
Image Processing 2, Exercise 6

1 The Haar transform
[intermediate] We explicitly write the filters for a small wavelet transform. Although this is a bit
difficult, it gives an idea of how the entire transform can be written as a matrix-vector product.

Let the filters of Haar’s wavelet transform in one dimension be given by H̃(z) =
√
2
2 (1 + z), G̃(z) =

√
2
2 (1− z), H(z) =

√
2
2

(
1 + z−1

)
, and G(z) =

√
2
2

(
1− z−1

)
. Below, we sketch Mallat’s tree-

structured filterbank and label the occurrences of these four filters for the support W = 4, along
with the downsampling operations. Note that we only recursively decompose the low-frequency
branch of the tree.

G̃4 �
��
↓ 2 ↑ 2�
��

G4

∑�
��
H̃4 �
��

↓ 2 G̃2 �
��
↓ 2 ↑ 2�
��

G2

∑�
��
↑ 2�
��

H4

H̃2 �
��
↓ 2 ↑ 2�
��

H2

Let x ∈ RW be the vector representation of the one-dimensional sequence x of finite support
W = 4. Moreover, let W̃4 be such that y = W̃4 x is the one-dimensional Haar-wavelet trans-
form of x. By convention, the coefficients in y are ordered first from lowest to highest frequency,
then from past to future. Following the branches on the left part of the Mallat’s tree, we can
write y = PH̃H̃ y1 + PG̃H̃ y2 + PG̃ (y3, y4) with PH̃H̃ = (1, 0, 0, 0), PG̃H̃ = (0, 1, 0, 0), and PG̃ =[

(0, 0, 1, 0)T , (0, 0, 0, 1)T
]
. Thus, we can write

W̃4 =

PH̃H̃

(
1 0

)︸ ︷︷ ︸
D2→1

H̃2 + PG̃H̃

(
1 0

)︸ ︷︷ ︸
D2→1

G̃2

 D4→2


√
2
2

√
2
2 0 0

(0) (
√
2
2 ) (

√
2
2 ) (0)

0 0
√
2
2

√
2
2

(
√
2
2 ) (0) (0) (

√
2
2 )


︸ ︷︷ ︸

H̃4

+PG̃ D4→2 G̃4.

(a) Provide the lowpass H̃2, high-pass G̃2, downsampling D4→2, high-pass G̃4, and overall trans-
formation W̃4.

Solution:

Note: Parentheses indicate matrix elements that have no effect on the transform due to
upsampling or downsampling. You would not have to write these parentheses on an exam.
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W̃4 =


1
0
0
0


︸ ︷︷ ︸

PH̃H̃

(
1 0

)︸ ︷︷ ︸
D2→1

( √
2
2

√
2
2

(
√
2
2 ) (

√
2
2 )

)
︸ ︷︷ ︸

H̃2

(
1 0 0 0
0 0 1 0

)
︸ ︷︷ ︸

D4→2


√
2
2

√
2
2 0 0

(0) (
√
2
2 ) (

√
2
2 ) (0)

0 0
√
2
2

√
2
2

(
√
2
2 ) (0) (0) (

√
2
2 )


︸ ︷︷ ︸

H̃4

+


0
1
0
0


︸ ︷︷ ︸

PG̃H̃

(
1 0

)︸ ︷︷ ︸
D2→1

( √
2
2 −

√
2
2

(−
√
2
2 ) (

√
2
2 )

)
︸ ︷︷ ︸

G̃2

(
1 0 0 0
0 0 1 0

)
︸ ︷︷ ︸

D4→2


√
2
2

√
2
2 0 0

(0) (
√
2
2 ) (

√
2
2 ) (0)

0 0
√
2
2

√
2
2

(
√
2
2 ) (0) (0) (

√
2
2 )


︸ ︷︷ ︸

H̃4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

PG̃

(
1 0 0 0
0 0 1 0

)
︸ ︷︷ ︸

D4→2


√
2
2 −

√
2
2 0 0

(0) (
√
2
2 ) (−

√
2
2 ) (0)

0 0
√
2
2 −

√
2
2

(−
√
2
2 ) (0) (0) (

√
2
2 )


