

Image Processing

Chapter 8
Image transforms
Prof. Michael Unser, LIB 
Prof. Dimitri Van De Ville, MIP 
Dr. Daniel Sage, LIB

March-April 2025

8-

CONTENT
◼︎ 8.1 Introduction
◼︎ 8.2 Optimal transforms
◼︎ 8.3 Classical 2D transforms
◼︎ 8.4 Wavelet transforms
◼︎ 8.5 Generalized filtering
◼︎ 8.6 Image coding

2

8-

Transform-domain processing

3

Constructing the image vector





1st row





2nd row

x =





f [0, 0]
f [1, 0]

...
f [K − 1, 0]

f [0, 1]
...
...
...





{f [k, l]}

Abstract Hilbert-space formulation

Image space: H = RN or H = !2(Z2)

x: image vector

y: transformed image

Invertible linear operator

y = A · x ⇔ x = A−1y

General transform requirements

- Fast transform (FFT-like algorithm)

- Orthonormality

A−1 = AH ⇔ ‖x‖ = ‖y‖

8-

Image transforms: applications

4

aaaaa

A −1

Generalized filter

Point
operation

f(y)
x̃

A
x

■ Data processing

■ Data compression

■ Data analysis

aaa

Ax y
Feature
extraction Pattern description

aaaa

A A −1Quantization Entropy
coding

Decoding

Transform image coder

x̃x

Examples
- image enhancement
- denoising
- Wiener filter

Examples of coders 
 - JPEG
 - MPEG
 - EZW

Examples
 - texture analysis
 - feature detection

8-

Transform types

5

■ Block transforms

■ Global transforms

Example: 8 × 8 DCT

Example: wavelet transform

Block-by-block versus global

8-6

aaaa

A A−1

“basis” square transform matrix

aaaa

A A−1

(non-unique)

“Frame” rectangular transform matrix

One-to-one versus redundant
■ Decomposition using basis functions

■ Decomposition using frames

Preferred application: coding

Preferred applications
 - generalized filtering
 - data analysis

e.g., pseudo-inverse:
A† = (AT A)−1AT

8-

Review of linear algebra

7

Signal/image vector: x = (x1, . . . , xN) =





x1

...
xN



 ∈ CN

Representation in the canonical basis: x =
N∑

i=1

xiei with [ei]j = δi−j

ei = (0, 0, . . . , 1, 0, . . . , 0)

H = CN

Inner-product in CN : 〈u,v〉 =
N∑

i=1

u∗i vi = uHv

Hermitian transpose: AH =
(
AT

)∗
= (A∗)T ,

[
AH

]

ij
= [A]∗ji

Unitary matrices

Definition: the N ×N matrix U is unitary iff. U−1 = UH

Example: U =

[
cos θ − sin θ

sin θ cos θ

]

8-

Basis vectors

8

Gram matrix: Gu =




〈u1, u1〉 · · · 〈u1, uN 〉

...
. . .

...
〈uN , u1〉 · · · 〈uN , uN 〉



 = UHU

The vectors u1,u2, . . . ,uN ∈ CN form a basis of CN iff. they are linearly independent

a1u1 + · · · + aNuN = 0 ⇔ a1 = · · · = aN = 0

#

The N ×N matrix U =
[

u1 u2 · · · uN

]
is invertible

#

Gu = UHU is positive-definite

Orthonormal basis ⇔ 〈ui,uj〉 = δi−j ⇔ Gu = UHU = I

8-

Transforms and inner product

9

u1

u2

x

x1

x2

e1

e2

Identification of inner products

y =




y1

...
yN



 =




a11 · · · a1N

aN1 · · · aNN








x1

...
xN



 ⇔ yi = 〈ũi,x〉, (i = 1, . . . , N)

Transform matrix: A = U−1 =




ũH

1

...
ũH

N





Answer: by linear transform

x = U · y ⇒ y = U−1 · x

Linear transform as a change of basis

Consider the basis U =
[

u1 u2 · · · uN

]

x =
N∑

i=1

xiei =
N∑

i=1

yiui = U · y

Question: how do we get the yi’s from the xi’s?

8-

Dual basis

10

Linear transform: y = A · x with A = U−1 =




ũH

1

...
ũH

N



 (N ×N matrix)

Dual basis: Ũ =
[

ũ1 ũ2 · · · ũN

]
=

(
U−1)H

(= AH) (unique)

Analysis formula: y = Ũ
H

x ⇔ yi = 〈ũi,x〉, (i = 1, . . . , N)

Synthesis formula: x =
N∑

i=1

yiui = U · y ⇔ x =
N∑

i=1

〈ũi,x〉ui

Biorthogonality (=biorthonormality)

Ũ
H

U =




〈ũ1, u1〉 · · · 〈ũ1, uN 〉

...
. . .

...
〈ũN , u1〉 · · · 〈ũN , uN 〉



 = U−1U = I ⇔ 〈ũi,uj〉 = δi−j

8-

Orthogonal transforms

11

u1

u2

x

y1
y2

Orthonormal basis ⇔ 〈ui,uj〉 = δi−j ⇔ ũi = ui

Gu = UHU = I ⇔ Ũ = U =
(
U−1)H

(own dual)

⇔ U =
[

u1 · · · uN

]
is unitary

Orthonormal transform: U−1 = UH

y = UHx ⇔ yi = 〈ui,x〉

Reconstruction formula

x = U · y ⇔ x =
N∑

i=1

〈ui,x〉︸ ︷︷ ︸
yi

ui

8-

Transforms: equivalent notations

12

2D Sequences Vectors

Input image x[k, l] x

Transform coefficients ym,n y

Basis functions 'm,n[k, l] ui

Analysis functions '̃m,n[k, l] ũi

Transform formula ym,n =
X

k,l

x[k, l] '̃⇤
m,n

[k, l] y = A · x = Ũ
H

x

Inner products ym,n = h'̃m,n, xi`2 yi = hũi,xi

Reconstruction formula x[k, l] =
X

m,n

ym,n 'm,n[k, l] x = U · y

Invertibility condition h'̃m,n, 'm0,n0i = �m�m0,n�n0 Ũ
H

U = I

Orthonormality '̃m,n = 'm,n Ũ = U

ℝNℓ2(ℤ2)

8-

8.2 OPTIMAL TRANSFORMS

13

2nd-order statistics
Karhunen-Loève transform
Circulant matrices and DFT

8-

Motivation: face recognition

14

■ Training process with normalized data

Training image

Normalization (eyes + mouth)
Remove background

8-

2nd order vector statistics

15

Random vector x = (x1, . . . , xN) ∈ RN

Multivariate probability density function: p(x)

Expectation operator: E {f(x)} =
∫

RN

f(x)p(x) dx1 · · ·dxN

Mean vector: mx =




m1

...
mN



 = E{x} =
∫

RN

x · p(x) dx1 · · ·dxN (N -vector)

Covariance matrix: Cx = E
{

(x− E{x}) · (x− E{x})T
}

(symmetric, N ×N)

Covariances: [Cx]i,j = E {(xi −mi)(xj −mj)} = E{xixj}−mimj

Variances: [Cx]i,i = Var{xi} = E
{
(xi −mi)2

}
= E

{
x2

i

}
−m2

i

8-

Empirical statistics

16

Image as a vector x = (x1, . . . , xN) ∈ RN

Observed set of images: {xk}, (k = 1, . . . ,K)

Empirical expectation operator: Ê {f(x)} =
1
K

K∑

k=1

f(xk)

Average image: m̂x =




m̂1

...
m̂N



 = Ê{x} =
1
K

K∑

k=1

xk; m̂i =
1
K

K∑

k=1

xi,k

Scatter matrix (empirical covariance)

Sx = Ê

{(
x− Ê{x}

)
·
(
x− Ê{x}

)T
}

symmetric N ×N matrix

= Ê
{
xxT

}
− Ê{x}Ê{x}T =

(
1
K

K∑

k=1

xkxT
k

)
− m̂xm̂T

x

Scatter{xi} = Ê
{

(xi − m̂i)
2
}

=
1
K

K∑

k=1

(xi,k − m̂i)
2 (sum of squares)

8-

Linear transform of random vector variables

17

Justification: Cy = E
{

(Ax −AE{x}) · (Ax −AE{x})T
}

= A · E
{

(x − E{x}) · (x − E{x})T
}

· AT

Linear transform: x = (x1, . . . , xN) ∈ RN → y = (y1, . . . , yM) ∈ RM

y = Ax where A =
[

u1 · · · uM

]T
(M ×N matrix)

or yi = uT
i x = 〈ui,x〉, (i = 1, . . . ,M)

Mean/average vectors: E{y} = E{Ax} = AE{x} ⇒ my = Amx

Likewise, m̂y = Am̂x

Covariance/scatter matrices: E
{

(y − E{y}) · (y − E{y})T
}

= Cy = ACxAT

Likewise, Sy = ASxAT

Dispersion measures: Var{yi} = uT
i Cxui

Likewise, Scatter{yi} = uT
i Sxui

8-

Karhunen-Loève transform

18

Karhunen-Loève transform of {x}

AKLT =
[

v1 · · · vN

]H

Cx · vn = λnvn ⇔ Cx =
[

v1 · · · vN

]
·





λ1 · · · 0
...

. . .
...

0 · · · λN



 ·





vH
1
...

vH
N





Using Sx instead of Cx ⇒ Principal components (PC)

{x}: N -vector process with known covariance matrix Cx

Eigenvectors of symmetric matrix Cx

Defining property: Cx · vn = λnvn, (n = 1, . . . , N)

Orthonormality of eigenvectors: 〈vm,vn〉 = δm−n

Ordered eigenvalues: λ1 ! λ2 ! · · · ! λN with λn = vT
nCxvn

8-

Properties of the KLT

19

Var{y1} = λ1 = vH
1 Cxv1: maximum variance or scatter

...
Var{yN} = λN = vH

NCxvN : minimum variance or scatter

Decorrelation: CKLT = AKLT · Cx · AH
KLT =




λ1 · · · 0
...

