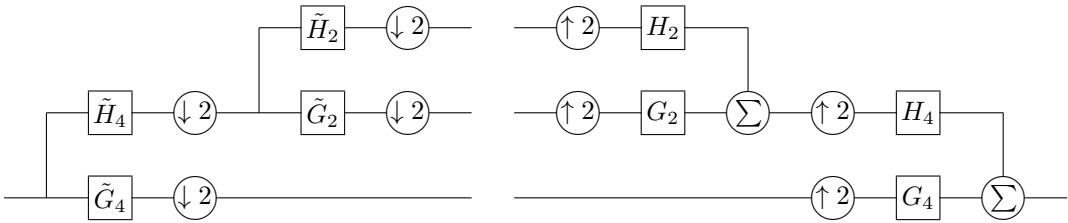


Image Processing 2, Exercise 6

1 The Haar transform

[intermediate] We explicitly write the filters for a small wavelet transform. Although this is a bit difficult, it gives an idea of how the entire transform can be written as a matrix-vector product.

Let the filters of Haar's wavelet transform in one dimension be given by $\tilde{H}(z) = \frac{\sqrt{2}}{2} (1 + z)$, $\tilde{G}(z) = \frac{\sqrt{2}}{2} (1 - z)$, $H(z) = \frac{\sqrt{2}}{2} (1 + z^{-1})$, and $G(z) = \frac{\sqrt{2}}{2} (1 - z^{-1})$. Below, we sketch Mallat's tree-structured filterbank and label the occurrences of these four filters for the support $W = 4$, along with the downsampling operations. Note that we only recursively decompose the low-frequency branch of the tree.



Let $\mathbf{x} \in \mathbb{R}^W$ be the vector representation of the one-dimensional sequence x of finite support $W = 4$. Moreover, let $\tilde{\mathbf{W}}_4$ be such that $\mathbf{y} = \tilde{\mathbf{W}}_4 \mathbf{x}$ is the one-dimensional Haar-wavelet transform of \mathbf{x} . By convention, the coefficients in \mathbf{y} are ordered first from lowest to highest frequency, then from past to future. Following the branches on the left part of the Mallat's tree, we can write $\mathbf{y} = \mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}} y_1 + \mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}} y_2 + \mathbf{P}_{\tilde{\mathbf{G}}} (y_3, y_4)$ with $\mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}} = (1, 0, 0, 0)$, $\mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}} = (0, 1, 0, 0)$, and $\mathbf{P}_{\tilde{\mathbf{G}}} = [(0, 0, 1, 0)^T, (0, 0, 0, 1)^T]$. Thus, we can write

$$\tilde{\mathbf{W}}_4 = \left(\mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{D}_{2 \rightarrow 1}} \tilde{\mathbf{H}}_2 + \mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{D}_{2 \rightarrow 1}} \tilde{\mathbf{G}}_2 \right) \mathbf{D}_{4 \rightarrow 2} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ (0) & (\frac{\sqrt{2}}{2}) & (\frac{\sqrt{2}}{2}) & (0) \\ 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ (\frac{\sqrt{2}}{2}) & (0) & (0) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{H}}_4} + \mathbf{P}_{\tilde{\mathbf{G}}} \mathbf{D}_{4 \rightarrow 2} \tilde{\mathbf{G}}_4.$$

(a) Provide the lowpass $\tilde{\mathbf{H}}_2$, high-pass $\tilde{\mathbf{G}}_2$, downsampling $\mathbf{D}_{4 \rightarrow 2}$, high-pass $\tilde{\mathbf{G}}_4$, and overall transformation $\tilde{\mathbf{W}}_4$.