︸ ︷︷ ︸

G̃4

=


1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2√

2
2 −

√
2
2 0 0

0 0
√
2
2 −

√
2
2


Thus we have 

y1
y2
y3
y4


︸ ︷︷ ︸

y

=


1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2√

2
2 −

√
2
2 0 0

0 0
√
2
2 −

√
2
2


︸ ︷︷ ︸

W̃4


x1
x2
x3
x4


︸ ︷︷ ︸

x

This expression is consistent with

y1 =

√
2

2

(h̃∗x)[0]︷ ︸︸ ︷(√
2

2
x1 +

√
2

2
x2

)
+

√
2

2

(h̃∗x)[2]︷ ︸︸ ︷(√
2

2
x3 +

√
2

2
x4

)
︸ ︷︷ ︸(

h̃∗(h̃∗x)↓2

)
[0]

y2 =

√
2

2

(h̃∗x)[0]︷ ︸︸ ︷(√
2

2
x1 +

√
2

2
x2

)
−
√

2

2

(h̃∗x)[2]︷ ︸︸ ︷(√
2

2
x3 +

√
2

2
x4

)
︸ ︷︷ ︸(

g̃∗(h̃∗x)↓2

)
[0]

y3 =

√
2

2
x1 −

√
2

2
x2︸ ︷︷ ︸

(g̃∗x)[0]

y4 =

√
2

2
x3 −

√
2

2
x4︸ ︷︷ ︸

(g̃∗x)[2]
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(b) Let PHH = PT
H̃H̃

, PHG = PT
G̃H̃

, and PT
G̃

represent the matrices used for honoring the order of
the coefficients. Then, give the matrix W4 that will recover x = W4 y from its one-dimensional
Haar-wavelet transform y.

Solution: Because W̃4 is orthonormal,

W4 = W̃H
4

=


√
2
2 (0) 0 (

√
2
2 )√

2
2 (

√
2
2 ) 0 (0)

0 (
√
2
2 )

√
2
2 (0)

0 (0)
√
2
2 (

√
2
2 )


︸ ︷︷ ︸

H4


1 0
0 0
0 1
0 0


︸ ︷︷ ︸

U2→4

( √
2
2 (

√
2
2 )√

2
2 (

√
2
2 )

)
︸ ︷︷ ︸

H2

(
1
0

)
︸ ︷︷ ︸
U1→2

(
1 0 0 0

)︸ ︷︷ ︸
PHH

+


√
2
2 (0) 0 (

√
2
2 )√

2
2 (

√
2
2 ) 0 (0)

0 (
√
2
2 )

√
2
2 (0)

0 (0)
√
2
2 (

√
2
2 )


︸ ︷︷ ︸

H4


1 0
0 0
0 1
0 0


︸ ︷︷ ︸

U2→4

( √
2
2 (−

√
2
2 )

−
√
2
2 (

√
2
2 )

)
︸ ︷︷ ︸

G2

(
1
0

)
︸ ︷︷ ︸
U1→2

(
0 1 0 0

)︸ ︷︷ ︸
PGH

+


√
2
2 (0) 0 (−

√
2
2 )

−
√
2
2 (

√
2
2 ) 0 (0)

0 (−
√
2
2 )

√
2
2 (0)

0 (0) −
√
2
2 (

√
2
2 )


︸ ︷︷ ︸

G4


1 0
0 0
0 1
0 0


︸ ︷︷ ︸

U2→4

(
0 0 1 0
0 0 0 1

)
︸ ︷︷ ︸

PG

=


1
2

1
2

√
2
2 0

1
2

1
2 −

√
2
2 0

1
2 − 1

2 0
√
2
2

1
2 − 1

2 0 −
√
2
2


which is consistent with

x1 =

√
2

2


(h∗(Phhy)↑2)[0]︷ ︸︸ ︷√

2

2
y1 +

(g∗(Phgy)↑2)[0]︷ ︸︸ ︷√
2

2
y2


︸ ︷︷ ︸(

h∗((h∗(Phhy)↑2+g∗(Phgy)↑2))↑2

)
[0]

+

√
2

2
y3︸ ︷︷ ︸

(g∗(Pgy)↑2)[0]

x2 =

√
2

2


(h∗(Phhy)↑2)[1]︷ ︸︸ ︷√

2

2
y1 +

(g∗(Phgy)↑2)[1]︷ ︸︸ ︷√
2

2
y2


︸ ︷︷ ︸(

h∗((h∗(Phhy)↑2+g∗(Phgy)↑2))↑2

)
[1]