. . .
...

0 · · · λN





Maximum energy compaction

Minimum basis-restriction error

Orthonormal transform: A =
h

u1 · · · uN

iH

Subspace approximation: xn =
nX

i=1

〈ui, x〉ui (n < N)

Basis-restriction error: E
˘
‖x − xn‖2¯

=
NX

i=n+1

E
˘

|yi|2
¯

=
NX

i=n+1

uH
i Cxui ≥

NX

i=n+1

λi

Best approximation: The KLT minimizes the basis-restriction error for 1 ≤ n < N .

x1

x2

y2 y1

8-

KLT optimality: General variance-based criterion

20

Examples:

G(σ2) = σ2 ⇒ basis-restriction error

G(σ2) = max
{

0,
1
2

log2(σ
2/D)

}
⇒ bit rate for distortion D

(Gaussian process)

G(σ2) = log(σ2) ⇒ variance product

Determinant inequality: det(Cx) =
N∏

n=1

λn !
N∏

n=1

[Cx]n,n︸ ︷︷ ︸
σ2

n

Theorem: Among all orthonormal transforms, the KLT optimizes the criterion

Jn =
n∑

m=1

G
(
uH

mCxum

)
=

n∑

m=1

G (Var{ym}), for n ! N

where G(·) is any monotonic concave or convex function.

8-

Application of the KLT: face recognition

21

■ Eigenfaces

Mean Eigenvectors of scatter matrix

8-

Application of the KLT: face recognition

22

■ Eigenfaces

Each face has its “face space” coordinates 
from which it can be reconstructed:

Mean Eigenvectors of
scatter matrix

= +

⟨x, v1⟩ v1 ⟨x, v2⟩ v2 ⟨x, v3⟩ v3 ⟨x, v4⟩ v4

x

…

8-

Application of the KLT: face recognition

23

■ Navigate in “face space”

Leading eigenvectors of scatter matrixvn

Reconstruct mean + 3 λnvn

Reconstruct mean - 3 λnvn

8-

From KLT to variational autoencoders

24

■ KLT:
encoder (analysis) = inner products with eigenvectors
decoder (synthesis) = reconstruction with eigenvectors

■ Variational autoencoder
encoder and decoder become non-linear with the aim that latent space
representations map faces/images to
a standard normal distribution
Example: interpolation in latent 
space between two sketch drawings

vn

vn

[Ha and Eck, ICLR 2018]

8-

Toeplitz matrices

T r =

2

6666664

r[0] r[1] · · · · · · · · · r[N � 1]

r[�1] r[0]

· · · · · · r[�1] r[0] r[1] · · ·

3

7777775
, [T r]i,j = r[j � i]

Covariance matrix of a stationary process: E {x[i]?x[j]} = rx[i� j] , Cx = T T
rx

