Z, § 2. Entwicklungen nach dem orthogonalen Funktionensystem y . . . . . . . 363
§ 8. Weitere Bigenschaften des orthogonalen Funktionensystems y . . . . . . 368
§ 4. Verschiedene Verallgemeinerungen . . . . . . . . . . . . « . « v« . . 369

= Wavelet expansion: f(x) = Z (fs Vi) Vik
ik W—/

Yi k
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Signal processing developments

1948 - 1980: Dark ages = “DCT era”

1976: Quadrature-mirror filters [Croisier-Esteban-Galand]
1

0.5}

> T

Early 1980’s: Perfect-reconstruction filterbanks [Smith-Barnwell, Vaidyanathan, Vetterli]

1984: Vetterli splits a cat into subbands
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Image pyramids
1983: Burt and Adelson build pyramids

REDUCE EXPAND
Gaussian pyramid Laplacian pyramid
=) N =
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Unification: Multiresolution analysis
1987: Mallat and Meyer set the foundations of the theory

S.G. Mallat, "A theory of multiresolution signal decomposition: the wavelet representation,"

IEEE Trans. Pattern Anal. Machine Intell., 11 (7), pp. 674-693, 1989 8.44



Signal-processing perspective
Splitting and putting together again...

m Perfect-reconstruction filterbank

_ﬁ(z)_,@ ...... @_. H(Z)}

——o—
|dentity operator: —I: :I—
—e—o—

m Tree-structured wavelet transform m Subband decomposition

_I: 1= —* :I_ t  Wavelet filterbank
1’—o—|: 2—e — :I—o—
33| 2 1
2’—o—|: 3—e----0— :I—o— :u
33— ---0— T

N[N
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Multirate operations

m Filtering sransform:  z[k] < X(2) =) a[k]lz7"
kez,
— H(z) —b (hxx)[k] =Y hlllalk—1] «— H(z)-X(2)
ez

m Down-sampling

— (12— ()l = 2l2h] o (X7 + X(—2)

m Up-sampling

0, k odd p 5
@_' (@)r2lk] = { z[l], 2l =k even — X&)

m Down-sampling followed by up-sampling

(2)aralk]

(X(2) + X(=2))

DO | —
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Perfect-reconstruction filterbanks

) [ (1)~ (12 Hl PR

m Perfect reconstruction conditions

~

(PR-1)  H(2)H(z)+ G(2)G(z) =2 (distortion-free)

~ ~

(PR-2) H(—2)H(z2)+ G(—2)G(z) =0 (aliasing-free)

m Wavelet transform design

Construct 4 filters such that (PR-1) and (PR-2) are satisfied.
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Down-sampling and aliasing

@l < 2 (X(2)+X(-2)

Baseband component: X (z) —  X(e/v¥)

Aliased component: X (—z) — X(—e/¥) = X(eTITel%) = X (ef(wm))
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Hilbert-space interpretation

m /5-inner product:  (u, v), E ulk
keZ

m Filtering followed by down-sampling < computing /s-inner-products

:U[k]._ an _@ clm] = Zx h[2m — k] = (Pm, ),

keZ

~ ~ ~

Equivalent analysis sequences: @, [k] = hY[k —2m] with hY[k] = h[—k]

m Up-sampling followed by filtering < computing signal expansion

W,y WA, == 2 it —oml = 3 clmlen

meZ meZ

Equivalent basis sequences: ¢, k] = hlk — 2m)]
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Wavelet decomposition

*
G(z) 4@ ----- @- G(z)
m Analysis
c[m] = (x, Gm)e, with @ [k] = AY [k — 2m)]
dim] = (z,Vm)e, with o [k] = §¥ [k — 2m]

Equivalent matrix interpretation: vy = Uz

m Synthesis

Tout = Y _ clmlom + Y _dmlm  with @m[k] = hlk—2m] and 9 [k] = gk — 2m]

m

Equivalent matrix interpretation: x,,; = Uy

m Perfect reconstruction condition
UUT =1=UTU < (@m, up) = 0Omn
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Orthogonal wavelet filters

m Condition for an orthonormal transform

IJ'_1 = UT p— u; = ’lh:l,z <~ Sbm = ©m and T;n — ”an

m Orthogonal perfect-reconstruction filterbank

<~ ~
Gmlk] = 3V k —2m] = [k = gk — 2m] G(:7') =G(2) (i
m Conjugate-quadrature filter (CQF) solution
Inspired guess: G(z) = —2"'H (—271) (i) = G(z)=—2zH(-2)

