
Image Processing 2, Exercise 6

1 The Haar transform
[intermediate] We explicitly write the filters for a small wavelet transform. Although this is a bit
difficult, it gives an idea of how the entire transform can be written as a matrix-vector product.

Let the filters of Haar’s wavelet transform in one dimension be given by H̃(z) =
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. Below, we sketch Mallat’s tree-

structured filterbank and label the occurrences of these four filters for the support W = 4, along
with the downsampling operations. Note that we only recursively decompose the low-frequency
branch of the tree.

G̃4 �
��
↓ 2 ↑ 2�
��

G4

∑�
��
H̃4 �
��

↓ 2 G̃2 �
��
↓ 2 ↑ 2�
��

G2

∑�
��
↑ 2�
��

H4

H̃2 �
��
↓ 2 ↑ 2�
��

H2

Let x ∈ RW be the vector representation of the one-dimensional sequence x of finite support
W = 4. Moreover, let W̃4 be such that y = W̃4 x is the one-dimensional Haar-wavelet trans-
form of x. By convention, the coefficients in y are ordered first from lowest to highest frequency,
then from past to future. Following the branches on the left part of the Mallat’s tree, we can
write y = PH̃H̃ y1 + PG̃H̃ y2 + PG̃ (y3, y4) with PH̃H̃ = (1, 0, 0, 0), PG̃H̃ = (0, 1, 0, 0), and PG̃ =[

(0, 0, 1, 0)T , (0, 0, 0, 1)T
]
. Thus, we can write
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(a) Provide the lowpass H̃2, high-pass G̃2, downsampling D4→2, high-pass G̃4, and overall trans-
formation W̃4.

(b) Let PHH = PT
H̃H̃

, PHG = PT
G̃H̃

, and PT
G̃

represent the matrices used for honoring the order of
the coefficients. Then, give the matrix W4 that will recover x = W4 y from its one-dimensional
Haar-wavelet transform y.

(c) Give the vector y of wavelet coefficients for the sequence x =
[

5 7 6 −2
]
.

(d) Apply a soft-thresholding operation to obtain ȳ = Tλ(y) with λ = 2. Proceed component-wise,
except for the lowest-frequency component—which remains intact, so that ȳ1 = y1.

(e) From ȳ, reconstruct the denoised version x̄ of x.

2 JPEG 2000
[intermediate] In this exercise, we will explore the JPEG2000 compression standard which uses the
wavelet transform.

(a) Let four digital filters be described by their z-transform H(z) = 1
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)
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(These filters form the core of the JPEG 2000 standard.) Report in a table the discrete impulse
response of each filter for indices k ∈ [−4 . . . 4].
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(b) Verify explicitly that the four JPEG 2000 filters satisfy the perfect-reconstruction condition
PR-1 (distortion-free).

(c) Verify explicitly that these four filters satisfy the perfect-reconstruction condition PR-2 (aliasing-
free).

(d) Does H satisfy the conjugate-quadrature condition? Justify your answer.

(e) Given the sequence x below, compute its full wavelet analysis and report intermediate results
in a table as indicated.

k −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
x[k] 0 0 0 0 0 16 −2 −20 14 −32 0 0 0 0 0

(x ∗ h̃)[k] — — — —

y1[k] = [x ∗ h̃]↓2↑2[k] — — — —
(x ∗ g̃)[k] — —

y2[k] = [x ∗ g̃]↓2↑2[k] — —
(y1 ∗ h)[k] — — — — — —
(y2 ∗ g)[k] — — — — — —

(y1 ∗ h)[k] + (y2 ∗ g)[k] — — — — — —

3 Wiener Filter
[intermediate] Performing Wiener filtering on a vector signal.

Assume that s is a vector of signals and the goal is to recover them using the MMSE criteria. The
signal model is given as y = As + n where A is a fixed known invertible mixture matrix and n is
a Gaussian noise with covariance matrix Cn = σ2I that is independent from the signal. Our linear
estimator is in the form of s̃ = αA−1y.

(a) Determine the optimal value of α that minimizes the MMSE loss defined as ε2 = E{‖s̃− s‖22}
(b) Explain your result qualitatively: how should α change as the norm of the signal and noise

change? What role does A play?

(c) Show that if A is a unitary matrix, then α coincides with the formula given in Slide 8-62.
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