<latexit sha1_base64="DV0qVlLIGG6icFRYFBFnzYstNUY=">AAALM3iclVZbb9s2FFa8W6Ldmu1xL8QSD0MRG7J3SRcgQIF0XQsEQ5cmbRHTNSjpWGZCXUJSsV1BP2s/ZtjLMOx1/2GHkp1KcjK4hG3JPIff9/Hw8JBuIrjSjvPHRuu99z/48KPNLfvjTz797PN721+8UHEqPTjzYhHLVy5TIHgEZ5prAa8SCSx0Bbx0L4+M/eU1SMXj6FTPExiGLIj4mHtMY9doe+MvqlJXgZedxoCE+g0JmZbcA5XbW1Qzl+xSNxa+mof4IKcjSQ4JFTDWA+pCwKOMScnmeeYVLZcDZ0i+IXLQMw/q+bFWt77Iwa8d9CGUykGnV44phi4/lFb+rP6ndAlVPs34Gk5NAoXIXyilkgcTPST0KmU+occ4laIHrfF00TtozHk4yvjeRX4oBxcdPtyldNCD2dDeso/iayY5izwo4zYj8ZgwonQRXybnJJExBlMdlMC7Pxexo9lswIevKfpJMhtcDEtRNMfgyhHaOth1dYfAsrsi8Gg0M4tSk5whTP76dNce3dtxuk7RyOpLb/GyYy3as9H25gH1Yy8NIdKeYEoNek6ihxg9zT0BuU1TBQnzLlkAWZGBOWljl0/GscRvpEnRW/NjoTLS0BPDNFFNm+m8zTZI9fjBMONRkmqIvJJonAqiY2LSmfhcgqfFnDDPQ70p06ijhqA8JsA/7P7UH2YTENegcQYSIph6cRgyTAs6ZiEXcx/GLBU6z6gaL9/ttt0mxS5SBF2JmwoBWh1gP0Uf3HTFVLMwDTD4eSYDN896e053/4c9J1/xkTBf+DhddCi/6FYV44oUShpUUtcpmIsbXUPI0VSCGu+cUJkKyAwrzPLlM28AG/b1gRdq14TGyb8TtAnWetCuwHV8l3ig+/9A1wH0BMrqZzZrnpGMThTmDdzPOk73RxxSjzKmqRCmHhoShdtQwu7bEX1DQe7iuJNm/y3NTcw1j+Z38ny35KmylPg5lrzlu+G6n92WJz0TE/OzwDTJWGCazCc7vdvRGwTrclRIysVYcjTXmQdmJQ0ByczSSqwM64jv3KgvYUkdN8HyXMFdT6lZygUeKUrA8wQ8zgQpy2u5/6ssPDrJzS+hpoS5bnbSnB+Pzuse502PI8yMpfGoaTypGFewzyvGFdgnXLgg9dIFq2H2pOkDV1iozNJoTDgJIqN4qmlzrgVY8LND9K8POI6THKMpQ3LcxHp0Y3rUND29MT1tmnwe6YXNX2F7jLcdDrI6hccrC+3OzPjKGThbSbHLhsflise04UHjEAJmBLU7RSPPQePuDAhua5Lg+UIUfwMEtNfFZlMFeAWLAj0pMy/ywczL8cKVurC8tSktcfQEc7Dbb8jB21deKRaY6IiT10g0zPSU+9qM/x6tW23Cx2QepyQCPAnxmGT+Rap0obdwNBeUKQqLp3a7IVdd8sRUy34NaMrwREcgXCEZ+ynedIweEwMX9BQgwjhIFkiW4NmNt41e826x+vKi3+053d5v/Z2HDxb3jk3rK+tr61urZ+1bD60n1jPrzPJav7TC1nVrav9u/2n/bf9TurY2FmO+tGrN/vc/JPkIVQ==</latexit><latexit sha1_base64="DV0qVlLIGG6icFRYFBFnzYstNUY=">AAALM3iclVZbb9s2FFa8W6Ldmu1xL8QSD0MRG7J3SRcgQIF0XQsEQ5cmbRHTNSjpWGZCXUJSsV1BP2s/ZtjLMOx1/2GHkp1KcjK4hG3JPIff9/Hw8JBuIrjSjvPHRuu99z/48KPNLfvjTz797PN721+8UHEqPTjzYhHLVy5TIHgEZ5prAa8SCSx0Bbx0L4+M/eU1SMXj6FTPExiGLIj4mHtMY9doe+MvqlJXgZedxoCE+g0JmZbcA5XbW1Qzl+xSNxa+mof4IKcjSQ4JFTDWA+pCwKOMScnmeeYVLZcDZ0i+IXLQMw/q+bFWt77Iwa8d9CGUykGnV44phi4/lFb+rP6ndAlVPs34Gk5NAoXIXyilkgcTPST0KmU+occ4laIHrfF00TtozHk4yvjeRX4oBxcdPtyldNCD2dDeso/iayY5izwo4zYj8ZgwonQRXybnJJExBlMdlMC7Pxexo9lswIevKfpJMhtcDEtRNMfgyhHaOth1dYfAsrsi8Gg0M4tSk5whTP76dNce3dtxuk7RyOpLb/GyYy3as9H25gH1Yy8NIdKeYEoNek6ihxg9zT0BuU1TBQnzLlkAWZGBOWljl0/GscRvpEnRW/NjoTLS0BPDNFFNm+m8zTZI9fjBMONRkmqIvJJonAqiY2LSmfhcgqfFnDDPQ70p06ijhqA8JsA/7P7UH2YTENegcQYSIph6cRgyTAs6ZiEXcx/GLBU6z6gaL9/ttt0mxS5SBF2JmwoBWh1gP0Uf3HTFVLMwDTD4eSYDN896e053/4c9J1/xkTBf+DhddCi/6FYV44oUShpUUtcpmIsbXUPI0VSCGu+cUJkKyAwrzPLlM28AG/b1gRdq14TGyb8TtAnWetCuwHV8l3ig+/9A1wH0BMrqZzZrnpGMThTmDdzPOk73RxxSjzKmqRCmHhoShdtQwu7bEX1DQe7iuJNm/y3NTcw1j+Z38ny35KmylPg5lrzlu+G6n92WJz0TE/OzwDTJWGCazCc7vdvRGwTrclRIysVYcjTXmQdmJQ0ByczSSqwM64jv3KgvYUkdN8HyXMFdT6lZygUeKUrA8wQ8zgQpy2u5/6ssPDrJzS+hpoS5bnbSnB+Pzuse502PI8yMpfGoaTypGFewzyvGFdgnXLgg9dIFq2H2pOkDV1iozNJoTDgJIqN4qmlzrgVY8LND9K8POI6THKMpQ3LcxHp0Y3rUND29MT1tmnwe6YXNX2F7jLcdDrI6hccrC+3OzPjKGThbSbHLhsflise04UHjEAJmBLU7RSPPQePuDAhua5Lg+UIUfwMEtNfFZlMFeAWLAj0pMy/ywczL8cKVurC8tSktcfQEc7Dbb8jB21deKRaY6IiT10g0zPSU+9qM/x6tW23Cx2QepyQCPAnxmGT+Rap0obdwNBeUKQqLp3a7IVdd8sRUy34NaMrwREcgXCEZ+ynedIweEwMX9BQgwjhIFkiW4NmNt41e826x+vKi3+053d5v/Z2HDxb3jk3rK+tr61urZ+1bD60n1jPrzPJav7TC1nVrav9u/2n/bf9TurY2FmO+tGrN/vc/JPkIVQ==</latexit><latexit sha1_base64="DV0qVlLIGG6icFRYFBFnzYstNUY=">AAALM3iclVZbb9s2FFa8W6Ldmu1xL8QSD0MRG7J3SRcgQIF0XQsEQ5cmbRHTNSjpWGZCXUJSsV1BP2s/ZtjLMOx1/2GHkp1KcjK4hG3JPIff9/Hw8JBuIrjSjvPHRuu99z/48KPNLfvjTz797PN721+8UHEqPTjzYhHLVy5TIHgEZ5prAa8SCSx0Bbx0L4+M/eU1SMXj6FTPExiGLIj4mHtMY9doe+MvqlJXgZedxoCE+g0JmZbcA5XbW1Qzl+xSNxa+mof4IKcjSQ4JFTDWA+pCwKOMScnmeeYVLZcDZ0i+IXLQMw/q+bFWt77Iwa8d9CGUykGnV44phi4/lFb+rP6ndAlVPs34Gk5NAoXIXyilkgcTPST0KmU+occ4laIHrfF00TtozHk4yvjeRX4oBxcdPtyldNCD2dDeso/iayY5izwo4zYj8ZgwonQRXybnJJExBlMdlMC7Pxexo9lswIevKfpJMhtcDEtRNMfgyhHaOth1dYfAsrsi8Gg0M4tSk5whTP76dNce3dtxuk7RyOpLb/GyYy3as9H25gH1Yy8NIdKeYEoNek6ihxg9zT0BuU1TBQnzLlkAWZGBOWljl0/GscRvpEnRW/NjoTLS0BPDNFFNm+m8zTZI9fjBMONRkmqIvJJonAqiY2LSmfhcgqfFnDDPQ70p06ijhqA8JsA/7P7UH2YTENegcQYSIph6cRgyTAs6ZiEXcx/GLBU6z6gaL9/ttt0mxS5SBF2JmwoBWh1gP0Uf3HTFVLMwDTD4eSYDN896e053/4c9J1/xkTBf+DhddCi/6FYV44oUShpUUtcpmIsbXUPI0VSCGu+cUJkKyAwrzPLlM28AG/b1gRdq14TGyb8TtAnWetCuwHV8l3ig+/9A1wH0BMrqZzZrnpGMThTmDdzPOk73RxxSjzKmqRCmHhoShdtQwu7bEX1DQe7iuJNm/y3NTcw1j+Z38ny35KmylPg5lrzlu+G6n92WJz0TE/OzwDTJWGCazCc7vdvRGwTrclRIysVYcjTXmQdmJQ0ByczSSqwM64jv3KgvYUkdN8HyXMFdT6lZygUeKUrA8wQ8zgQpy2u5/6ssPDrJzS+hpoS5bnbSnB+Pzuse502PI8yMpfGoaTypGFewzyvGFdgnXLgg9dIFq2H2pOkDV1iozNJoTDgJIqN4qmlzrgVY8LND9K8POI6THKMpQ3LcxHp0Y3rUND29MT1tmnwe6YXNX2F7jLcdDrI6hccrC+3OzPjKGThbSbHLhsflise04UHjEAJmBLU7RSPPQePuDAhua5Lg+UIUfwMEtNfFZlMFeAWLAj0pMy/ywczL8cKVurC8tSktcfQEc7Dbb8jB21deKRaY6IiT10g0zPSU+9qM/x6tW23Cx2QepyQCPAnxmGT+Rap0obdwNBeUKQqLp3a7IVdd8sRUy34NaMrwREcgXCEZ+ynedIweEwMX9BQgwjhIFkiW4NmNt41e826x+vKi3+053d5v/Z2HDxb3jk3rK+tr61urZ+1bD60n1jPrzPJav7TC1nVrav9u/2n/bf9TurY2FmO+tGrN/vc/JPkIVQ==</latexit><latexit sha1_base64="DV0qVlLIGG6icFRYFBFnzYstNUY=">AAALM3iclVZbb9s2FFa8W6Ldmu1xL8QSD0MRG7J3SRcgQIF0XQsEQ5cmbRHTNSjpWGZCXUJSsV1BP2s/ZtjLMOx1/2GHkp1KcjK4hG3JPIff9/Hw8JBuIrjSjvPHRuu99z/48KPNLfvjTz797PN721+8UHEqPTjzYhHLVy5TIHgEZ5prAa8SCSx0Bbx0L4+M/eU1SMXj6FTPExiGLIj4mHtMY9doe+MvqlJXgZedxoCE+g0JmZbcA5XbW1Qzl+xSNxa+mof4IKcjSQ4JFTDWA+pCwKOMScnmeeYVLZcDZ0i+IXLQMw/q+bFWt77Iwa8d9CGUykGnV44phi4/lFb+rP6ndAlVPs34Gk5NAoXIXyilkgcTPST0KmU+occ4laIHrfF00TtozHk4yvjeRX4oBxcdPtyldNCD2dDeso/iayY5izwo4zYj8ZgwonQRXybnJJExBlMdlMC7Pxexo9lswIevKfpJMhtcDEtRNMfgyhHaOth1dYfAsrsi8Gg0M4tSk5whTP76dNce3dtxuk7RyOpLb/GyYy3as9H25gH1Yy8NIdKeYEoNek6ihxg9zT0BuU1TBQnzLlkAWZGBOWljl0/GscRvpEnRW/NjoTLS0BPDNFFNm+m8zTZI9fjBMONRkmqIvJJonAqiY2LSmfhcgqfFnDDPQ70p06ijhqA8JsA/7P7UH2YTENegcQYSIph6cRgyTAs6ZiEXcx/GLBU6z6gaL9/ttt0mxS5SBF2JmwoBWh1gP0Uf3HTFVLMwDTD4eSYDN896e053/4c9J1/xkTBf+DhddCi/6FYV44oUShpUUtcpmIsbXUPI0VSCGu+cUJkKyAwrzPLlM28AG/b1gRdq14TGyb8TtAnWetCuwHV8l3ig+/9A1wH0BMrqZzZrnpGMThTmDdzPOk73RxxSjzKmqRCmHhoShdtQwu7bEX1DQe7iuJNm/y3NTcw1j+Z38ny35KmylPg5lrzlu+G6n92WJz0TE/OzwDTJWGCazCc7vdvRGwTrclRIysVYcjTXmQdmJQ0ByczSSqwM64jv3KgvYUkdN8HyXMFdT6lZygUeKUrA8wQ8zgQpy2u5/6ssPDrJzS+hpoS5bnbSnB+Pzuse502PI8yMpfGoaTypGFewzyvGFdgnXLgg9dIFq2H2pOkDV1iozNJoTDgJIqN4qmlzrgVY8LND9K8POI6THKMpQ3LcxHp0Y3rUND29MT1tmnwe6YXNX2F7jLcdDrI6hccrC+3OzPjKGThbSbHLhsflise04UHjEAJmBLU7RSPPQePuDAhua5Lg+UIUfwMEtNfFZlMFeAWLAj0pMy/ywczL8cKVurC8tSktcfQEc7Dbb8jB21deKRaY6IiT10g0zPSU+9qM/x6tW23Cx2QepyQCPAnxmGT+Rap0obdwNBeUKQqLp3a7IVdd8sRUy34NaMrwREcgXCEZ+ynedIweEwMX9BQgwjhIFkiW4NmNt41e826x+vKi3+053d5v/Z2HDxb3jk3rK+tr61urZ+1bD60n1jPrzPJav7TC1nVrav9u/2n/bf9TurY2FmO+tGrN/vc/JPkIVQ==</latexit>

Circulant and Toeplitz matrices

25

Circulant matrices

Ch =





h[0] h[1] · · · h[N − 1]
h[N − 1] h[0] h[1] · · ·

h[1] h[2] h[N − 1] h[0]





1D convolution with periodic boundary conditions: yper[k] = (h ∗ xper)[k] ⇔ y = Chx

Back to 1D

8-

 DFT and circulant matrices

26

Discrete Fourier transform (DFT)

N ×N matrix: F N =
[

u1 · · · uN

]H

Basis vectors: un = (ϕn[0], ϕn[1], . . . , ϕn[N − 1])

with ϕn[k] =
1√
N

ejωnk, ωn =
2π(n− 1)

N

Diagonalization property

Theorem: The DFT diagonalizes all circulant matrices

Ch = F H
N · diag(λ1, . . . ,λN) · F N

λn = uH
n Chun =

N−1∑

k=0

h[k]e−j(n−1)ω0k = H
(
ej(n−1)ω0

)
with ω0 = 2π

N

⇒ FFT-based convolution algorithm

y = Ch · x = F H
N · diag(λ1, . . . ,λN) · F Nx

8-

Optimality of DFT for stationary processes

27

Theorem: The DFT diagonalizes Toeplitz matrices as the block size N tends to infinity.
It is therefore asymptotically equivalent to the KLT.

