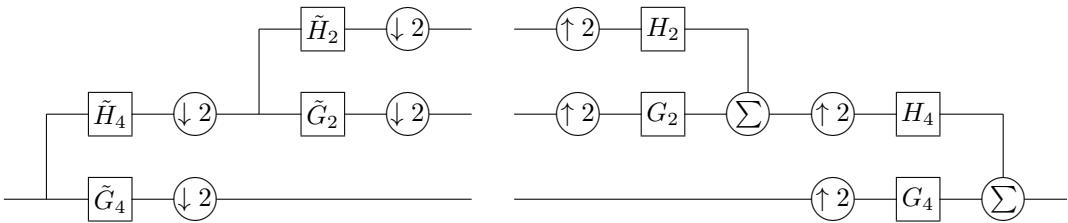


Image Processing 2, Exercise 6

1 The Haar transform

[intermediate] We explicitly write the filters for a small wavelet transform. Although this is a bit difficult, it gives an idea of how the entire transform can be written as a matrix-vector product.

Let the filters of Haar's wavelet transform in one dimension be given by $\tilde{H}(z) = \frac{\sqrt{2}}{2} (1+z)$, $\tilde{G}(z) = \frac{\sqrt{2}}{2} (1-z)$, $H(z) = \frac{\sqrt{2}}{2} (1+z^{-1})$, and $G(z) = \frac{\sqrt{2}}{2} (1-z^{-1})$. Below, we sketch Mallat's tree-structured filterbank and label the occurrences of these four filters for the support $W = 4$, along with the downsampling operations. Note that we only recursively decompose the low-frequency branch of the tree.



Let $\mathbf{x} \in \mathbb{R}^W$ be the vector representation of the one-dimensional sequence x of finite support $W = 4$. Moreover, let $\tilde{\mathbf{W}}_4$ be such that $\mathbf{y} = \tilde{\mathbf{W}}_4 \mathbf{x}$ is the one-dimensional Haar-wavelet transform of \mathbf{x} . By convention, the coefficients in \mathbf{y} are ordered first from lowest to highest frequency, then from past to future. Following the branches on the left part of the Mallat's tree, we can write $\mathbf{y} = \mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}} y_1 + \mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}} y_2 + \mathbf{P}_{\tilde{\mathbf{G}}} (y_3, y_4)$ with $\mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}} = (1, 0, 0, 0)$, $\mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}} = (0, 1, 0, 0)$, and $\mathbf{P}_{\tilde{\mathbf{G}}} = [(0, 0, 1, 0)^T, (0, 0, 0, 1)^T]$. Thus, we can write

$$\tilde{\mathbf{W}}_4 = \left(\mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{D}_{2 \rightarrow 1}} \tilde{\mathbf{H}}_2 + \mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{D}_{2 \rightarrow 1}} \tilde{\mathbf{G}}_2 \right) \mathbf{D}_{4 \rightarrow 2} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ (0) & (\frac{\sqrt{2}}{2}) & (\frac{\sqrt{2}}{2}) & (0) \\ 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ (\frac{\sqrt{2}}{2}) & (0) & (0) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{H}}_4} + \mathbf{P}_{\tilde{\mathbf{G}}} \mathbf{D}_{4 \rightarrow 2} \tilde{\mathbf{G}}_4.$$

- Provide the lowpass $\tilde{\mathbf{H}}_2$, high-pass $\tilde{\mathbf{G}}_2$, downsampling $\mathbf{D}_{4 \rightarrow 2}$, high-pass $\tilde{\mathbf{G}}_4$, and overall transformation $\tilde{\mathbf{W}}_4$.
- Let $\mathbf{P}_{\mathbf{HH}} = \mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}}^T$, $\mathbf{P}_{\mathbf{HG}} = \mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}}^T$, and $\mathbf{P}_{\mathbf{G}}^T$ represent the matrices used for honoring the order of the coefficients. Then, give the matrix \mathbf{W}_4 that will recover $\mathbf{x} = \mathbf{W}_4 \mathbf{y}$ from its one-dimensional Haar-wavelet transform \mathbf{y} .
- Give the vector \mathbf{y} of wavelet coefficients for the sequence $x = [5 \ 7 \ 6 \ -2]$.
- Apply a soft-thresholding operation to obtain $\bar{\mathbf{y}} = T_\lambda(\mathbf{y})$ with $\lambda = 2$. Proceed component-wise, except for the lowest-frequency component—which remains intact, so that $\bar{y}_1 = y_1$.
- From $\bar{\mathbf{y}}$, reconstruct the denoised version $\bar{\mathbf{x}}$ of \mathbf{x} .

2 JPEG 2000

[intermediate] In this exercise, we will explore the JPEG2000 compression standard which uses the wavelet transform.

- Let four digital filters be described by their z -transform $H(z) = \frac{1}{4} (z^{-1} + 2 + z)$, $\tilde{G}(z) = \frac{1}{4} (-1 + 2z - z^2)$, $\tilde{H}(z) = \frac{1}{4} (-z^{-2} + 2z^{-1} + 6 + 2z - z^2)$, and $G(z) = \frac{1}{4} (-z^{-3} - 2z^{-2} + 6z^{-1} - 2 - z)$. (These filters form the core of the JPEG 2000 standard.) Report in a table the discrete impulse response of each filter for indices $k \in [-4 \dots 4]$.

- (b) Verify explicitly that the four JPEG 2000 filters satisfy the perfect-reconstruction condition PR-1 (distortion-free).
- (c) Verify explicitly that these four filters satisfy the perfect-reconstruction condition PR-2 (aliasing-free).
- (d) Does H satisfy the conjugate-quadrature condition? Justify your answer.
- (e) Given the sequence x below, compute its full wavelet analysis and report intermediate results in a table as indicated.

k	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
$x[k]$	0	0	0	0	0	16	-2	-20	14	-32	0	0	0	0	0
$(x * \tilde{h})[k]$	—	—												—	—
$y_1[k] = [x * \tilde{h}]_{\downarrow 2 \uparrow 2}[k]$	—	—												—	—
$(x * \tilde{g})[k]$														—	—
$y_2[k] = [x * \tilde{g}]_{\downarrow 2 \uparrow 2}[k]$														—	—
$(y_1 * h)[k]$	—	—	—											—	—
$(y_2 * g)[k]$	—	—	—											—	—
$(y_1 * h)[k] + (y_2 * g)[k]$	—	—	—											—	—

3 Wiener Filter

[intermediate] Performing Wiener filtering on a vector signal.

Assume that \mathbf{s} is a vector of signals and the goal is to recover them using the MMSE criteria. The signal model is given as $\mathbf{y} = A\mathbf{s} + \mathbf{n}$ where A is a fixed known invertible mixture matrix and \mathbf{n} is a Gaussian noise with covariance matrix $C_{\mathbf{n}} = \sigma^2 \mathbf{I}$ that is independent from the signal. Our linear estimator is in the form of $\tilde{\mathbf{s}} = \alpha A^{-1} \mathbf{y}$.

- (a) Determine the optimal value of α that minimizes the MMSE loss defined as $\epsilon^2 = E\{\|\tilde{\mathbf{s}} - \mathbf{s}\|_2^2\}$
- (b) Explain your result qualitatively: how should α change as the norm of the signal and noise change? What role does A play?
- (c) Show that if A is a unitary matrix, then α coincides with the formula given in Slide 8-62.