−
√

2

2
y3︸ ︷︷ ︸

(g∗(Pgy)↑2)[1]

x3 =

√
2

2


(h∗(Phhy)↑2)[2]︷ ︸︸ ︷√

2

2
y1 −

(g∗(Phgy)↑2)[2]︷ ︸︸ ︷√
2

2
y2


︸ ︷︷ ︸(

h∗((h∗(Phhy)↑2+g∗(Phgy)↑2))↑2

)
[2]

+

√
2

2
y4︸ ︷︷ ︸

(g∗(Pgy)↑2)[2]
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x4 =

√
2

2


(h∗(Phhy)↑2)[3]︷ ︸︸ ︷√

2

2
y1 −

(g∗(Phgy)↑2)[3]︷ ︸︸ ︷√
2

2
y2


︸ ︷︷ ︸(

h∗((h∗(Phhy)↑2+g∗(Phgy)↑2))↑2

)
[3]

−
√

2

2
y4︸ ︷︷ ︸

(g∗(Pgy)↑2)[3]

(c) Give the vector y of wavelet coefficients for the sequence x =
[

5 7 6 −2
]
.

Solution: 
1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2√

2
2 −

√
2
2 0 0

0 0
√
2
2 −

√
2
2


︸ ︷︷ ︸

W̃4


5
7
6
−2


︸ ︷︷ ︸

x

=


8
4

−
√

2√
32


︸ ︷︷ ︸

y

(d) Apply a soft-thresholding operation to obtain ȳ = Tλ(y) with λ = 2. Proceed component-wise,
except for the lowest-frequency component—which remains intact, so that ȳ1 = y1.

Solution: Following the definition of Tλ(y) from lecture slide 8-63

Tλ(y) =

 y − λ, y > λ
0, |y| ≤ λ
y + λ, y < −λ

we can obtain ȳ

T2(4) = 2 T2(−
√

2) = 0 T2(
√

32) =
√

32− 2

ȳ = (8, 2, 0,−2 +
√

32)

(e) From ȳ, reconstruct the denoised version x̄ of x.

Solution: Using the final results from 1(b) and vector ȳ of denoised wavelet coefficients
from 1(d)

x̄ = W4 ȳ

=


1
2

1
2

√
2
2 0

1
2

1
2 −

√
2
2 0

1
2 − 1

2 0
√
2
2

1
2 − 1

2 0 −
√
2
2




8
2
0

−2 +
√

32



=


5
5

7−
√

2

−1 +
√

2



2 JPEG 2000
[intermediate] In this exercise, we will explore the JPEG2000 compression standard which uses the
wavelet transform.
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(a) Let four digital filters be described by their z-transform H(z) = 1
4

(
z−1 + 2 + z

)
, G̃(z) =

1
4

(
−1 + 2 z − z2

)
, H̃(z) = 1

4

(
−z−2 + 2 z−1 + 6 + 2 z − z2

)
, andG(z) = 1

4

(
−z−3 − 2 z−2 + 6 z−1 − 2− z

)
.

(These filters form the core of the JPEG 2000 standard.) Report in a table the discrete impulse
response of each filter for indices k ∈ [−4 . . . 4].

Solution:

k −4 −3 −2 −1 0 1 2 3 4
h[k] 0 0 0 1

4
1
2

1
4 0 0 0

g[k] 0 0 0 − 1
4 − 1

2
3
2 − 1

2 − 1
4 0

h̃[k] 0 0 − 1
4

1
2

3
2

1
2 − 1

4 0 0
g̃[k] 0 0 − 1

4
1
2 − 1

4 0 0 0 0

(b) Verify explicitly that the four JPEG 2000 filters satisfy the perfect-reconstruction condition
PR-1 (distortion-free).

Solution: Following the definition of the condition (1) for perfect-reconstruction in Slide
8-46, we only need to verify H̃(z)H(z) + G̃(z)G(z) = 2:

H̃(z)H(z) + G̃(z)G(z) =
1

4

(
−z−2 + 2 z−1 + 6 + 2 z − z2

) 1

4

(
z−1 + 2 + z

)
+

1

4

(
−1 + 2 z − z2

) 1

4

(
−z−3 − 2 z−2 + 6 z−1 − 2− z

)
=

1

16

(
−z−3 − 2 z−2 − z−1 + 2 z−2 + 4 z−1 + 2 + 6 z−1 + 12 + 6 z

+ 2 + 4 z + 2 z2 − z − 2 z2 − z3
)

+
1

16

(
z−3 + 2 z−2 − 6 z−1 + 2 + z − 2 z−2 − 4 z−1 + 12− 4 z − 2 z2

+ z−1 + 2− 6 z + 2 z2 + z3
)

= 2

(c) Verify explicitly that these four filters satisfy the perfect-reconstruction condition PR-2 (aliasing-
free).