Justification: T rxu → (rx ∗ u)[k] (aperiodic convolution)

The Fourier exponentials ejωk are the “eigen-sequences” of shift-invariant systems

⇒ Fourier domain formulation of Wiener filter for stationary processes

Asymptotic behavior

Limit process: let the block size N tend to infinity

Toeplitz matrix → Circulant matrix of infinite dimension
(provided rx[k] has sufficient decay; e.g., rx ∈ !1)

Covariance of a wide-sense stationary process

Shift-invariant structure: ∀k, l ∈ Z, E {x[k]x[l]} = rx[k − l]

⇒ The covariance matrix is a symmetric Toeplitz matrix: Cx = E{xxT } = T rx

8-

8.3 CLASSICAL 2D TRANSFORMS

28

Separable transforms
Discrete Cosine transform (DCT)
Other transforms

8-

Separable transforms

29

Indexing

2D digital image: (k = 0, . . . ,K − 1; l = 0, . . . , L− 1)

2D basis functions: (m = 1, . . . ,K; n = 1, . . . , L)

Separable basis functions: ϕm,n[k, l] = ϕm[k] · ϕn[l]

Example: DFT

ϕm,n[k, l] =
1√
KL

ej(2π(m−1)k
K + 2π(n−1)l

L) =
1√
K

ej 2π(m−1)k
K · 1√

L
ej 2π(n−1)l

L

Image decomposition

x[k, l] =
K∑

m=1

L∑

n=1

y[m, n]ϕm[k]ϕn[l]

8-

Separable transform: matrix formalism

30

Row transform

Basis vectors: um = (ϕm[0], ϕm[1], . . . , ϕm[K − 1])

K ×K matrix: AR =
[

u1 · · · uK

]H

Separable 2D transform

A = AR ⊗AC =





ARϕ1[0] ARϕ1[1] · · · ARϕ1[L− 1]
ARϕ2[0] · · · ARϕ2[L− 1]

...
...

ARϕL[0] ARϕL[L− 1]





Column transform

Basis vectors: vn = (ϕn[0], ϕn[1], . . . , ϕn[L− 1])

L× L matrix: AC =
[

v1 · · · vL

]H

8-

Separable transform: implementation

31

Input: f [k, l] with (k = 0, . . . ,K − 1; l = 0, . . . , L− 1)

Transformed image: g[k, l]

For j = 0, L -1 {
x = getrow(f,j);

y = ARx; (* fast algorithm *)

putrow(g,j,y);
}

For i = 0, K -1 {
x = getcol(g,i);

y = ACx; (* fast algorithm *)

putcol(g,i,y);
}

etc...(for 3D or more)

8-

Discrete Cosine transform (DCT)

32

DCT: prototype of an orthogonal block transform

Basis functions

ϕm[k] =






√
1
K

, m = 1
√

2
K

cos

(
π

(
k + 1

2

)
(m− 1)

K

)
, m ∈ {2, . . . ,K}

8-

Discrete Cosine transform (DCT)

33

DCT: prototype of an orthogonal block transform

Properties

Good approximation of KLT for strongly correlated stationary processes

Excellent energy compaction

Fast FFT-like algorithm; real computations

Theorem [U., 1984]. The DCT transform is asymptotically (as the block size N goes
to infinity) equivalent to the KLT for all wide-sense stationary processes.

⇒ Good justification for JPEG

Basis functions

ϕm[k] =






√
1
K

, m = 1
√

2
K

cos

(
π

(
k + 1

2

)
(m− 1)

K

)
, m ∈ {2, . . . ,K}

8-34
8×8 block DCT transform

Input image

Main applications of the DCT

- Coding (JPEG industry standard)

- Adaptive filtering

x{ui}i=1,··· ,64

8×8 DCT basis functions (zoom)

y =





〈u1,x〉
...

〈u64,x〉





8-

Other transforms

35

Sine transform

ϕm[k] =
√

2
K + 1

sin
(

πm(k + 1)
K + 1

)
(m = 1, . . . ,K)

Good approximation of KLT for weakly-correlated stationary processes

Fast FFT-like algorithm; O(K log K) real operations

8-

Other transforms (Cont’d)

36

Hadamard transform

Recursive definition: U2N =
1√
2

[
UN UN

UN −UN

]
with U2 =

1√
2

[
1 1
1 −1

]

Poor man’s version of sinusoidal (DFT-like) transform

Very fast algorithm; O(K log K) integer adds

8-

Other transforms (Cont’d)

37

Slant transform

Somewhat exotic; never seen an application

Hadamard transform

Recursive definition: U2N =
1√
2

[
UN UN

UN −UN

]
with U2 =

1√
2

[
1 1
1 −1

]

Poor man’s version of sinusoidal (DFT-like) transform

Very fast algorithm; O(K log K) integer adds

Haar transform (cf. Wavelet transform)

Average energy compaction, but that’s not the whole story. . .

Ultra-fast algorithm; O(K) integer adds

8-38

8-

8.4 WAVELET TRANSFORM

39

History
Signal-processing perspective
Multirate operations
Perfect reconstruction filterbank
Hilbert-space interpretation
Orthogonal wavelet filters
Computing wavelet transforms
Wavelets: Further probing

8-

Famous waveleteer...

40

8-

Early start: Haar transform

41

1910: Alfred Haar invents his own transform 
(Note: no fancy title... “On the Theory of Orthogonal Function Systems”)

Basis functions: ψi,k = 2−i/2ψ(x/2i − k)

Wavelet expansion: f(x) =
∑

i,k

〈f,ψi,k〉︸ ︷︷ ︸
yi,k

ψi,k

= + +

8-

Signal processing developments

42

↑ 2

↑ 2↓ 2

↓ 2H̃(z)

G̃(z) G(z)

H(z)

1948 - 1980: Dark ages = “DCT era”

1976: Quadrature-mirror filters [Croisier-Esteban-Galand]

Early 1980’s: Perfect-reconstruction filterbanks [Smith-Barnwell, Vaidyanathan, Vetterli]

1984: Vetterli splits a cat into subbands

p
2 p

0.5

1

8-

Image pyramids

43

↓ 2

REDUCE EXPAND

1983: Burt and Adelson build pyramids

 Gaussian pyramid Laplacian pyramid

h[k] ↑ 2 2h[k]

8-

Unification: Multiresolution analysis

44

S.G. Mallat, "A theory of multiresolution signal decomposition: the wavelet representation,"
IEEE Trans. Pattern Anal. Machine Intell., 11 (7), pp. 674-693, 1989

1987: Mallat and Meyer set the foundations of the theory

= +

=

⇔

and iterate.... you get the wavelet transform:

8-

Signal-processing perspective

45

Splitting and putting together again...

Subband decomposition

3’ 3 2 1 ω

Wavelet filterbank

ππ
2

3

Tree-structured wavelet transform

Identity operator:

1

2

2’

3’

1’

↑ 2

↑ 2↓ 2

↓ 2H̃(z)

G̃(z) G(z)

H(z)

Perfect-reconstruction filterbank

8-

Multirate operations

46

↑ 2

↓ 2 ↑ 2

H(z)

↓ 2

Filtering

(h∗x)[k] =
∑

l∈Z
h[l]x[k− l] z←→ H(z) ·X(z)

Down-sampling

(x)↓2[k] = x[2k] z←→ 1
2

(
X(z1/2) + X(−z1/2)

)

Up-sampling

(x)↑2[k] =

{
0, k odd
x[l], 2l = k even

z←→ X(z2)

Down-sampling followed by up-sampling

(x)↓2↑2[k] z←→ 1
2

(X(z) + X(−z))

z-transform: x[k] z←→ X(z) =
∑

k∈Z
x[k]z−k

8-

Perfect-reconstruction filterbanks

47

Wavelet transform design

Construct 4 filters such that (PR-1) and (PR-2) are satisfied.

x[k] xout[k]

↓ 2

↑ 2

↑ 2

H̃(z)

G̃(z) G(z)

H(z)↓ 2

+

Xout(z) =
1
2
H(z)

(
H̃(z)X(z) + H̃(−z)X(−z)

)
+

1
2
G(z)

(
G̃(z)X(z) + G̃(−z)X(−z)

)

Perfect reconstruction conditions

(PR-1) H̃(z)H(z) + G̃(z)G(z) = 2 (distortion-free)

(PR-2) H̃(−z)H(z) + G̃(−z)G(z) = 0 (aliasing-free)

8-

0 p 2 p

Down-sampling and aliasing

48

↓ 2 ↑ 2 (x)↓2↑2[k] z←→ 1
2

(X(z) + X(−z))

Baseband component: X(z) → X(ejω)

Aliased component: X(−z) → X(−ejω) = X(e±jπejω) = X(ej(ω−π))

0 p 2 p

8-

Hilbert-space interpretation

49

!2-inner product: 〈u, v〉!2 =
∑

k∈Z
u[k]v[k]

↓ 2h̃[k]
x[k]

↑ 2
c[k]

h[k]

c[m] =
∑

k∈Z
x[k]h̃[2m − k] = 〈ϕ̃m, x〉!2

Up-sampling followed by filtering ⇔ computing signal expansion

Equivalent basis sequences: ϕm[k] = h[k − 2m]

x[k] =
∑

m∈Z
c[m]h[k − 2m] =

∑

m∈Z
c[m]ϕm[k]

Filtering followed by down-sampling ⇔ computing �2-inner-products

Equivalent analysis sequences: ϕ̃m[k] = h̃∨[k − 2m] with h̃∨[k] = h̃[−k]

8-

Wavelet decomposition

50

x[k] xout[k]

↓ 2

↑ 2

↑ 2

H̃(z)

G̃(z) G(z)

H(z)↓ 2
+

Synthesis

xout =
∑

m

c[m]ϕm +
∑

m

d[m]ψm with ϕm[k] = h[k − 2m] and ψm[k] = g[k − 2m]

Equivalent matrix interpretation: xout = Uy

Perfect reconstruction condition

UŨT = I = ŨT U ⇔ 〈ũm,un〉 = δm−n

Analysis

c[m] = �x, ϕ̃m��2 with ϕ̃m[k] = h̃∨[k − 2m]

d[m] = �x, ψ̃m��2 with ψ̃m[k] = g̃∨[k − 2m]

Equivalent matrix interpretation: y = ŨTx

8-

Orthogonal wavelet filters

51

⇔
{

H̃
(
z−1

)
= H(z) (i)

G̃
(
z−1

)
= G(z) (ii)

Conjugate-quadrature filter (CQF) solution

Inspired guess: G(z) = −z−1H
(
−z−1

)
(iii) ⇒ G̃(z) = −zH(−z)

⇒ (PR-2) is satisfied automatically!

