
Image Processing 2, Exercise 8

1 Classical image reconstruction
[basic] This exercise will teach you how to design a “classical” image reconstruction algorithm. Given
some physical model, it will take you through all the design steps from the discretization to the
specification of an iterative reconstruction scheme.

The term “classical” refers to the reconstruction algorithms that can be derived from the minimization
of a quadratic functional. The idea is that such functionals have a unique minimum, which can
usually be determined in closed form. This then yields a linear reconstruction which often has a
direct matrix-free implementation. Otherwise, the reconstruction can be performed iteratively by
steepest descent or some faster variant (e.g., conjugate gradient).

The discretization step is a prerequisite for computational imaging. In practice, one always start by
designing a classical algorithm, which is easier to debug and which encompasses all the knowledge of
the physics. In a later stage, one can refine the reconstruction by incorporating additional constraints
such as positivity, some improved form of regularization, and/or even the appropriate deployment of
neural networks.

The continuous-domain modelling of our imaging system (1D for simplicity) in the noise-free scenario
is g0(x) = (h ∗ s)(x) where h(x) = rect(x/3). To reconstruct the signal, we propose to represent the

signal in a “pixelated” basis as s(x) =
∑K
k=1 skβ

0(x− k) where β0(x) = rect(x).

Given the noisy measurements y = (ym) ∈ RM with ym = g0(m) + nm, the task is to reconstruct
the unknown signal coefficients s = (sk) ∈ RK such as to minimise a suitable cost functional.

(a) Discretization: For simplicity, we take K = M . Specify the system matrix H ∈ RM×M such
that the forward imaging model can be written as y = Hs + n where n = (nm) represents the
measurement noise.

(b) We now formulate the reconstruction problem as the minimization of the cost functional

J(y, s) = ‖Λ(y −Hs)‖2 + λ‖s− s0‖2, (1)

where s0 is a known reference signal, λ ≥ 0 a tuning parameter and Λ = diag(a1, . . . , aM ) is a
diagonal matrix of weights am > 0.

Motivation: The use of this particular cost functional is our way of injecting prior information.
Specifically, we want the reconstruction to be “reasonably” close to s0, while we are also weight-
ing the contribution of a measurement in inverse proportion to the standard deviation of the
noise which may be detector-dependent; e.g., am ∝ 1/σm.

Your first task is to calculate the gradient of J(y, s) with respect to s (the unknown).

(c) Give the closed form of the signal reconstruction: arg mins∈RM J(y, s).

(d) (i) Give a short description of an iterative gradient-based reconstruction algorithm with initial
condition s(0) = s0.
(ii) Modify your algorithm in order to impose the positivity of your reconstruction.

2 Convex functionals
Most image reconstruction algorithms are derived from the minimization of a convex functional. You
should therefore be able to recognize and manipulate such functionals.

Motivation: The convexity property ensures that the standard iterative procedures (based on steepest
descent and proximal updates) converge to the solution.

We recall that a functional f : Rd → R is convex if, for all λ ∈ [0, 1] and all x,y ∈ Rd,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3)

Under the assumption that the functions φ, ψ : R→ R are convex, prove the following properties.
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(a) a0φ(x) is convex for any fixed a0 ∈ R+.

(b) g(x) = φ(x) + ψ(x) is convex.

(c) The function x 7→ φ(x) + a2x
2 + a1x+ a0 with a2, a1 ∈ R+ and a0 ∈ R is convex.

(d) The function g : Rd → R where g(x) = φ(wTx + b0) with parameters w ∈ Rd and b0 ∈ R is
convex.

(e) Variation of a theme. Let us consider a convex function Φ : Rd → R and an affine map
Rd0 → Rd : x 7→ Ax + b where A ∈ Rd×d0 and b ∈ Rd are some fixed parameters. Prove that
the composed function g : Rd0 → R with g(x) = Φ(Ax + b) is convex .

3 Proximal Operators
[basic] Proximal operators are extremely useful components for the design of efficient iterative opti-
mization/reconstruction algorithms.

We recall that the proximal operator of a convex and l.s.c. function f : Rd → R is given by

proxf (x) = arg min
z∈Rd

1
2‖z− x‖22 + f(z). (4)

(a) Scalar scenario. Let g(x) = λ|x|3 where λ > 0 is a fixed constant. First, show that g is convex,
and, then determine its proximal operator proxg(x).

(b) Quadratic regularization functional. Your task is to derive the explicit form of the proximal
operator of the functional f2 : Rd → R with f2(x) = λ

2 ‖Lx‖22 where L ∈ Rd×d is a square matrix
and λ > 0 is an adjustable (regularization) parameter.
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