Image Processing 2, Exercise 6

1 The Haar transform

[intermediate] We explicitly write the filters for a small wavelet transform. Although this is a bit
difficult, it gives an idea of how the entire transform can be written as a matriz-vector product.

Let the filters of Haar’s wavelet transform in one dimension be given by H(z) = g (1+2), G(z) =
? (1-2), H(z) = ? (1+2z71), and G(2) = ? (1—271). Below, we sketch Mallat’s tree-
structured filterbank and label the occurrences of these four filters for the support W = 4, along

with the downsampling operations. Note that we only recursively decompose the low-frequency
branch of the tree.

Let x € R" be the vector representation of the one-dimensional sequence x of finite support
W = 4. Moreover, let W, be such that y = W, x is the one-dimensional Haar-wavelet trans-
form of x. By convention, the coefficients in y are ordered first from lowest to highest frequency,
then from past to future. Following the branches on the left part of the Mallat’s tree, we can
write y = P vi + Pagve + Pg (y3,94) with P = (1,0,0,0), Pgg = (0,1,0,0), and Pg =
[ (0,0,1,0)%, (0,0,0,1)T ] Thus, we can write

[

~ ~ ~ O V& vy 0 ~
W, = | Pagn ( 1 0 ) H2+PGI:I ( 1 0 ) Go | Dyso ( ) ( 2 ) (\35) (\/5) +PG Dy Gy.
——— —— 0 0 2 5
Do, Do,
2 2o () (0 (0 (£

(a) Provide the lowpass H,, high-pass Go, downsampling D42, high-pass G., and overall trans-
formation Wy.

Solution:

Note: Parentheses indicate matrix elements that have no effect on the transform due to
upsampling or downsampling. You would not have to write these parentheses on an exam.
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(b) Let Py = P;Elﬁ, Puce = Péﬁ, and P}; represent the matrices used for honoring the order of

the coefficients. Then, give the matrix W, that will recover x = W, y from its one-dimensional
Haar-wavelet transform y.

Solution: Because Wy is orthonormal,
w, = W
Zo0 0 (D) 10
_ | 2B 0 00 |1 (2 (DY (1)1 g0 o)
0 (P 2 O 01\ 2 (D)0 e
0 (0 2 () 00 ng o Pron
H, Uz 4
20 0 () 10
0 () % (0 O A 0 ) 1 2
P
0 (0 % () pe o aH
H4 U2~>4
2 (0 0 (%) 1 0
+—§(§)0 (0 0 0 0010
0 (,@) V2 (0) 0 1 0 0 01
R 00 ) ——=
0 (O) _72 (72) N , Pc
Usz4
Gy
3 5 2 0
11 _y2 0
— 2 2 2
1 _1 0 V2
T v
7 3 0 =%
which is consistent with
(h*(Pany)12)10]  (9%(Prgy),)[0]
—~ —~
V2 V2 V2 V2
=5 on + DR + o Ys
——
(g*(Pgl/)qq)[O]
(h*((h'*(Phhy)T2+g*(P}zgy)Tz))TQ) [0]
(h*(Phhy)Tg)[l] (g*(Phgy)Tg)[l]
—~ —~
V2 V2 V2 2
N B N
——
(9%(Pgy)4,) 1]
(r((h*(Puny) 1o +9(Prgy)ys)) ,, ) 1]
(h*(Phhy)Tz)[2] (g*(Phgy)Tg)[Q]
—~ —~
vl e V2 Vi
ST B R
——
(g*(ng)¢2)[2]
(r((r*(Puny)1a+9(Phgv)ya)) ) 2
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(h*(Pany)42) 18] (9%(Phgy)s,)[3]

—~ —~
V2 V2 V2 V2
Ty = — - - = - 5
1T 2 U1 2 P2 o U
~——

(9%(Pgy)4,) (3]

(h*((h*(Ph,h,y)¢2+9*(Ph9y)T2))T2) (3]

(c¢) Give the vector y of wavelet coefficients for the sequence z = [ 7T 6 -2 }

Solution:
A 5 8
3 3 T2 T3 7 4
2oz 9 6 | | —-v2
0 0 2 2 ~2 V32
W, x y

(d) Apply a soft-thresholding operation to obtain y = Ty (y) with A = 2. Proceed component-wise,
except for the lowest-frequency component—which remains intact, so that 41 = y;.

Solution: Following the definition of T (y) from lecture slide 8-63
Yy—A, yY>A
Ta(y) =4 0 lyl < A
y+ A y<-—A
we can obtain y
Ty(4) =2 To(—V2) =0 To(V32) = V32 -2
vy =(8,2,0,-2+v32)

(e) From y, reconstruct the denoised version x of x.