H̃(−z)H(z) + G̃(−z)G(z) = H
(
−z−1

)
H(z)−H(z)H

(
−z−1

)
= 0

(PR-1) + (i), (ii), (iii) ⇔ CQF condition: H(z)H
(
z−1

)
+ H(−z)H

(
−z−1

)
= 2 (iv)

⇒ Power-complementary filter:
∣∣H

(
ejω

)∣∣2 +
∣∣H

(
ej(ω−π)

)∣∣2 = 2

Condition for an orthonormal transform

U−1 = UT ⇔ ui = ũi ⇔ ϕ̃m = ϕm and ψ̃n = ψn

Orthogonal perfect-reconstruction filterbank

ϕ̃m[k] = h̃∨[k − 2m] = ϕm[k] = h[k − 2m]

ψ̃m[k] = g̃∨[k − 2m] = ψm[k] = g[k − 2m]

8-

Example: Haar filterbank

52

(shift and modulation)

Haar perfect-reconstruction filterbank

↓ 2

↑ 2

↑ 2

↓ 2
+

1 + z√
2

1− z√
2

1 + z−1

√
2

1− z−1

√
2

CQF condition: A(z) + A(−z) = 2

⇔
∣∣H

(
ejω

)∣∣2 +
∣∣H

(
ej(ω−π)

)∣∣2 = 2

Haar filter: H(z) =
1 + z−1

√
2

Autocorrelation: A(z) = H(z)H
(
z−1

)
= (1+z−1)(1+z)

2 =
z + 2 + z−1

2

Wavelet filter: G(z) = −z−1H
(
−z−1

)
=

1− z−1

√
2

p
2 p

1

2
A(ejω)

8-

Haar: polyphase formulation

53

Polyphase formulation

Simplified implementation: 2× 2 block transform

Analysis formula:

[
y1[k]
y2[k]

]
=

1√
2

[
1 1
1 −1

]
·
[

x[2k]
x[2k + 1]

]

Synthesis formula:

[
x[2k]

x[2k + 1]

]
=

1√
2

[
1 1
1 −1

]
·
[

y1[k]
y2[k]

]

(orthonormal matrix)Filterbank matrix: H =
1√
2

[
1 1
1 −1

]
with H−1 = HT = H

↓ 2

↓ 2

z z−1

↑ 2

↑ 2
x[k] x[k]even

odd

even

odd

y1

y2

I︷ ︸︸ ︷

H H−1

8-

Computing wavelet transforms

54

3

1

2

2’

3’

1’

Mallat’s tree-structured filterbank algorithm

Universal:
works for all wavelet transforms

Algorithm specification: orthogonal filter H(z)

Speed: O(N); depends on length of H(z)

Daubechies wavelets

Shortest orthogonal filters (CQF) such that: HL(z) = (1 + z−1)LQ(z)

Examples:
H1(z) =

1√
2

`
1 + z−1´

H2(z) =
1

4
√

2

h“
1 +

√
3

”
+

“
3 +

√
3

”
z−1 +

“
3−

√
3

”
z−2 +

“
1−

√
3

”
z−3

i

Battle-Lemarié spline wavelets

Orthogonal filter H(z) such that the underlying functions are polynomial splines

8-

Extension to higher dimensions: separability

55

Split rows Split columns

and iterate ...

Tensor-product basis functions
ψk1,··· ,kp(x1, · · · , xd) = ψk1(x1)× ψk2(x2) · · ·× ψkd(xd)

L H LL HL

LH HH

8-

2D wavelet decomposition: example

56

Wavelet transform

Inverse wavelet transform

Discarding “small coefficients”

8-

Wavelets: continuous-domain interpretation

57

(a) scaling function (b) wavelet

Discrete wavelet algorithm ↔ Continuous-domain interpretation

Two key underlying functions

Implicit definition

Solution of the two-scale relation:

ϕ(x/2) =
√

2
∑

k∈Z
h[k]ϕ(x− k)

Wavelet equation:

⇒ ψ(x/2) =
√

2
∑

k∈Z
g[k]ϕ(x− k)

Existence and convergence issues

Depending on H(z), the solution of the two-scale relation is not necessarily in L2(R)

Necessary conditions: H(z)|z=1 =
√

2 and H(z)|z=−1 = 0

8-

Examples of solutions of the two-scale relation

58

ϕHaar(x) + ϕHaar(x− 1)
ϕHaar(x)− ϕHaar(x− 1)

Two-scale relation: ϕ(x/2) =
∑

k∈Z
h[k]ϕ(x− k) (without normalization)

Haar transform:

H1(z) = 1 + z−1

Daubechies of order 2:

H2(z) =
1
4

[(
1 +

√
3
)

+
(
3 +

√
3
)

z−1 +
(
3−

√
3
)

z−2 +
(
1−

√
3
)

z−3
]

0 0 1 0 0

0 0 1 0 0

8-59

Wavelet basis of L2

Under suitable conditions on H(z): ϕ(x) ∈ L2(R) ⇒ ψ(x) ∈ L2(R)

k (translation)

i
(dilation)

Wavelet basis functions

ψi,k = 2−i/2ψ

(
x− 2ik

2i

)
with (i, k) ∈ Z2

Orthogonal wavelet basis

∀f ∈ L2(R), f(x) =
∑

i∈Z

∑

k∈Z
〈f,ψi,k〉 ψi,k(x) with 〈ψi,k,ψj,l〉 = δi−j,k−l

Biorthogonal wavelet basis

∀f ∈ L2(R), f(x) =
∑

i∈Z

∑

k∈Z
〈f, ψ̃i,k〉 ψi,k(x) with 〈ψ̃i,k,ψj,l〉 = δi−j,k−l

8-

Wavelets: further probing

60

Application areas

Signal/image processing:
coding, multiscale processing

Pattern recognition/analysis:
texture, time/frequency analysis

Imaging

Computer graphics

Applied mathematics:
PDEs, approximation theory

Medicine and biology

Physics turbulence, fractals. . .

Mathematical wavelet theory

Convergence of two-scale relation

Vanishing moments

Multiscale derivatives

Characterization of singularities

Reproduction of polynomials

Approximation theory

Regularity

Unconditional basis:
Sobolev and Besov spaces

Sparsity → compressed sensing

8-

Pointwise non-linearities

Global non-linearity: ỹi = f(yi)