Solution:

Note: Parentheses indicate matrix elements that have no effect on the transform due to upsampling or downsampling. You would not have to write these parentheses on an exam.

$$\begin{aligned}
\tilde{\mathbf{W}}_4 &= \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}}_{\mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}}} \underbrace{\begin{pmatrix} 1 & 0 \end{pmatrix}}_{\mathbf{D}_{2 \rightarrow 1}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ (\frac{\sqrt{2}}{2}) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{H}}_2} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{D}_{4 \rightarrow 2}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ (0) & (\frac{\sqrt{2}}{2}) & (\frac{\sqrt{2}}{2}) & (0) \\ 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ (\frac{\sqrt{2}}{2}) & (0) & (0) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{H}}_4} \\
&+ \underbrace{\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}}_{\mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}}} \underbrace{\begin{pmatrix} 1 & 0 \end{pmatrix}}_{\mathbf{D}_{2 \rightarrow 1}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ (-\frac{\sqrt{2}}{2}) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{G}}_2} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{D}_{4 \rightarrow 2}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ (0) & (\frac{\sqrt{2}}{2}) & (\frac{\sqrt{2}}{2}) & (0) \\ 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ (\frac{\sqrt{2}}{2}) & (0) & (0) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{H}}_4} \\
&+ \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{\mathbf{P}_{\tilde{\mathbf{G}}}} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{D}_{4 \rightarrow 2}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 \\ (0) & (\frac{\sqrt{2}}{2}) & (-\frac{\sqrt{2}}{2}) & (0) \\ 0 & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ (-\frac{\sqrt{2}}{2}) & (0) & (0) & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\tilde{\mathbf{G}}_4} \\
&= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \end{pmatrix}
\end{aligned}$$

Thus we have

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \end{pmatrix}}_{\tilde{\mathbf{W}}_4} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}}_{\mathbf{x}}$$

This expression is consistent with

$$\begin{aligned}
y_1 &= \underbrace{\frac{\sqrt{2}}{2} \left(\overbrace{\frac{\sqrt{2}}{2} x_1 + \frac{\sqrt{2}}{2} x_2}^{(\tilde{h} * x)[0]} \right)}_{(\tilde{h} * (\tilde{h} * x)_{+2})[0]} + \underbrace{\frac{\sqrt{2}}{2} \left(\overbrace{\frac{\sqrt{2}}{2} x_3 + \frac{\sqrt{2}}{2} x_4}^{(\tilde{h} * x)[2]} \right)}_{(\tilde{h} * (\tilde{h} * x)_{+2})[0]} \\
y_2 &= \underbrace{\frac{\sqrt{2}}{2} \left(\overbrace{\frac{\sqrt{2}}{2} x_1 + \frac{\sqrt{2}}{2} x_2}^{(\tilde{h} * x)[0]} \right)}_{(\tilde{g} * (\tilde{h} * x)_{+2})[0]} - \underbrace{\frac{\sqrt{2}}{2} \left(\overbrace{\frac{\sqrt{2}}{2} x_3 + \frac{\sqrt{2}}{2} x_4}^{(\tilde{h} * x)[2]} \right)}_{(\tilde{g} * (\tilde{h} * x)_{+2})[0]} \\
y_3 &= \underbrace{\frac{\sqrt{2}}{2} x_1 - \frac{\sqrt{2}}{2} x_2}_{(\tilde{g} * x)[0]} \\
y_4 &= \underbrace{\frac{\sqrt{2}}{2} x_3 - \frac{\sqrt{2}}{2} x_4}_{(\tilde{g} * x)[2]}
\end{aligned}$$

(b) Let $\mathbf{P}_{\mathbf{HH}} = \mathbf{P}_{\tilde{\mathbf{H}}\tilde{\mathbf{H}}}^\top$, $\mathbf{P}_{\mathbf{HG}} = \mathbf{P}_{\tilde{\mathbf{G}}\tilde{\mathbf{H}}}^\top$, and $\mathbf{P}_{\mathbf{G}}^\top$ represent the matrices used for honoring the order of the coefficients. Then, give the matrix $\tilde{\mathbf{W}}_4$ that will recover $\mathbf{x} = \mathbf{W}_4 \mathbf{y}$ from its one-dimensional Haar-wavelet transform \mathbf{y} .

