

Image Processing 2, Exercise 7

1 Image denoising by linear filtering

[basic] A classical usage of filtering is for signal denoising. Here, we investigate two options for the “optimal” design of such filters.

We consider the measurement model $g(\mathbf{x}) = f(\mathbf{x}) + n(\mathbf{x})$ where the unknown signal f is corrupted by some random noise n . Our goal is to design a denoising filter r such that $\tilde{f} = r * g$ is a good approximation of f .

- (a) Wiener filtering: Here, we make the assumption that f is a realization of a stochastic process with spectral density $\Phi_f(\boldsymbol{\omega}) = \|\boldsymbol{\omega}\|^{-4}$ and that n is a white Gaussian noise with $\Phi_n(\boldsymbol{\omega}) = \sigma^2$.
 - (i) Deduce the frequency response of the corresponding Wiener filter $R_{\text{Wiener}}(\boldsymbol{\omega})$. Is the filter isotropic?
 - (ii) Plot the frequency response for $\sigma^2 = 1$. What kind of filter is it? What is the limit of the filter as $\sigma^2 \rightarrow 0$ (resp., as $\sigma^2 \rightarrow \infty$)?
- (b) Variational denoising : We now adopt an alternative, deterministic formulation where the goal is to minimize the cost functional

$$\tilde{f} = \arg \min_f J(f, g) \quad \text{where} \quad J(f, g) = \int_{\mathbb{R}^d} |g(\mathbf{x}) - f(\mathbf{x})|^2 d\mathbf{x} + \lambda \int_{\mathbb{R}^d} |\mathbf{L}\{f\}(\mathbf{x})|^2 d\mathbf{x}. \quad (1)$$

Here, $\lambda \in \mathbb{R}^+$ an adjustable regularization parameter and \mathbf{L} an LSI operator with frequency response $\hat{\mathbf{L}}(\boldsymbol{\omega})$. The underlying philosophy, which due to the mathematician Tikhonov, is to promote “regular” solutions for which the regularization energy $\|\mathbf{L}\{f\}\|_{L_2}^2$ is reasonably small.

- (i) As first step, rewrite $J(f, g)$ in terms of L_2 -norms, first in space, and, then in the frequency domain with the Fourier transforms of f and g being denoted by \hat{f} and \hat{g} , respectively.
- (ii) Since the formal minimization of (1) is an infinite-dimensional problem that would require the use of calculus of variations (which you probably have not yet studied), we shall use an indirect approach where $J(f, g)$ is manipulated such as to make the solution obvious. Specifically, we ask you to show that the latter can be rewritten as

$$J(f, g) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \left| \hat{f}(\boldsymbol{\omega}) - \frac{\hat{g}(\boldsymbol{\omega})}{1 + \lambda |\hat{\mathbf{L}}(\boldsymbol{\omega})|^2} \right|^2 (1 + \lambda |\hat{\mathbf{L}}(\boldsymbol{\omega})|^2) + \frac{\lambda |\hat{\mathbf{L}}(\boldsymbol{\omega})|^2 |\hat{g}(\boldsymbol{\omega})|^2}{1 + \lambda |\hat{\mathbf{L}}(\boldsymbol{\omega})|^2} d\boldsymbol{\omega} \quad (2)$$

and to then deduce the solution, which should be of the form $\tilde{f} = r_{\text{Tik}} * g$ where r_{Tik} is a suitable filter.

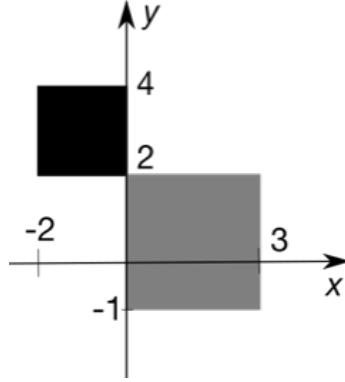
(ii') Simplified version (for those who are in a hurry): Using some elementary arguments, show that, for any given frequency $\boldsymbol{\omega} \in \mathbb{R}^d$, the minimizer of (2) is $\hat{f}(\boldsymbol{\omega}) = R_{\text{Tik}}(\boldsymbol{\omega}) \hat{g}(\boldsymbol{\omega})$ where

$$R_{\text{Tik}}(\boldsymbol{\omega}) = \frac{1}{1 + \lambda |\hat{\mathbf{L}}(\boldsymbol{\omega})|^2}. \quad (3)$$

- (iii) Give the expression of $J_{\min} = \min_f J(f, g)$ and show that $J_{\min} \leq \|g\|_{L_2}^2$.
- (c) Reconciliation.
 - (i) By comparing the expression of the two filters, find the operator \mathbf{L} that makes the two methods equivalent.
 - (ii) What is the interpretation of such a filter in the world of stochastic processes?
 - (iii) By transposing the reasoning of Item b-(ii') to the last integral formula in the derivation of the Wiener filter within the course notes (Slide 9-10), provide the expression of the minimum MSE as a function of Φ_f .