Grouping of coefficients in subbands: ỹi = fj(yi) for i 2 Ij (jth band)
<latexit sha1_base64="IHPAReSCsIw2HBwXYVtVJ+54vPo=">AAALdXiclVZfb9s2EFe9f62zP+32OAy4Lc6QFIlnudvSZQhQIEXXAnno2qUtWgUGJZ1sJhSlklQcTdD7Ps1et6+yT7LXHSU7seRkcAVHYng//u54dzyenwquzWDwz43Oe+9/8OFHN2911z7+5NPPbt/5/IVOMhXgUZCIRL3ymUbBJR4ZbgS+ShWy2Bf40j89sPKXZ6g0T+RvJk/xOGZjySMeMENTozudrz2d+RqD4mnCpZlyjSATuWP5mOKGoy67tzwfx1wW1h7679YGVIr1HviCBafboDDchrFClNtAClAatg1BzuTFbI5CJFOSZuNEhNVXYV5xWdadlCkWoyFLYTOI+nDI4jRRhr4GzyHtg+ve27Lwwqt0FzVBCeCpTGAx6O/+gOfl/FvWUJOkGtP9AVF4AiMTM0X72B/272EMHjcYW7FrxYqPJ3P5IIgtQVG9riNxVyOhX4WBX0TiM9Fwbr7nvc1Y2PMMFyEWeTnisA/RZj7iW73GWpVkKZdjSCJyPUYUP05O1sAlUPh8JkN9NdfopGarhBAlCupRj3u09snoZCbZ7J30zAQs01al2UMZ1gEf3V4f9AfVA8sDdzZYd2bP09Gdmz97YRJkMZkYCKb1G3eQmuOCKcMDgWXXy8hjlDiUKUUVzRI2aKq2L0qkqfOrgWOx1nnsEzJmZqLbMjt5lexNZqL7xwWXaWZQBrWiKBNgErDnAUKuMDAiBxYEZG9G+RZCg0EHTGC43/9peFxMUJwhnQFPocRpkMQxOazwIhZzkYcYsUyYsvB0NB93N7obUB1DDQQFPxMCjd6jeY8wlAgX6UznoizU2C8Ld9um8fagXMLYlK8xgz4B6j+CLRrjiwxrNWRJ007BfKoUlFG8nJ8jiy6vOUQtYqt9deL5AV2Nmjb/TtTWWatRVyXqXfxB8P+hbhKYCdbl01bTsoDCm2jKG7xb7Az6P9KSppcpTYWAXm2TpoOnsHe5YmhVwHU6rlWze6nmwueGy/xaPffmeha11PzlG/d4Pra67hZX5YlrfWJfM06bjBWnzXxYd69mbylYVceCkjoYcx3tOPOxjaRVAIUNraLKsIrxOxfW17TQ5E1tpb7kXc1SG8oZH1Ql4HmKAafyb2tYIurzv6iFy2elfYNnS5jvF8/a++PydRPxuo04oMyYCw/awmcLwiXu1wvCJdrHXPiozBxC1bB43MbgWypUNjSGEk6hKLwzqvaKMzmmgl/sE7654DBJS/KmiuGwzfXwQvSwLXpyIXrSFoXUvcxk4ZK2R9QucVSLW3i0FGj/3K6n6IR1kOB8KcVOW4jTJcS0hfCSGMfMGrSxUz3wHI2xVzkda0jpfgHNf0dAE/Tp6XoaqYeTYzOpM0+GaPdVNROtujBv+7RRtHpCOdgftswxzC8XigUlOvHQnbSohforavtCYwm+JzF1ZDyCPMlAIl2FdE+y8CTTpjK4AtouZEqWJdMmE9mrT3lqy+WwQTRldKUTEYVIJWEW0J7JIOsEH82U+kOw7d9YsZQub2o33HZzsTx4Mey7g77763D9wf1Z43HT+dL5xtl0XGfXeeA8dp46R07Q+aPzZ+evzt/df9e+WuutfVtDOzdma75wGs/ad/8BjtYeDg==</latexit><latexit sha1_base64="IHPAReSCsIw2HBwXYVtVJ+54vPo=">AAALdXiclVZfb9s2EFe9f62zP+32OAy4Lc6QFIlnudvSZQhQIEXXAnno2qUtWgUGJZ1sJhSlklQcTdD7Ps1et6+yT7LXHSU7seRkcAVHYng//u54dzyenwquzWDwz43Oe+9/8OFHN2911z7+5NPPbt/5/IVOMhXgUZCIRL3ymUbBJR4ZbgS+ShWy2Bf40j89sPKXZ6g0T+RvJk/xOGZjySMeMENTozudrz2d+RqD4mnCpZlyjSATuWP5mOKGoy67tzwfx1wW1h7679YGVIr1HviCBafboDDchrFClNtAClAatg1BzuTFbI5CJFOSZuNEhNVXYV5xWdadlCkWoyFLYTOI+nDI4jRRhr4GzyHtg+ve27Lwwqt0FzVBCeCpTGAx6O/+gOfl/FvWUJOkGtP9AVF4AiMTM0X72B/272EMHjcYW7FrxYqPJ3P5IIgtQVG9riNxVyOhX4WBX0TiM9Fwbr7nvc1Y2PMMFyEWeTnisA/RZj7iW73GWpVkKZdjSCJyPUYUP05O1sAlUPh8JkN9NdfopGarhBAlCupRj3u09snoZCbZ7J30zAQs01al2UMZ1gEf3V4f9AfVA8sDdzZYd2bP09Gdmz97YRJkMZkYCKb1G3eQmuOCKcMDgWXXy8hjlDiUKUUVzRI2aKq2L0qkqfOrgWOx1nnsEzJmZqLbMjt5lexNZqL7xwWXaWZQBrWiKBNgErDnAUKuMDAiBxYEZG9G+RZCg0EHTGC43/9peFxMUJwhnQFPocRpkMQxOazwIhZzkYcYsUyYsvB0NB93N7obUB1DDQQFPxMCjd6jeY8wlAgX6UznoizU2C8Ld9um8fagXMLYlK8xgz4B6j+CLRrjiwxrNWRJ007BfKoUlFG8nJ8jiy6vOUQtYqt9deL5AV2Nmjb/TtTWWatRVyXqXfxB8P+hbhKYCdbl01bTsoDCm2jKG7xb7Az6P9KSppcpTYWAXm2TpoOnsHe5YmhVwHU6rlWze6nmwueGy/xaPffmeha11PzlG/d4Pra67hZX5YlrfWJfM06bjBWnzXxYd69mbylYVceCkjoYcx3tOPOxjaRVAIUNraLKsIrxOxfW17TQ5E1tpb7kXc1SG8oZH1Ql4HmKAafyb2tYIurzv6iFy2elfYNnS5jvF8/a++PydRPxuo04oMyYCw/awmcLwiXu1wvCJdrHXPiozBxC1bB43MbgWypUNjSGEk6hKLwzqvaKMzmmgl/sE7654DBJS/KmiuGwzfXwQvSwLXpyIXrSFoXUvcxk4ZK2R9QucVSLW3i0FGj/3K6n6IR1kOB8KcVOW4jTJcS0hfCSGMfMGrSxUz3wHI2xVzkda0jpfgHNf0dAE/Tp6XoaqYeTYzOpM0+GaPdVNROtujBv+7RRtHpCOdgftswxzC8XigUlOvHQnbSohforavtCYwm+JzF1ZDyCPMlAIl2FdE+y8CTTpjK4AtouZEqWJdMmE9mrT3lqy+WwQTRldKUTEYVIJWEW0J7JIOsEH82U+kOw7d9YsZQub2o33HZzsTx4Mey7g77763D9wf1Z43HT+dL5xtl0XGfXeeA8dp46R07Q+aPzZ+evzt/df9e+WuutfVtDOzdma75wGs/ad/8BjtYeDg==</latexit><latexit sha1_base64="IHPAReSCsIw2HBwXYVtVJ+54vPo=">AAALdXiclVZfb9s2EFe9f62zP+32OAy4Lc6QFIlnudvSZQhQIEXXAnno2qUtWgUGJZ1sJhSlklQcTdD7Ps1et6+yT7LXHSU7seRkcAVHYng//u54dzyenwquzWDwz43Oe+9/8OFHN2911z7+5NPPbt/5/IVOMhXgUZCIRL3ymUbBJR4ZbgS+ShWy2Bf40j89sPKXZ6g0T+RvJk/xOGZjySMeMENTozudrz2d+RqD4mnCpZlyjSATuWP5mOKGoy67tzwfx1wW1h7679YGVIr1HviCBafboDDchrFClNtAClAatg1BzuTFbI5CJFOSZuNEhNVXYV5xWdadlCkWoyFLYTOI+nDI4jRRhr4GzyHtg+ve27Lwwqt0FzVBCeCpTGAx6O/+gOfl/FvWUJOkGtP9AVF4AiMTM0X72B/272EMHjcYW7FrxYqPJ3P5IIgtQVG9riNxVyOhX4WBX0TiM9Fwbr7nvc1Y2PMMFyEWeTnisA/RZj7iW73GWpVkKZdjSCJyPUYUP05O1sAlUPh8JkN9NdfopGarhBAlCupRj3u09snoZCbZ7J30zAQs01al2UMZ1gEf3V4f9AfVA8sDdzZYd2bP09Gdmz97YRJkMZkYCKb1G3eQmuOCKcMDgWXXy8hjlDiUKUUVzRI2aKq2L0qkqfOrgWOx1nnsEzJmZqLbMjt5lexNZqL7xwWXaWZQBrWiKBNgErDnAUKuMDAiBxYEZG9G+RZCg0EHTGC43/9peFxMUJwhnQFPocRpkMQxOazwIhZzkYcYsUyYsvB0NB93N7obUB1DDQQFPxMCjd6jeY8wlAgX6UznoizU2C8Ld9um8fagXMLYlK8xgz4B6j+CLRrjiwxrNWRJ007BfKoUlFG8nJ8jiy6vOUQtYqt9deL5AV2Nmjb/TtTWWatRVyXqXfxB8P+hbhKYCdbl01bTsoDCm2jKG7xb7Az6P9KSppcpTYWAXm2TpoOnsHe5YmhVwHU6rlWze6nmwueGy/xaPffmeha11PzlG/d4Pra67hZX5YlrfWJfM06bjBWnzXxYd69mbylYVceCkjoYcx3tOPOxjaRVAIUNraLKsIrxOxfW17TQ5E1tpb7kXc1SG8oZH1Ql4HmKAafyb2tYIurzv6iFy2elfYNnS5jvF8/a++PydRPxuo04oMyYCw/awmcLwiXu1wvCJdrHXPiozBxC1bB43MbgWypUNjSGEk6hKLwzqvaKMzmmgl/sE7654DBJS/KmiuGwzfXwQvSwLXpyIXrSFoXUvcxk4ZK2R9QucVSLW3i0FGj/3K6n6IR1kOB8KcVOW4jTJcS0hfCSGMfMGrSxUz3wHI2xVzkda0jpfgHNf0dAE/Tp6XoaqYeTYzOpM0+GaPdVNROtujBv+7RRtHpCOdgftswxzC8XigUlOvHQnbSohforavtCYwm+JzF1ZDyCPMlAIl2FdE+y8CTTpjK4AtouZEqWJdMmE9mrT3lqy+WwQTRldKUTEYVIJWEW0J7JIOsEH82U+kOw7d9YsZQub2o33HZzsTx4Mey7g77763D9wf1Z43HT+dL5xtl0XGfXeeA8dp46R07Q+aPzZ+evzt/df9e+WuutfVtDOzdma75wGs/ad/8BjtYeDg==</latexit><latexit sha1_base64="IHPAReSCsIw2HBwXYVtVJ+54vPo=">AAALdXiclVZfb9s2EFe9f62zP+32OAy4Lc6QFIlnudvSZQhQIEXXAnno2qUtWgUGJZ1sJhSlklQcTdD7Ps1et6+yT7LXHSU7seRkcAVHYng//u54dzyenwquzWDwz43Oe+9/8OFHN2911z7+5NPPbt/5/IVOMhXgUZCIRL3ymUbBJR4ZbgS+ShWy2Bf40j89sPKXZ6g0T+RvJk/xOGZjySMeMENTozudrz2d+RqD4mnCpZlyjSATuWP5mOKGoy67tzwfx1wW1h7679YGVIr1HviCBafboDDchrFClNtAClAatg1BzuTFbI5CJFOSZuNEhNVXYV5xWdadlCkWoyFLYTOI+nDI4jRRhr4GzyHtg+ve27Lwwqt0FzVBCeCpTGAx6O/+gOfl/FvWUJOkGtP9AVF4AiMTM0X72B/272EMHjcYW7FrxYqPJ3P5IIgtQVG9riNxVyOhX4WBX0TiM9Fwbr7nvc1Y2PMMFyEWeTnisA/RZj7iW73GWpVkKZdjSCJyPUYUP05O1sAlUPh8JkN9NdfopGarhBAlCupRj3u09snoZCbZ7J30zAQs01al2UMZ1gEf3V4f9AfVA8sDdzZYd2bP09Gdmz97YRJkMZkYCKb1G3eQmuOCKcMDgWXXy8hjlDiUKUUVzRI2aKq2L0qkqfOrgWOx1nnsEzJmZqLbMjt5lexNZqL7xwWXaWZQBrWiKBNgErDnAUKuMDAiBxYEZG9G+RZCg0EHTGC43/9peFxMUJwhnQFPocRpkMQxOazwIhZzkYcYsUyYsvB0NB93N7obUB1DDQQFPxMCjd6jeY8wlAgX6UznoizU2C8Ld9um8fagXMLYlK8xgz4B6j+CLRrjiwxrNWRJ007BfKoUlFG8nJ8jiy6vOUQtYqt9deL5AV2Nmjb/TtTWWatRVyXqXfxB8P+hbhKYCdbl01bTsoDCm2jKG7xb7Az6P9KSppcpTYWAXm2TpoOnsHe5YmhVwHU6rlWze6nmwueGy/xaPffmeha11PzlG/d4Pra67hZX5YlrfWJfM06bjBWnzXxYd69mbylYVceCkjoYcx3tOPOxjaRVAIUNraLKsIrxOxfW17TQ5E1tpb7kXc1SG8oZH1Ql4HmKAafyb2tYIurzv6iFy2elfYNnS5jvF8/a++PydRPxuo04oMyYCw/awmcLwiXu1wvCJdrHXPiozBxC1bB43MbgWypUNjSGEk6hKLwzqvaKMzmmgl/sE7654DBJS/KmiuGwzfXwQvSwLXpyIXrSFoXUvcxk4ZK2R9QucVSLW3i0FGj/3K6n6IR1kOB8KcVOW4jTJcS0hfCSGMfMGrSxUz3wHI2xVzkda0jpfgHNf0dAE/Tp6XoaqYeTYzOpM0+GaPdVNROtujBv+7RRtHpCOdgftswxzC8XigUlOvHQnbSohforavtCYwm+JzF1ZDyCPMlAIl2FdE+y8CTTpjK4AtouZEqWJdMmE9mrT3lqy+WwQTRldKUTEYVIJWEW0J7JIOsEH82U+kOw7d9YsZQub2o33HZzsTx4Mey7g77763D9wf1Z43HT+dL5xtl0XGfXeeA8dp46R07Q+aPzZ+evzt/df9e+WuutfVtDOzdma75wGs/ad/8BjtYeDg==</latexit>