Solution: Because $\tilde{\mathbf{W}}_4$ is orthonormal,

$$\begin{aligned}
 \mathbf{W}_4 &= \tilde{\mathbf{W}}_4^\top \\
 &= \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & (0) & 0 & (\frac{\sqrt{2}}{2}) \\ \frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) & 0 & (0) \\ 0 & (\frac{\sqrt{2}}{2}) & \frac{\sqrt{2}}{2} & (0) \\ 0 & (0) & \frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\mathbf{H}_4} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}}_{\mathbf{U}_{2 \rightarrow 4}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) \\ \frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\mathbf{H}_2} \underbrace{\begin{pmatrix} 1 \\ 0 \end{pmatrix}}_{\mathbf{U}_{1 \rightarrow 2}} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}}_{\mathbf{P}_{\mathbf{HH}}} \\
 &\quad + \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & (0) & 0 & (\frac{\sqrt{2}}{2}) \\ \frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) & 0 & (0) \\ 0 & (\frac{\sqrt{2}}{2}) & \frac{\sqrt{2}}{2} & (0) \\ 0 & (0) & \frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\mathbf{H}_4} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}}_{\mathbf{U}_{2 \rightarrow 4}} \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & (-\frac{\sqrt{2}}{2}) \\ -\frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\mathbf{G}_2} \underbrace{\begin{pmatrix} 1 \\ 0 \end{pmatrix}}_{\mathbf{U}_{1 \rightarrow 2}} \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}}_{\mathbf{P}_{\mathbf{GH}}} \\
 &\quad + \underbrace{\begin{pmatrix} \frac{\sqrt{2}}{2} & (0) & 0 & (-\frac{\sqrt{2}}{2}) \\ -\frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) & 0 & (0) \\ 0 & (-\frac{\sqrt{2}}{2}) & \frac{\sqrt{2}}{2} & (0) \\ 0 & (0) & -\frac{\sqrt{2}}{2} & (\frac{\sqrt{2}}{2}) \end{pmatrix}}_{\mathbf{G}_4} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}}_{\mathbf{U}_{2 \rightarrow 4}} \underbrace{\begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{P}_{\mathbf{G}}} \\
 &= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}
 \end{aligned}$$

which is consistent with

$$\begin{aligned}
 x_1 &= \frac{\sqrt{2}}{2} \underbrace{\begin{pmatrix} (h*(P_{hh}y)_{\uparrow 2})[0] & (g*(P_{hg}y)_{\uparrow 2})[0] \\ \frac{\sqrt{2}}{2} y_1 & + \frac{\sqrt{2}}{2} y_2 \end{pmatrix}}_{(h*((h*(P_{hh}y)_{\uparrow 2} + g*(P_{hg}y)_{\uparrow 2}))_{\uparrow 2})[0]} + \underbrace{\frac{\sqrt{2}}{2} y_3}_{(g*(P_g y)_{\uparrow 2})[0]} \\
 x_2 &= \frac{\sqrt{2}}{2} \underbrace{\begin{pmatrix} (h*(P_{hh}y)_{\uparrow 2})[1] & (g*(P_{hg}y)_{\uparrow 2})[1] \\ \frac{\sqrt{2}}{2} y_1 & + \frac{\sqrt{2}}{2} y_2 \end{pmatrix}}_{(h*((h*(P_{hh}y)_{\uparrow 2} + g*(P_{hg}y)_{\uparrow 2}))_{\uparrow 2})[1]} - \underbrace{\frac{\sqrt{2}}{2} y_3}_{(g*(P_g y)_{\uparrow 2})[1]} \\
 x_3 &= \frac{\sqrt{2}}{2} \underbrace{\begin{pmatrix} (h*(P_{hh}y)_{\uparrow 2})[2] & (g*(P_{hg}y)_{\uparrow 2})[2] \\ \frac{\sqrt{2}}{2} y_1 & - \frac{\sqrt{2}}{2} y_2 \end{pmatrix}}_{(h*((h*(P_{hh}y)_{\uparrow 2} + g*(P_{hg}y)_{\uparrow 2}))_{\uparrow 2})[2]} + \underbrace{\frac{\sqrt{2}}{2} y_4}_{(g*(P_g y)_{\uparrow 2})[2]}
 \end{aligned}$$

$$x_4 = \frac{\sqrt{2}}{2} \underbrace{\begin{pmatrix} (h*(P_{hh}y)_{\uparrow 2})[3] & (g*(P_{hg}y)_{\uparrow 2})[3] \\ \frac{\sqrt{2}}{2} y_1 & -\frac{\sqrt{2}}{2} y_2 \end{pmatrix}}_{(h*((h*(P_{hh}y)_{\uparrow 2} + g*(P_{hg}y)_{\uparrow 2}))_{\uparrow 2})[3]} - \underbrace{\frac{\sqrt{2}}{2} y_4}_{(g*(P_g y)_{\uparrow 2})[3]}$$

