
Image Processing 2, Exercise 7

1 Image denoising by linear filtering
[basic] A classical usage of filtering is for signal denoising. Here, we investigate two options for the
“optimal” design of such filters.

We consider the measurement model g(x) = f(x) + n(x) where the unknown signal f is corrupted
by some random noise n. Our goal is to design a denoising filter r such that f̃ = r ∗ g is a good
approximation of f .

(a) Wiener filtering: Here, we make the assumption that f is a realization of a stochastic process
with spectral density Φf (w) = ∥ω∥−4 and that n is a white Gaussian noise with Φn(ω) = σ2.

(i) Deduce the frequency response of the corresponding Wiener filter RWiener(ω). Is the filter
isotropic?

(ii) Plot the frequency response for σ2 = 1. What kind of filter is it? What is the limit of the
filter as σ2 → 0 (resp., as σ2 → ∞)?

(b) Variational denoising : We now adopt an alternative, deterministic formulation where the goal
is to minimize the cost functional

f̃ = argmin
f

J(f, g) where J(f, g) =

∫
Rd

|g(x)− f(x)|2dx+ λ

∫
Rd

|L{f}(x)|2dx. (1)

Here, λ ∈ R+ an adjustable regularization parameter and L an LSI operator with frequency
response L̂(ω). The underlying philosophy, which due to the mathematician Tikhonov, is to
promote “regular” solutions for which the regularization energy ∥L{f}∥2L2

is reasonably small.

(i) As first step, rewrite J(f, g) in terms of L2-norms, first in space, and, then in the frequency

domain with the Fourier transforms of f and g being denoted by f̂ and ĝ, respectively.

(ii) Since the formal minimization of (1) is an infinite-dimensional problem that would require
the use of calculus of variations (which you probably have not yet studied), we shall use an in-
direct approach where J(f, g) is manipulated such as to make the solution obvious. Specifically,
we ask you to show that the latter can be rewritten as

J(f, g) =
1

(2π)d

∫
Rd

∣∣∣∣∣f̂(ω)− ĝ(ω)

1 + λ|L̂(ω)|2

∣∣∣∣∣
2

(1 + λ|L̂(ω)|2) + λ|L̂(ω)|2|ĝ(ω)|2

1 + λ|L̂(ω)|2
dω (2)

and to then deduce the solution, which should be of the form f̃ = rTik∗g where rTik is a suitable
filter.

(ii’) Simplified version (for those who are in a hurry): Using some elementary arguments, show

that, for any given frequency ω ∈ Rd, the minimizer of (2) is f̂(ω) = RTik(ω)ĝ(ω) where

RTik(ω) =
1

1 + λ|L̂(ω)|2
. (3)

(iii) Give the expression of Jmin = minf J(f, g) and show that Jmin ≤ ∥g∥2L2
.

(c) Reconciliation.
(i) By comparing the expression of the two filters, find the operator L that makes the two
methods equivalent.

(ii) What is the interpretation of such a filter in the world of stochastic processes?

(iii) By transposing the reasoning of Item b-(ii’) to the last integral formula in the derivation of
the Wiener filter within the course notes (Slide 9-10), provide the expression of the minimum
MSE as a function of Φf .

Page 1 of 3



2 Center of mass and Radon transform

Consider the following image f(x, y):

(a) Give an expression of f(x, y) in terms of a sum of shifted and scaled separable 2D B-splines.
Assume the indicated grayscale with white being 0, gray 50 and black 100.

(b) Calculate the coordinates x̄ = (x̄, ȳ) of the center of mass of f(x, y).

(c) Calculate the projection tx̄,θ of the center of mass x̄ onto the projection line for a projection
direction θ = 0◦, 45◦.

(d) Calculate and sketch the Radon transform projections pθ(t) of f for θ = 0◦, 45◦.

(e) Calculate the center of mass t̄θ of the projections pθ(t) for θ = 0◦, 45◦.

(f) Compare the results you obtained in c) and e). Comment on how this result could be useful for
practical applications.

3 Radon transform with the “magical” help of Fourier
[basic] The Radon transform of a function provides a complete characterization of its line integrals.
Computing it explicitly can be laborious. Fortunately, we can take advantage of the Fourier-slice
theorem which states that R{f}(t, θ) for a fixed θ is the inverse Fourier transform of the 1D function

ω 7→ f̂(ωθ) where θ = (cos θ, sin θ) and f̂ : R2 → C is the 2D Fourier transform of f .

The Fourier-slice theorem is fundamental in that it remains valid for distributions whose Fourier
transform is a well-defined function. It allows us to calculate the Radon transform of objects such as
∥x∥s, which are not integrable in the conventional Lebesgue sense.

(a) Basic calculations. Compute the Radon transform of the following functions.

1. δ(· − x0) with x0 = (x0, y0) = r(cosϕ, sinϕ) ∈ R2

2. g(x) = 1
2π e

− 1
2∥x∥

2

(standardized Gaussian)

(b) Prove the following properties of the Radon transform where pθ(t) = R{f}(t, θ).
1. Laplacian:

R{∆f}(t, θ) = d2

dt2
pθ(t).

2. Conservation of the integral. ∫
R
pθ(t)dt = f̂(0) =

∫
R2

f(x)dx.

3. Second-order moments:

∫
R
t2pθ(t)dt = θTHθ where H =


∫
R2

x2f(x, y)dxdy

∫
R2

xyf(x, y)dxdy∫
R2

yxf(x, y)dxdy

∫
R2

y2f(x, y)dxdy


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(c) Transform of a separable function: Let φ(x) = φ1(x)φ2(y). Show that R{φ}(t, θ) = φθ(t) where

φθ(t) =
(

1
| cos θ|φ1

( ·
cos θ

)
∗ 1

| sin θ|φ2

( ·
sin θ

))
(t)

with the convention that 1
|a|φ

( ·
a

)
→ φ̂(0)δ as a → 0.

(d) Radon transform of a B-spline. Compute R{φ}(t, 0) and R{φ}(t, π
4 ) for the case where φ(x) =

βn(x)βn(y) is a separable B-spline of degree n.

Page 3 of 3


