Image Processing 2, Exercise 7

1 Image denoising by linear filtering

[basic] A classical usage of filtering is for signal denoising. Here, we investigate two options for the
“optimal” design of such filters.

We consider the measurement model g(x) = f(x) + n(x) where the unknown signal f is corrupted
by some random noise n. Our goal is to design a denoising filter r such that f = r % g is a good
approximation of f.

(a)

Wiener filtering: Here, we make the assumption that f is a realization of a stochastic process

with spectral density ®;(w) = |lw||~* and that n is a white Gaussian noise with @, (w) = 0.

(i) Deduce the frequency response of the corresponding Wiener filter Rwiener(w). Is the filter
isotropic?

(ii) Plot the frequency response for 02 = 1. What kind of filter is it? What is the limit of the
filter as 02 — 0 (resp., as 02 — 00)?

Variational denoising : We now adopt an alternative, deterministic formulation where the goal
is to minimize the cost functional

fesrgming(fg) where J(f.g)= [ lol@)— f@Pde <2 [ L{f)@Pde (1)

Here, A EARJF an adjustable regularization parameter and L an LSI operator with frequency
response L(w). The underlying philosophy, which due to the mathematician Tikhonov, is to
promote “regular” solutions for which the regularization energy |[L{f}||7, is reasonably small.

(i) As first step, rewrite J(f, g) in terms of Lo-norms, first in space, and, then in the frequency
domain with the Fourier transforms of f and g being denoted by f and g, respectively.

(ii) Since the formal minimization of (1) is an infinite-dimensional problem that would require
the use of calculus of variations (which you probably have not yet studied), we shall use an in-
direct approach where J(f,¢g) is manipulated such as to make the solution obvious. Specifically,
we ask you to show that the latter can be rewritten as

ME@Pg@)

2
7 g(w) T 2
(w) = ——=——| (1+AL(w)")+ AL (@)

1
Hh9) = W/R ) @)

and to then deduce the solution, which should be of the form f = rrik * g Where roj is a suitable
filter.

(2)

(i”) Simplified version (for those who are in a hurry): Using some elementary arguments, show
that, for any given frequency w € R?, the minimizer of (2) is f(w) = Ry (w)§(w) where
1

Rk (w) = m (3)

(iii) Give the expression of Jmin, = ming J(f, g) and show that Jmin < [|g]3, .

Reconciliation.
(i) By comparing the expression of the two filters, find the operator L that makes the two
methods equivalent.

(ii) What is the interpretation of such a filter in the world of stochastic processes?

(iii) By transposing the reasoning of Item b-(ii’) to the last integral formula in the derivation of
the Wiener filter within the course notes (Slide 9-10), provide the expression of the minimum
MSE as a function of ®.
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2 Center of mass and Radon transform

Consider the following image f(z,y):

(a) Give an expression of f(x,y) in terms of a sum of shifted and scaled separable 2D B-splines.
Assume the indicated grayscale with white being 0, gray 50 and black 100.

(b) Calculate the coordinates X = (Z, ) of the center of mass of f(x,y).

(c) Calculate the projection tx ¢ of the center of mass X onto the projection line for a projection
direction 6 = 0°,45°.

(d) Calculate and sketch the Radon transform projections pg(t) of f for 6 = 0°,45°.
(e) Calculate the center of mass ¢y of the projections py(t) for § = 0°,45°.

(f) Compare the results you obtained in c) and e). Comment on how this result could be useful for
practical applications.

3 Radon transform with the “magical” help of Fourier

[basic] The Radon transform of a function provides a complete characterization of its line integrals.
Computing it explicitly can be laborious. Fortunately, we can take advantage of the Fourier-slice
theorem which states that R{f}(t,8) for a fized 6 is the inverse Fourier transform of the 1D function
w f(w@) where @ = (cos B, sinb) and f:R2 — C is the 2D Fourier transform of f.

The Fourier-slice theorem is fundamental in that it remains valid for distributions whose Fourier

transform is a well-defined function. It allows us to calculate the Radon transform of objects such as
lz||®, which are not integrable in the conventional Lebesque sense.

(a) Basic calculations. Compute the Radon transform of the following functions.
1. §(- — xo) with &g = (w0, y0) = r(cos ¢, sin ¢) € R?
1
2. g(x) = %e_fuml‘z (standardized Gaussian)

(b) Prove the following properties of the Radon transform where py(t) = R{f}(¢,0).

1. Laplacian:
2

RIASYE6) = Tomo(0)

2. Conservation of the integral.

/pe(t)dt = f(O) = f(z)dz.
R R2

3. Second-order moments:

/ 2? f (z,y)dady / zyf(z,y)dzdy
/t2pg(t)dt:0TH0 where H = K2 R
R

/ yrf(z,y)dzdy / v f(z,y)dzdy
R2 R2
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(¢) Transform of a separable function: Let p(x) = ¢1(2)p2(y). Show that R{p}(t,8) = @g(t) where

) ®)

po(t) = (\colse\@l( ) * \siie\@(

cosd sin 6
with the convention that ﬁgp(g) — ¢(0)d as a — 0.

(d) Radon transform of a B-spline. Compute R{p}(t,0) and R{¢}(t, ) for the case where p(x) =
B™(x)B"(y) is a separable B-spline of degree n.
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