(c) Give the vector \mathbf{y} of wavelet coefficients for the sequence $x = [\boxed{5} \quad 7 \quad 6 \quad -2]$.

Solution:

$$\underbrace{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}}_{\mathbf{W}_4} \underbrace{\begin{pmatrix} 5 \\ 7 \\ 6 \\ -2 \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} 8 \\ 4 \\ -\sqrt{2} \\ \sqrt{32} \end{pmatrix}}_{\mathbf{y}}$$

(d) Apply a soft-thresholding operation to obtain $\bar{\mathbf{y}} = T_\lambda(\mathbf{y})$ with $\lambda = 2$. Proceed component-wise, except for the lowest-frequency component—which remains intact, so that $\bar{y}_1 = y_1$.

Solution: Following the definition of $T_\lambda(y)$ from lecture slide 8-63

$$T_\lambda(y) = \begin{cases} y - \lambda, & y > \lambda \\ 0, & |y| \leq \lambda \\ y + \lambda, & y < -\lambda \end{cases}$$

we can obtain $\bar{\mathbf{y}}$

$$\begin{aligned} T_2(4) &= 2 & T_2(-\sqrt{2}) &= 0 & T_2(\sqrt{32}) &= \sqrt{32} - 2 \\ \bar{\mathbf{y}} &= (8, 2, 0, -2 + \sqrt{32}) \end{aligned}$$

(e) From $\bar{\mathbf{y}}$, reconstruct the denoised version $\bar{\mathbf{x}}$ of \mathbf{x} .

Solution: Using the final results from 1(b) and vector $\bar{\mathbf{y}}$ of denoised wavelet coefficients from 1(d)

$$\begin{aligned} \bar{\mathbf{x}} &= \mathbf{W}_4 \bar{\mathbf{y}} \\ &= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 8 \\ 2 \\ 0 \\ -2 + \sqrt{32} \end{pmatrix} \\ &= \begin{pmatrix} 5 \\ 5 \\ 7 - \sqrt{2} \\ -1 + \sqrt{2} \end{pmatrix} \end{aligned}$$

2 JPEG 2000

[intermediate] In this exercise, we will explore the JPEG2000 compression standard which uses the wavelet transform.

(a) Let four digital filters be described by their z -transform $H(z) = \frac{1}{4}(z^{-1} + 2 + z)$, $\tilde{G}(z) = \frac{1}{4}(-1 + 2z - z^2)$, $\tilde{H}(z) = \frac{1}{4}(-z^{-2} + 2z^{-1} + 6 + 2z - z^2)$, and $G(z) = \frac{1}{4}(-z^{-3} - 2z^{-2} + 6z^{-1} - 2 - z)$. (These filters form the core of the JPEG 2000 standard.) Report in a table the discrete impulse response of each filter for indices $k \in [-4 \dots 4]$.

k	-4	-3	-2	-1	0	1	2	3	4
Solution:	$h[k]$	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0	0
	$g[k]$	0	0	0	$-\frac{1}{4}$	$-\frac{1}{2}$	$\frac{3}{2}$	$-\frac{1}{2}$	$-\frac{1}{4}$
	$\tilde{h}[k]$	0	0	$-\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	$-\frac{1}{4}$	0
	$\tilde{g}[k]$	0	0	$-\frac{1}{4}$	$\frac{1}{2}$	$-\frac{1}{4}$	0	0	0

(b) Verify explicitly that the four JPEG 2000 filters satisfy the perfect-reconstruction condition PR-1 (distortion-free).