= (PR-2) is satisfied automatically!
H(-2)H(2) + G(=2)G(2) = H (=27} H(z) — H(z)H (—27') =0
(PR-1) + (), (ii), (i) <  CQF condition: FH(z)H (2~ ')+ H(—2)H (—z ) =2 (i)

= Power-complementary filter:  |H (ej“’)‘2 + |H (ej(“’_w)ﬂ2 =2
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Example: Haar filterbank

14271
m Haar filter: H(z) =
(2) 7
- _ 142"V (142) 2+24 271
m Autocorrelation:  A(z) = H(z)H (z71) = ( 2) = i
- oy T A7)
m CQF condition: A(z) + A(—z) =2
& [H ()] +]H ()" =2 |
1 — —1
m Wavelet filter:  G(z) = —2"'H (—27') = \/; (shift and modulation)

m Haar perfect-reconstruction filterbank
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Haar: polyphase formulation

m Polyphase formulation

CIJ[k‘] : even . U1 \even C ZIZ‘[]C]
—1
z H H Z_l
odd Y92 odd : j
. . 11 o1 L .
Filterbank matrix: H = — with H ' = H! = H (orthonormal matrix)
V21 —1

m Simplified implementation: 2 x 2 block transform

. _ Y1 [k] _ 1 L1 x[Zk]
Analysis formula: [ wolk ] =75 [ L ] : [ el2h 1

111 y1[k]
IRV I O I

x[2k]
2k + 1]

Synthesis formula: [ |
T
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Computing wavelet transforms

m Mallat’s tree-structured filterbank algorithm

works for all wavelet transforms ’ e -— :I_

—I: 3 —e---0—

Algorithm specification: orthogonal filter H (z)

Speed: O(N); depends on length of H(z)

m Daubechies wavelets

Shortest orthogonal filters (CQF) such that: Hp(2) = (1 + 2z~ 1)¥Q(2)

Examples:
Hi(z) = % (1+271)
Ha(z) = 4_;5 (14 v3) + (34 v3) = + (3 v3) =+ (1- v3) =7

m Battle-Lemarié spline wavelets

Orthogonal filter H(z) such that the underlying functions are polynomial splines
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Extension to higher dimensions: separability

Split rows Split columns

Tensor-product basis functions
Yy oo ey (1,0, Ta) = Yy (T1) X Ppy (22) -+ X gy (24a)
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2D wavelet decomposition: example

Wavelet transform

Inverse wavelet transform

0.00%

Discarding “small coefficients”
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Wavelets: continuous-domain interpretation

Discrete wavelet algorithm <« Continuous-domain interpretation

m Two key underlying functions (a) scaling function (b) wavelet

A A

\ 4
\ 4

m Implicit definition

Solution of the two-scale relation: Wavelet equation:
o(x/2) :ﬁZh[k]w(a:—k) = P(x/2) = \fZg
kEZ kEZ

m Existence and convergence issues

Depending on H (z), the solution of the two-scale relation is not necessarily in Lo(R)

Necessary conditions: H(z)|._; =+v2 and H(z)|._ ;=0
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Examples of solutions of the two-scale relation

Two-scale relation:  ¢(x/2) = Z hlk]o(x — (without normalization)
ke

Haar transform:
1 SOHaar(x) - @Haar(x - 1)

H; (z) =1+ 51 SOHaz.%r(x) + ¢Haar(z — 1)

\ 4

\ 4

Daubechies of order 2:

H(z) = i K”ﬁ) * (3+V§) 2 (S—ﬁ) 27+ (1—¢§) z—ﬂ

15 I I \ \ |
1L _
——
05 N
L —| - :I-'— :I
0 \/./v\[
05 L _ 00100 @ T_
1 - 7 00100 @—
-1.5 scaling function n
wavelet function
2 | \ | | |
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Wavelet basis of L,
Under suitable conditions on H(z): ¢(x) € L2(R) = (x) € La(R)