8.5 GENERALIZED FILTERING

61

aaaaa

A −1

Generalized filter

Point
operation

f(y)
x̃

A
x

Principle: go to the transform domain to simplify processing

Image transform: y = Ax

Scalar processing: ỹi = fi(yi)

Inverse transform: x̃ = A−1ỹ

Linear algorithm

ỹi = αiyi

Example: filtering in the Fourier domain ⇒ αi = H
(
ejωi

)

8-

Generalized Wiener filter

62

Signal + noise model: yi = si + ni

Linear estimator: s̃i = αiyi

Justification for component-wise processing

Orthogonal transform: white noise⇒ white noise
Cx = σ2I ⇒ Cy = ACxAT = σ2AAT = σ2I

Sinusoidal transforms tend to decorrelate stationary processes
(asymptotic equivalence with KLT ⇒ diagonal covariance)

Wavelet transforms tend to whiten self-similar stochastic processes (fractals)

Generalized Wiener filter: αi =
E {s2

i }
E {s2

i } + E {n2
i }
≤ 1

8-

Refresher: MMSE (or Wiener) estimator

63

Pointwise linear estimator: s̃ = αy with y = s + n (signal + noise)

Mean-square estimation error

ε2 = E
{
(s̃− s)2

}
= E

{
[α(s + n)− s]2

}

= α2E
{
(s + n)2

}
+ E

{
s2

}
− 2α

(
E

{
s2

}
+ E {sn}

)

= α2E
{
(s + n)2

}
+ E

{
s2

}
− 2αE

{
s2

}

Hypothesis: signal and noise are uncorrelated (E{sn} = 0)

Minimum-mean-square-error solution

∂ε2

∂α
= 0 ⇒ α =

E
{
s2

}

E {(s + n)2} =
E

{
s2

}

E {s2} + E {n2}

8-

Simple wavelet denoising

64

Basic idea

Orthogonal WT: white noise→ white noise

Signal concentrated in few coefficients, while noise is spread-out evenly

⇒ Noise attenuation is achieved by simple wavelet shrinkage/thresholding

Soft threshold

Tλ(y) =






y − λ, y > λ

0, |y| ! λ

y + λ, y < −λ

In practice: λ = C · σ (proportional to noise standard deviation)

λ y

ỹ = Tλ(y)

Hard threshold

T ′
λ(y) =

{
y, |y| > λ

0, |y| ! λ λ y

ỹ = T ′
λ(y)

8-

Building block for deep neural networks

65

x(0)
A1 σ(y(1)

i)

Deep neural network with layers and input  

Affine layers  
 such that

Linear transform with trainable weights
Bias

Activation function  
 with  

L x = x(0)

fdeep(x) = (σL ∘ 𝒜L ∘ …σ1 ∘ 𝒜1)(x)

𝒜l : ℝNl−1 → ℝNl 𝒜l(x(l−1)) = y(l) = Alx(l−1) + bl
Al ∈ ℝNl×Nl−1

bl ∈ ℝNl

σl : ℝNl → ℝNl σl(y) = (σ(y1), …, σ(yNl
))

x(l+1) = σl(y(l))

Layer 1

b1
x(1)

A2 σ(y(2)
i)

Layer 2

b2
x(2)

affine transform
pointwise

non-linearity affine transform
pointwise

non-linearity

8-

8.6 IMAGE CODING

66

aaaa

A A −1Quantization Entropy
coding

Decoding

Transform image coder

x̃x

DCT-based coding (JPEG)

Industry standard

Good for low distortion coding

Wavelet coding (EZW, JPEG2000)

Multiresolution idea

Overlapping basis functions

Progressive transmissionbut...

Not so good at lower bit rates

⇒ Blocking artifacts!

8-

Coding: general considerations

67

Reconstruction error: D = ‖x− x̃‖2 = ‖y − ỹ‖2 ⇔ A is unitary

General principle: transform signal to pack energy and to decorrelate

Transform y = A · x

Scalar quantization ỹi = Q(yi)

Encoding R̄ =
1
N

∑

i

Rỹi

Reconstruction x̃ = A−1ỹ

(average bit rate)

Rate-distortion (R-D) curve R

D

Optimum bit-allocation problem
<latexit sha1_base64="RLCeZEKf00GHs0XfFXDQaBxQ2xY=">AAALRHiclVbbbttGEJXdm61eErePfRnUEpAGskDKTZ2mMBDAgeEABpo6dRzYNIwlOaS2Xl6yu7SsEnxt/6z/0H/oQ4Gir0VnSUkRKatQCJmkOWfPmdmZnV03FVxpy/pjbf299z/48KONzfbHn3z62b37W5+/UkkmPTz1EpHI1y5TKHiMp5prga9TiSxyBZ651wfGfnaDUvEk/kmPU7yMWBjzgHtM06errbW/uo7KXIVe/kOqeZRF4HK9w4RIKgikMiGyqGhvOi6GPM6NV/TfZhdKefUEXMG86x5I9HsQSsS4BySDsWY98MYsnn0dI/GOyJqFifDLp8RxyWVYd1ImWYSa/IUHXtCHYxalidT01HgLaR9se/drgudOKZ1X4wsAR2YCc6u/9whvi+mzdDJ3dJIqTPctYnAEBjpiksLYH/R3MQKHa4yM2TZmycPh1G55JubNvLwtI7HrJNYSEvqVGDhMJDAI+Q3G4FPEFJyZ486zDk0Gj3nEf0HQQzRJAElRQ+ekc/fweURjcMWsJsylvoOxX2Xu6v621bfKCxZf7MnLdmtyvbja2vje8RMviyihnmBKXdhWqi9zRr57Aou2k1HsVAGU8rzMSwFd+uRDQO4GSayrQqnhWKTUOHIJGTE9VE2b+XiX7SLTwePLnMdppjH2KqEgE6ATMOVNoUv0tBgD8zzyN6MJ8qHGoDwm0N/vfze4zIcobpCK2ZEY48hLoojRNDkBi7gY+xiwTOgid1QwfW93210oV5UCgoKbCYFaPaHvDmFoEc4Kkwq8yGXoFrndMwXZs4oFjCneCmP1CVD9EWzeGVdkWMmQJ3U/BXNp4VNh8GK6Igy6WLIcGsRGfXXi6VJbjZqCfydqM1mrUZe95l3mg+D/Q10noMVTNUOzKosccmeoqG7wYb5j9b+lIfVZpjIVAjqVT+pNxiR23o4YGAlYprFUZu+tzGzONY/HS3V2pzrzKhV/cWFfTt+N1sP8rjqxzZyY24TTFGPJaSoftu272RsCq2rMiVTJmGo088xDk0kjALlJraTOsIrzOzPvK1qo89IWM8+7mqcmlRM+KFvAyxQ9zgSYHpaIav3Pq/D4pDB3cEwLc938pBkfj8/riPMm4oAqY2o8aBpP5owL3OdzxgXaIy5clHoKoW6YHzUx+IYalUmNpoKTKHLnhrq95CwOqeHn+4SvDzhO0oJmU0Zw3OR6NjM9a5qez0zPmyafx3pi8xfUDun0w1HOh3C4kGj31oyn7PhVkuB2ocSuG4jrBcSogXCSCENmHOrulBe8RE2rMyz33ZT2F1BmF0bt9elqOwrpSBaHelhVXuyjias8FjT6wvQUp7Sk0UOqwf6g4Y5mbjHXLKjQiYf2pHkVOijpEfe1IfiGzHS04gGMkwxipK2Q9knm/5wpXTpcAiEJ6CX2k1GdifxV1zw17XJQIxox2tKJiFIkEz/zKGZyyEyCi3pEBz0w57hQspQ2bzpu2M3DxeLLq0HfftS3fhxsP308OXhstL5sfdV60LJbe62nraPWi9Zpy1s/Wy/Wf13/rf17+8/23+1/Kuj62mTMF63a1f73P5hnDps=</latexit>