Solution: Following the definition of the condition (1) for perfect-reconstruction in Slide 8-46, we only need to verify $\tilde{H}(z)H(z) + \tilde{G}(z)G(z) = 2$:

$$\begin{aligned}
 \tilde{H}(z)H(z) + \tilde{G}(z)G(z) &= \frac{1}{4}(-z^{-2} + 2z^{-1} + 6 + 2z - z^2) \frac{1}{4}(z^{-1} + 2 + z) \\
 &\quad + \frac{1}{4}(-1 + 2z - z^2) \frac{1}{4}(-z^{-3} - 2z^{-2} + 6z^{-1} - 2 - z) \\
 &= \frac{1}{16}(-z^{-3} - 2z^{-2} - z^{-1} + 2z^{-2} + 4z^{-1} + 2 + 6z^{-1} + 12 + 6z \\
 &\quad + 2 + 4z + 2z^2 - z - 2z^2 - z^3) \\
 &\quad + \frac{1}{16}(z^{-3} + 2z^{-2} - 6z^{-1} + 2 + z - 2z^{-2} - 4z^{-1} + 12 - 4z - 2z^2 \\
 &\quad + z^{-1} + 2 - 6z + 2z^2 + z^3) \\
 &= 2
 \end{aligned}$$

(c) Verify explicitly that these four filters satisfy the perfect-reconstruction condition PR-2 (aliasing-free).

Solution: Following the definition of the condition (2) for perfect-reconstruction in Slide 8-46, we only need to verify that $\tilde{H}(-z)H(z) + \tilde{G}(-z)G(z) = 0$:

$$\begin{aligned}
 \tilde{H}(-z)H(z) + \tilde{G}(-z)G(z) &= \frac{1}{4}(-z^{-2} - 2z^{-1} + 6 - 2z - z^2) \frac{1}{4}(z^{-1} + 2 + z) \\
 &\quad + \frac{1}{4}(-1 - 2z - z^2) \frac{1}{4}(-z^{-3} - 2z^{-2} + 6z^{-1} - 2 - z) \\
 &= \frac{1}{16}(-z^{-3} - 2z^{-2} - z^{-1} - 2z^{-2} - 4z^{-1} - 2 + 6z^{-1} + 12 + 6z \\
 &\quad - 2 - 4z - 2z^2 - z - 2z^2 - z^3) \\
 &\quad + \frac{1}{16}(z^{-3} + 2z^{-2} - 6z^{-1} + 2 + z + 2z^{-2} + 4z^{-1} - 12 + 4z + 2z^2 \\
 &\quad + z^{-1} + 2 - 6z + 2z^2 + z^3) \\
 &= 0
 \end{aligned}$$

(d) Does H satisfy the conjugate-quadrature condition? Justify your answer.

Solution: The conjugate-quadrature condition is $G(z) = -z^{-1}H(-z^{-1})$, here

$$\begin{aligned}
 -z^{-1}H(-z^{-1}) &= -z^{-1} \frac{1}{4} (-z + 2 - z^{-1}) \\
 &= \frac{1}{4} (z^{-2} - 2z^{-1} + 1) \\
 &\neq G(z) \\
 \Rightarrow & \text{No}
 \end{aligned}$$

(e) Given the sequence x below, compute its full wavelet analysis and report intermediate results in a table as indicated.

k	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
$x[k]$	0	0	0	0	0	16	-2	-20	14	-32	0	0	0	0	0
$(x * \tilde{h})[k]$	—	—													
$y_1[k] = [x * \tilde{h}]_{\downarrow 2 \uparrow 2}[k]$	—	—													
$(x * \tilde{g})[k]$															
$y_2[k] = [x * \tilde{g}]_{\downarrow 2 \uparrow 2}[k]$															
$(y_1 * h)[k]$	—	—	—												
$(y_2 * g)[k]$	—	—	—												
$(y_1 * h)[k] + (y_2 * g)[k]$	—	—	—												