_ _ k (translation)
m Wavelet basis functions

amr s (2) i cocz | i
=
= N NN
S| VUV VUV VUV
m Orthogonal wavelet basis
Vi€ La(R = > (fothin) ik with (i ks ¥j0) = Gijk—i
1€E7Z kEZ
m Biorthogonal wavelet basis
Vfe Ly(R ZZ £y ik Vinl with (Ui g, ¥j0) = Gi gk

1€Z kEZ
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Wavelets: further probing

m Application areas m Mathematical wavelet theory

Signal/image processing: = Convergence of two-scale relation

coding, multiscale processing
= Vanishing moments

Pattern recognition/analysis:

texture, time/frequency analysis = Multiscale derivatives

Imaging = Characterization of singularities

Computer graphics = Reproduction of polynomials

Applied mathematics: = Approximation theory

PDEs, approximation theory = Regularity

Medicine and biology = Unconditional basis:
Physics turbulence, fractals. . . Sobolev and Besov spaces

= Sparsity — compressed sensing
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8.5 GENERALIZED FILTERING

Principle: go to the transform domain to simplify processing

Generalized filter

Image transform: y=Azx
Scalar processing:  7; = fi(y;) X L X
—> A A ——>

Inverse transform: T = A_lij

m Linear algorithm

~

Yi = OGY;

Example: filtering in the Fourier domain = «a; = H (e/“)

m Pointwise non-linearities
Global non-linearity: ¢; = f(y;)
Grouping of coefficients in subbands: y; = f;(y;) for i€ I; (jthband)
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Generalized Wiener filter

m Justification for component-wise processing

Orthogonal transform: white noise = white noise
C.,=0*1 = C,=AC, A" =0AA" =0°T

Sinusoidal transforms tend to decorrelate stationary processes
(asymptotic equivalence with KLT = diagonal covariance)

Wavelet transforms tend to whiten self-similar stochastic processes (fractals)

m Signal + noise model: y; = s; + n;

m Linear estimator: s; = a;u;

B{s}

m Generalized Wiener filter: «; =
YT BB
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Refresher: MMSE (or Wiener) estimator

Pointwise linear estimator: s =ay with y=s+4+mn (signal + noise)

Mean-square estimation error
e =FE{(3—35)*} = E{la(s+n) — s]*}
=a’E{(s+n)’} + E{s*} — 2a(E {s*} + E{sn})

— o’E {(s + n)2} +F {82} — 2ak {32}
Hypothesis: signal and noise are uncorrelated (E{sn} = 0)

Minimum-mean-square-error solution
é) 2 E 2 E 2
2 . . . B{# Bl
E{(s+n)’} E{s*}+E{n?}

da
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Simple wavelet denoising

m Basic idea
= Orthogonal WT: white noise — white noise

= Signal concentrated in few coefficients, while noise is spread-out evenly

= Noise attenuation is achieved by simple wavelet shrinkage/thresholding

m Soft threshold

fy—& y > A ///

Th(y) =14 0O, ly| <A / A Y
Lyt A y< —A
In practice: A=C -0 (proportional to noise standard deviation)
m Hard threshold /
v, lyl > A
T/ — >
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Building block for deep neural networks

Layer 1 Layer 2
(0) (D <)
X )y X 2y X
— % A, —b, »ac0") - A, — b, o) +——
pointwise pointwise
: affine transform  :: non-linearity affine transform  :: non-linearity

= Deep neural network with L layers and input X = x(O)
fdeep(X) = (60 A;o...00°d)(X)
= Affine layers
o, RM-1 — RN sych that of,(xV) = y = A xD + b,
= Linear transform with trainable weights A; € RN>Ni-i
= Bias b, € RY
= Activation function
6, : RV — RN with 6(y) = (6(y), ..., o(Yn))
x(+D — al(y(l))
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8.6 IMAGE CODING

A—1 )Z
—>
m DCT-based coding (JPEG) m Wavelet coding (EZW, JPEG2000)
= Industry standard = Multiresolution idea
= Good for low distortion coding = Overlapping basis functions
but... = Progressive transmission

= Not so good at lower bit rates

= Blocking artifacts!
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Coding: general considerations

m General principle: transform signal to pack energy and to decorrelate
Transform y=A-x

Scalar quantization yi = Q(y:)

| _ .