2 Center of mass and Radon transform

Consider the following image $f(x, y)$:



- (a) Give an expression of $f(x, y)$ in terms of a sum of shifted and scaled separable 2D B-splines. Assume the indicated grayscale with white being 0, gray 50 and black 100.
- (b) Calculate the coordinates $\bar{\mathbf{x}} = (\bar{x}, \bar{y})$ of the center of mass of $f(x, y)$.
- (c) Calculate the projection $t_{\bar{\mathbf{x}}, \theta}$ of the center of mass $\bar{\mathbf{x}}$ onto the projection line for a projection direction $\theta = 0^\circ, 45^\circ$.
- (d) Calculate and sketch the Radon transform projections $p_\theta(t)$ of f for $\theta = 0^\circ, 45^\circ$.
- (e) Calculate the center of mass \bar{t}_θ of the projections $p_\theta(t)$ for $\theta = 0^\circ, 45^\circ$.
- (f) Compare the results you obtained in c) and e). Comment on how this result could be useful for practical applications.

3 Radon transform with the “magical” help of Fourier

[basic] The Radon transform of a function provides a complete characterization of its line integrals. Computing it explicitly can be laborious. Fortunately, we can take advantage of the Fourier-slice theorem which states that $R\{f\}(t, \theta)$ for a fixed θ is the inverse Fourier transform of the 1D function $\omega \mapsto \hat{f}(\omega \theta)$ where $\theta = (\cos \theta, \sin \theta)$ and $\hat{f} : \mathbb{R}^2 \rightarrow \mathbb{C}$ is the 2D Fourier transform of f .

The Fourier-slice theorem is fundamental in that it remains valid for distributions whose Fourier transform is a well-defined function. It allows us to calculate the Radon transform of objects such as $\|\mathbf{x}\|^s$, which are not integrable in the conventional Lebesgue sense.

- (a) Basic calculations. Compute the Radon transform of the following functions.

1. $\delta(\cdot - \mathbf{x}_0)$ with $\mathbf{x}_0 = (x_0, y_0) = r(\cos \phi, \sin \phi) \in \mathbb{R}^2$
2. $g(\mathbf{x}) = \frac{1}{2\pi} e^{-\frac{1}{2}\|\mathbf{x}\|^2}$ (standardized Gaussian)

- (b) Prove the following properties of the Radon transform where $p_\theta(t) = R\{f\}(t, \theta)$.

1. Laplacian:

$$R\{\Delta f\}(t, \theta) = \frac{d^2}{dt^2} p_\theta(t).$$

2. Conservation of the integral.

$$\int_{\mathbb{R}} p_\theta(t) dt = \hat{f}(\mathbf{0}) = \int_{\mathbb{R}^2} f(\mathbf{x}) d\mathbf{x}.$$

3. Second-order moments:

$$\int_{\mathbb{R}} t^2 p_\theta(t) dt = \theta^T \mathbf{H} \theta \quad \text{where} \quad \mathbf{H} = \begin{pmatrix} \int_{\mathbb{R}^2} x^2 f(x, y) dx dy & \int_{\mathbb{R}^2} xy f(x, y) dx dy \\ \int_{\mathbb{R}^2} yx f(x, y) dx dy & \int_{\mathbb{R}^2} y^2 f(x, y) dx dy \end{pmatrix}$$

(c) Transform of a separable function: Let $\varphi(\mathbf{x}) = \varphi_1(x)\varphi_2(y)$. Show that $R\{\varphi\}(t, \theta) = \varphi_\theta(t)$ where

$$\varphi_\theta(t) = \left(\frac{1}{|\cos \theta|} \varphi_1\left(\frac{\cdot}{\cos \theta}\right) * \frac{1}{|\sin \theta|} \varphi_2\left(\frac{\cdot}{\sin \theta}\right) \right) (t)$$

with the convention that $\frac{1}{|a|} \varphi\left(\frac{\cdot}{a}\right) \rightarrow \hat{\varphi}(0)\delta$ as $a \rightarrow 0$.

(d) Radon transform of a B-spline. Compute $R\{\varphi\}(t, 0)$ and $R\{\varphi\}(t, \frac{\pi}{4})$ for the case where $\varphi(\mathbf{x}) = \beta^n(x)\beta^n(y)$ is a separable B-spline of degree n .