Solution:

k	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
$x[k]$	0	0	0	0	0	16	-2	-20	14	-32	0	0	0	0	0
$(x * \tilde{h})[k]$	—	—	0	-4	$\frac{17}{2}$	28	$-\frac{17}{2}$	-20	$-\frac{9}{2}$	-36	$-\frac{39}{2}$	8	0	—	—
$y_1[k] = [x * \tilde{h}]_{\downarrow 2 \uparrow 2}[k]$	—	—	0	-4	0	28	0	-20	0	-36	0	8	0	—	—
$(x * \tilde{g})[k]$	0	0	0	-4	$\frac{17}{2}$	0	-13	20	$-\frac{39}{2}$	8	0	0	0	—	—
$y_2[k] = [x * \tilde{g}]_{\downarrow 2 \uparrow 2}[k]$	0	0	0	-4	0	0	0	20	0	8	0	0	0	—	—
$(y_1 * h)[k]$	—	—	—	-2	6	14	2	-10	-14	-18	-7	4	—	—	—
$(y_2 * g)[k]$	—	—	—	2	-6	2	-4	-10	28	-14	7	-4	—	—	—
$(y_1 * h)[k] + (y_2 * g)[k]$	—	—	—	0	0	16	-2	-20	14	-32	0	0	—	—	—

3 Wiener Filter

[intermediate] Performing Wiener filtering on a vector signal.

Assume that \mathbf{s} is a vector of signals and the goal is to recover them using the MMSE criteria. The signal model is given as $\mathbf{y} = A\mathbf{s} + \mathbf{n}$ where A is a fixed known invertible mixture matrix and \mathbf{n} is a Gaussian noise with covariance matrix $C_{\mathbf{n}} = \sigma^2 \mathbf{I}$ that is independent from the signal. Our linear estimator is in the form of $\tilde{\mathbf{s}} = \alpha A^{-1} \mathbf{y}$.

(a) Determine the optimal value of α that minimizes the MMSE loss defined as $\epsilon^2 = E\{\|\tilde{\mathbf{s}} - \mathbf{s}\|_2^2\}$

Solution:

$$\epsilon^2 = E\{\|\tilde{\mathbf{s}} - \mathbf{s}\|_2^2\} = E\{\|\alpha A^{-1} (A\mathbf{s} + \mathbf{n}) - \mathbf{s}\|_2^2\} = E\{\|(\alpha - 1)\mathbf{s} + \alpha A^{-1} \mathbf{n}\|_2^2\}.$$

The vectors \mathbf{n} and \mathbf{s} are independent (by assumption). Thus, so are $A^{-1} \mathbf{n}$ and \mathbf{s} . Hence,

$$\epsilon^2 = (\alpha - 1)^2 E\{\|\mathbf{s}\|_2^2\} + \alpha^2 E\{\|A^{-1} \mathbf{n}\|_2^2\}.$$

By taking the derivative with respect to α and setting it to zero, we obtain the optimal value of α as

$$\alpha = \frac{E\{\|\mathbf{s}\|_2^2\}}{E\{\|\mathbf{s}\|_2^2\} + E\{\|A^{-1} \mathbf{n}\|_2^2\}}$$

(b) Explain your result qualitatively: how should α change as the norm of the signal and noise change? What role does A play?

Solution: When the norm of the signal increases, α should increase towards a maximum of one. When the norm of $A^{-1}\mathbf{n}$ increases, α should decrease towards a minimum of zero. The matrix A^{-1} mixes the noise: what matters is $\|A^{-1}\mathbf{n}\|_2^2$, not $\|\mathbf{n}\|_2^2$.

(c) Show that if A is a unitary matrix, then α coincides with the formula given in Slide 8-62.

Solution: We have

$$\|A^{-1}\mathbf{n}\|_2^2 = (A^{-1}\mathbf{n})^T A^{-1}\mathbf{n} = \mathbf{n}^T A^{-T} A^{-1}\mathbf{n} = \mathbf{n}^T \mathbf{n} = \|\mathbf{n}\|_2^2. \quad (1)$$

Plugging in $\|A^{-1}\mathbf{n}\|_2^2 = \|\mathbf{n}\|_2^2$, we have

$$\alpha = \frac{E\{\|\mathbf{s}\|_2^2\}}{E\{\|\mathbf{s}\|_2^2\} + E\{\|\mathbf{n}\|_2^2\}}.$$