Encoding R== Z Rj,  (average bit rate)

Reconstruction T=A1gy
m Reconstructionerror: D= |le—Z|°=|ly—g||° <  Aisunitary
m Rate-distortion (R-D) curve 7% Optimum bit-allocation problem

= For a given distortion D, minimize the bit rate R
= For a given bit rate R, minimize the distorsion D

D
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JPEG image coder

8x8 block

Compressed
Source image data
image data Quantizer Entropy
table coder table
specification specification
‘ ‘ DC Y0 Y0

m Quantization

- perceptual weighting

m Entropy coding

- zig-zag scanning of 8 x 8 DCT coefficients Yo Vs
- combined (Run, Size) Huffman code (Run=run length of preceding zeros)
- End-of-block (EOB) symbol
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JPEG compression artefacts

= Ringing artefacts: DCT basis vectors become visible around high-contrast
edges due to quantization of smaller coefficients

= Blocking artefacts: block-wise processing leads to visible edges between
blocks at high compression ratios
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Compression: Why wavelets?

m Reason 1: The WT produces a lot of clustered near-zero coefficients

At low bit rate, the gain of transform coding is mostly due to the “zero bin”
= Dead-zone quantizer

Coding of “zeros” is non-stationary (< 1 bit per coefficient) and must take
advantage of spatial correlation
= Position coding is the key (run-length, zero-tree)

m Reason 2: Reduced blocking artifacts

JPEG/DCT works well at high/medium bit rate but produces blocking artifacts at lower rates

Blocking is reduced with the WT because the basis functions are overlapping

m Reason 3: The WT has a built-in multiresolution structure

Progressive transmission (by successive approximation)
Browsing, the WEB

Unequal error protection
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Simple wavelet coding

m Basic idea

WT produces lots of small, near-zero coefficients in slowly-varying regions

= Compression is achieved by setting small coefficients to zero

m Hard threshold /
, y, |yl > A
T —

m Qualitative behavior of approx. error for M = N,o; — Ngiscarg COEfficients

2 — — _
D= > |yl"occ ML, 27™ M7
—— —~— N——
ly[ <A 1D linear 1D non-linear 2D edges non-linear
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EZW coder

m Embedded zero-tree wavelet coder (EZW) T
!
- Special status of "zero bin". \ .
- Exploits spatial correlation = Zero tree \ —
= Conceptual principle n
iterate A =%
- abs(coefficient) > A : _ Symbols
pOSitive: + gr?giigr?\llo?tleptetrrigsgf?ircrirzaﬁflf%erotree - |+ |- [9]Z
negative: - threshold A

y

- abs(coefficient) < A :
parent zero: do nothing
parent non-zero, look descendants:
descendents zero: Z
descendents non-zero: 0

Update wavelet transform (residual)

Y<=¥Y-X

\ 4

Decrease threshold
A< A/2
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8.7 SUMMARY

Image transforms are used for data processing, data compression, and data analysis.
To be truly useful, they must have a fast algorithm.

H
An orthonormal transform is characterized by a unitary transformmatrix A = | uw; --- un ]
where the u;’s are the basis vectors of the representation.

The variances in the transformed domain are determined by the covariance matrix of

the input vector: o2 = u! C,u,;.

1

The Karhunen-Loeve transform is specified by the eigenvectors of C,.. The KLT com-
pacts the energy in the fewest number of components and decorrelates the data.

The discrete Fourier transform (DFT) diagonalizes circulant matrices.

Separable transforms are implemented by successive 1D processing of the rows and
columns of an image.

Useful sinusoidal transforms are the DFT and the DCT,; for stationary processes, they
are both asymptotically equivalent to the KLT.
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The main tool for the wavelet transform is a perfect reconstruction filterbank which splits
a signal into orthogonal lowpass plus highpass components. The splitting is iterated to
yield a tree-structured transform.

A wavelet transform is entirely specified by an orthogonal filter; the highpass filter is
obtained by modulation (QMF).

Generalized filtering is achieved by applying a suitable point function in the transformed
domain prior to reconstruction. The operation is either linear (e.g., Wiener filter) or non-
linear (e.g., soft-thresholding).

Transform coding applies a uniform quantization in the transformed domain. JPEG
uses 8x 8 block DCTs; more recent coders use the wavelet transform (EZW, JPEG2000).

The key to high compression is the efficient encoding of zero values: run length in
JPEG or zero-tree in EWZ.
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