For a given distortion D, minimize the bit rate R

For a given bit rate R, minimize the distorsion D

8-

JPEG image coder

68

aaaa

DC y7,0

y0,7 y7,7

y0,0

a

8x8 block

DCT Quantizer Entropy
encoder

Quantizer
table

specification

Entropy
coder table
specification

Source
image data

Compressed
image data

Quantization

- perceptual weighting

Entropy coding

- zig-zag scanning of 8× 8 DCT coefficients

- combined (Run, Size) Huffman code (Run=run length of preceding zeros)

- End-of-block (EOB) symbol

8-

 JPEG compression artefacts

69

Original Q=80%
Ringing artefacts

Q=30%
Blocking artefacts

Ringing artefacts: DCT basis vectors become visible around high-contrast
edges due to quantization of smaller coefficients
Blocking artefacts: block-wise processing leads to visible edges between
blocks at high compression ratios

8-

Compression: Why wavelets?

70

Reason 1: The WT produces a lot of clustered near-zero coefficients

At low bit rate, the gain of transform coding is mostly due to the “zero bin”
⇒ Dead-zone quantizer

Coding of “zeros” is non-stationary (< 1 bit per coefficient) and must take
advantage of spatial correlation
⇒ Position coding is the key (run-length, zero-tree)

Reason 2: Reduced blocking artifacts

JPEG/DCT works well at high/medium bit rate but produces blocking artifacts at lower rates

Blocking is reduced with the WT because the basis functions are overlapping

Reason 3: The WT has a built-in multiresolution structure

Progressive transmission (by successive approximation)

Browsing, the WEB

Unequal error protection

8-

<latexit sha1_base64="cgO8EvcvzKW0CiM/4ARsl1vaF/U=">AAAKhXiclVZtb9s2EJbbbU20t2b7uC/EEgNDERu21zZtsWAFEhQp0BRturRFotSgpJPMhXopScXxGP6Q/Zp93X7C/s2Okp1YcjK4BGQLvIfPc7w7HennnEnV6/3bunX7s8+/uLOy6n751dfffHt37bu3MitEAIdBxjPx3qcSOEvhUDHF4X0ugCY+h3f+6Y61vzsDIVmW/qYmOZwkNE5ZxAKqcGq41hp4svAlBPp1QTlTOH0GxIcRPWOZIFlEaJ6L7LzrERACZyJ8Nva3Xw61JxKiMmU6L4eegnOlQyYDKkKzQYIMItRgkCpp3FVPUZ9seGjPOZ1INeFAdsk2QelkqC8mF794HF0OqfE4ROpiMmSeYPFIXXwYEA/lc5URr0hDEL6gAej9D7rTNwZ9KIX7u8TunwpjNmu4AeL2a7g0SzvXYy2nF9MkoVcLBrsEwhhkbdnG8O56r9srB1l86U9f1p3peDVcW3nihVlQJBiPgFMpj/u9XJ1oKhQLOBjXKyTkNDilMegyp4a0cSosox1lqSLlbA1HEykniY/IhKqRbNrs5HW240JFj040S/NCQRpUQlHBMZXEFggJmYBA8QmhQYD+FlShHzUGzDKHcLv7eHCiR8DPQOEOBKQwDjIMXxpqL6IJ45MQIlpwZbQno9m723bbpKxLSRBK/IJzUPIJznuIwRiXW9VJEWc8NFrEvtH9zV5368FmzyxgBEymmF4XAdWDsHlnfF5AJYOe1P3k1MdPR0HC0FSRWrQhnig4aKsK52b2bxrEVn154qm3S1Lj5j+J2gZrOWqfYx4/JR4I/x/qOoEaQdVPbHsxmmhvJLFu4J7u9LoPcUk9ylimnGNrKEXkx4IK2LhaMbAS5CaNG2W2rmQuY65YOrlR5+eZzrxKxW+O+yezd6t1T19XJ30bE/sz5bTFWHLayifr/evZGwLLasyJVMmYaTTzzGKbSStAtE2twM6wjPOdS+8rWlLnzamY513OU5vKKR8pW8CbHAJGObE9LOPV9z+vwtIDY3+JZ1uY7+uD5v5YelRHHDURO1gZM+NO03gwZ1zgPpozLtDuMe6DUDMIdkO918TAR2xUNjUKC04A194ZdnvBaBpjw9fbiK8veJHlRpdn6osm1+6labdpen5pet40hSxVU1u4oPYM7w8MxPwWni0k2j+36zE7YZUkcr5QYqcNxOkCYtxAeFkCMbUOtTvlIG9A4dcZE/ysSY7nC5HsDyCggi4O15OAl5o0VqOq8vDAtvvqBclCX5jdg6QSuHqENdgdNNzBi4iZaxZY6MhjaiL24B+zUNn199G62iYsIpOsICngSYjHJA1/L6Qq/S2B9pY0RseysdtuuCtPWW675aBGNKZ4oiMRZkhkYRHgltEfGwMf1BggxTgIGgua49mNt41+826x+PJ20O0/6PZeD9afPpreO1acH5wfnZ+cvrPlPHX2nFfOoRO0/mz91fq79Y97x+24992HFfRWa7rme6c23F//Ayy+2A4=</latexit>

Qualitative behavior of approx. error for M = Ntot �Ndiscard coefficients

D =
X

|y|<�

|yi|2 / M�1
| {z }

1D linear

, 2�M
|{z}

1D non-linear

, M��
| {z }

2D edges non-linear

Simple wavelet coding

71

Hard threshold

T ′
λ(y) =

{
y, |y| > λ

0, |y| ! λ λ y

ỹ = T ′
λ(y)

Basic idea

WT produces lots of small, near-zero coefficients in slowly-varying regions

⇒ Compression is achieved by setting small coefficients to zero

8-

EZW coder

72

aaaa

Code wavelet transform using
one sign bit per coefficient + Zero tree

Decrease threshold

Δ ← Δ/2

Symbols

Update wavelet transform (residual)
y← y− yQ

Δ = Δ0

threshold Δ

+ - 0 Z

iterate

■ Conceptual principle

■ Embedded zero-tree wavelet coder (EZW)
- Special status of "zero bin".
- Exploits spatial correlation ⇒ Zero tree

- abs(coefficient) > ∆ :
 positive: +
 negative: -

- abs(coefficient) < ∆ :
 parent zero: do nothing
 parent non-zero, look descendants:
 descendents zero: Z
 descendents non-zero: 0

8-

8.7 SUMMARY

73

Image transforms are used for data processing, data compression, and data analysis.
To be truly useful, they must have a fast algorithm.

An orthonormal transform is characterized by a unitary transform matrix A =
[

u1 · · · uN

]H

where the ui’s are the basis vectors of the representation.

The variances in the transformed domain are determined by the covariance matrix of
the input vector: σ2

i = uT
i Cxui.

The Karhunen-Loève transform is specified by the eigenvectors of Cx. The KLT com-
pacts the energy in the fewest number of components and decorrelates the data.

The discrete Fourier transform (DFT) diagonalizes circulant matrices.

Separable transforms are implemented by successive 1D processing of the rows and
columns of an image.

Useful sinusoidal transforms are the DFT and the DCT; for stationary processes, they
are both asymptotically equivalent to the KLT.

8-74

The main tool for the wavelet transform is a perfect reconstruction filterbank which splits
a signal into orthogonal lowpass plus highpass components. The splitting is iterated to
yield a tree-structured transform.

A wavelet transform is entirely specified by an orthogonal filter; the highpass filter is
obtained by modulation (QMF).

Generalized filtering is achieved by applying a suitable point function in the transformed
domain prior to reconstruction. The operation is either linear (e.g., Wiener filter) or non-
linear (e.g., soft-thresholding).

Transform coding applies a uniform quantization in the transformed domain. JPEG
uses 8×8 block DCTs; more recent coders use the wavelet transform (EZW, JPEG2000).

The key to high compression is the efficient encoding of zero values: run length in
JPEG or zero-tree in EWZ.

8-

Further reading

75

Classical transforms

A.K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, 1989; chapter 5.

M. Unser, “On the Approximation of the Discrete Karhunen-Loève Transform for Stationary Processes”,
Signal Processing, vol. 7, no. 3, pp. 231-249, December 1984.

Wavelet basics

B. Burke Hubbard, The world according to wavelets, A K Peters, Wellesley, MA, 1998.

S. Mallat, A wavelet tour of signal processing. San Diego: Academic Press, 1998.

G. Strang and T. Nguyen, Wavelets and filter banks. Wellesley, MA: Wellesley-Cambridge, 1996.

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs, NJ: Prentice Hall, 1995.

Wavelet coding and denoising

J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”, IEEE Trans. Acoustics,
Speech and Signal Processing, vol. 41, no. 12, pp. 3445-3462, 1993.

D.L. Donoho,“De-noising by soft-thresholding”, IEEE Trans. Information Theory, vol. 41, no. 3, pp. 613-627,
1995.

A. Chambolle, R.A. DeVore, N.-Y. Lee and B.J. Lucier, “Nonlinear wavelet image processing: variational
problems, compression, and noise removal through wavelet shrinkage”, IEEE Trans. Image Processing, vol.
7, no. 33, pp. 319-335, 1998.