Solution: Using the final results from 1(b) and vector y of denoised wavelet coefficients

from 1(d)
x = Wuy
_ |2z 2 % 0 2
L 1 V2 0
2 2 2
1.1 9 _\ —24+/32
2 2 2
5
B 5
- 7—V2
—14+V2
2 JPEG 2000

[intermediate] In this exercise, we will explore the JPEG2000 compression standard which uses the
wavelet transform.
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(a) Let four digital filters be described by their z-transform H(z) = 1 (27! +2+ z), G(z) =
1 (-142z2-2%), H(z) = 1 (2242271 4+6+22—2%),andG(z) = (-2 =222 46271 —2—2).
(These filters form the core of the JPEG 2000 standard.) Report in a table the discrete impulse
response of each filter for indices k € [—4...4].

k-4 -3 —2 -1 0 1 2 3 4

RO 0 0 I 3 é 0 0 0

Solution: g[k] 0 0 O1 71% —3% 2 7% 7% 0
}f[k] 0 0 _% ? 51 5 —7 0 0

gkl o o -z I -+ 0 0 0 0

(b) Verify explicitly that the four JPEG 2000 filters satisfy the perfect-reconstruction condition
PR-1 (distortion-free).

Solution: Following the definition of the condition (1) for perfect-reconstruction in Slide
8-46, we only need to verify H(2)H(z) + G(2)G(z) = 2:

- ~ 1 1
H(z)H(z)+G(2)G(z) = 1(—z_2+2z_1+6+2z—z2)i(z_1+2+z)
1 2 1 -3 -2 -1
+Z(_1+2Z_Z)Z(_Z —227°46z2 —2—z)
1
= E(—z_3—2z_2—z_1+2z_2+4z_1+2+6z_1+12+6z

+2+4z+222—z—222—z3)

1
BT (22 +222—62""42+2—-2272 -4z +12-42422°
—|—z_1+2—6z+2z2—|—z3)

= 2

(¢) Verify explicitly that these four filters satisfy the perfect-reconstruction condition PR-2 (aliasing-
free).

Solution: Following the definition of the condition (2) for perfect-reconstruction in Slide
8-46, we only need to verify that H(—2)H(z) + G(—2)G(z) = 0:

H(—2)H(z)+ G(—=2)G(z) = (—272 =221 +6-22—2%) i (z'+2+2)

1
4
(w2 =222 271 —222 -4z —24627" +12H62

1
4
1

+ (71722722) 1 (727372272+62717272)
1

16

—2—42—222—2—222—23)

1
+1p (B2 6T 424222 4T - 12442 4227

+27 1 4+2-62+22%+2°)
=0

(d) Does H satisfy the conjugate-quadrature condition? Justify your answer.
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Solution: The conjugate-quadrature condition is G(z) = —z " 1H(—2"1), here

—zYH(-2z7Y) = —z_li (—z+2-271)
= % (z72—22""+1)
# G(2)
= No

(e) Given the sequence x below, compute its full wavelet analysis and report intermediate results
in a table as indicated.

k-7 -6 -5 —4 -3 -2 -1 0 1 2 3 4 5
k] | 0 0 0 0 0 16 -2 -20 14 -32 0 0 O
yi[k] = [wx hlyaplk] | —  —
(x+ §)[K]
y2[k] = [z * gl 212[K]
1 —
(y2xg)lk] | — — — —
WK+ @exgk] | — — — —
Solution:
E[-7 =6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
zk]J 0 0 O 0 O0 16 -2 -20 14 -32 0 0 0 0 0
(xh)k] | — — 0 -4 1T 28 -T2 -8 -3 -2 8§ 0o — —
y1[k] = [z % h] 210 (k] 0 -4 0 28 0 -2 0 -3 0 8 0
(xxg)k] | 0 0 0 -4 i 0o -13 20 -¥ 3 0 0 0 — —
yalk]l =[wxglapelk] [ O 0 0 -4 0 0 0 20 0 8 0 0 0
(p*h)k | — — — -2 6 14 2 -10 -14 -18 -7 4 — — —
(yaxg)k] | — — — 2 -6 2 -4 -—-10 28 —-14 7 -4 — — —
)kl + @kl | — — — 0 0 16 -2 -20 14 -32 0 0 — — —

3 Wiener Filter

[intermediate] Performing Wiener filtering on a vector signal.

Assume that s is a vector of signals and the goal is to recover them using the MMSE criteria. The
signal model is given as y = As + n where A is a fixed known invertible mixture matrix and n is
a Gaussian noise with covariance matrix C,, = oI that is independent from the signal. Our linear
estimator is in the form of § = A~ 1y.

(a) Determine the optimal value of a that minimizes the MMSE loss defined as €2 = E{||§ — s||3}

Solution:
¢ = B{||5 - 5|3} = B{laA™" (4s + n) - s]3} = E{ll(a — 1)s + aA™'n|3}.
The vectors i and s are independent (by assumption). Thus, so are A~'n and s. Hence,
¢ = (a—1)°E{||s[l3} + o” E{|| A" n||3}.

By taking the derivative with respect to a and setting it to zero, we obtain the optimal
value of « as
o By{s|3}
E{lsI3} + E{|A"nl3}
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(b) Explain your result qualitatively: how should « change as the norm of the signal and noise
change? What role does A play?

Solution: When the norm of the signal increases, a should increase towards a maximum
of one. When the norm of A~ !n increases, a should decrease towards a minimum of zero.
The matrix A~! mixes the noise: what matters is ||A~1n||%, not ||n|3.

(c) Show that if A is a unitary matrix, then « coincides with the formula given in Slide 8-62.

Solution: We have

A | = (A" ')A ' n=n"A"TA 'n =n"n = ||n|3. (1)
Plugging in ||A~'n]||3 = ||n||3, we have
E 2
B

-~ B{[sli3} + E{|lnll3}

Page 7 of 7