Solution: Following the definition of the condition (2) for perfect-reconstruction in Slide
8-46, we only need to verify that H̃(−z)H(z) + G̃(−z)G(z) = 0:

H̃(−z)H(z) + G̃(−z)G(z) =
1

4

(
−z−2 − 2 z−1 + 6− 2 z − z2

) 1

4

(
z−1 + 2 + z

)
+

1

4

(
−1− 2 z − z2

) 1

4

(
−z−3 − 2 z−2 + 6 z−1 − 2− z

)
=

1

16

(
−z−3 − 2 z−2 − z−1 − 2 z−2 − 4 z−1 − 2 + 6 z−1 + 12 + 6 z

− 2− 4 z − 2 z2 − z − 2 z2 − z3
)

+
1

16

(
z−3 + 2 z−2 − 6 z−1 + 2 + z + 2 z−2 + 4 z−1 − 12 + 4 z + 2 z2

+ z−1 + 2− 6 z + 2 z2 + z3
)

= 0

(d) Does H satisfy the conjugate-quadrature condition? Justify your answer.
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Solution: The conjugate-quadrature condition is G(z) = −z−1H(−z−1), here

−z−1H(−z−1) = −z−1 1

4

(
−z + 2− z−1

)
=

1

4

(
z−2 − 2 z−1 + 1

)
6= G(z)

⇒ No

(e) Given the sequence x below, compute its full wavelet analysis and report intermediate results
in a table as indicated.

k −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
x[k] 0 0 0 0 0 16 −2 −20 14 −32 0 0 0 0 0

(x ∗ h̃)[k] — — — —

y1[k] = [x ∗ h̃]↓2↑2[k] — — — —
(x ∗ g̃)[k] — —

y2[k] = [x ∗ g̃]↓2↑2[k] — —
(y1 ∗ h)[k] — — — — — —
(y2 ∗ g)[k] — — — — — —

(y1 ∗ h)[k] + (y2 ∗ g)[k] — — — — — —

Solution:
k −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

x[k] 0 0 0 0 0 16 −2 −20 14 −32 0 0 0 0 0

(x ∗ h̃)[k] — — 0 −4 17
2 28 − 17

2 −20 − 9
2 −36 − 39

2 8 0 — —

y1[k] = [x ∗ h̃]↓2↑2[k] — — 0 −4 0 28 0 −20 0 −36 0 8 0 — —
(x ∗ g̃)[k] 0 0 0 −4 17

2 0 −13 20 − 39
2 8 0 0 0 — —

y2[k] = [x ∗ g̃]↓2↑2[k] 0 0 0 −4 0 0 0 20 0 8 0 0 0 — —
(y1 ∗ h)[k] — — — −2 6 14 2 −10 −14 −18 −7 4 — — —
(y2 ∗ g)[k] — — — 2 −6 2 −4 −10 28 −14 7 −4 — — —

(y1 ∗ h)[k] + (y2 ∗ g)[k] — — — 0 0 16 −2 −20 14 −32 0 0 — — —

3 Wiener Filter
[intermediate] Performing Wiener filtering on a vector signal.

Assume that s is a vector of signals and the goal is to recover them using the MMSE criteria. The
signal model is given as y = As + n where A is a fixed known invertible mixture matrix and n is
a Gaussian noise with covariance matrix Cn = σ2I that is independent from the signal. Our linear
estimator is in the form of s̃ = αA−1y.

(a) Determine the optimal value of α that minimizes the MMSE loss defined as ε2 = E{‖s̃− s‖22}

Solution:

ε2 = E{‖s̃− s‖22} = E{‖αA−1 (As + n)− s‖22} = E{‖(α− 1)s + αA−1n‖22}.

The vectors n and s are independent (by assumption). Thus, so are A−1n and s. Hence,

ε2 = (α− 1)2E{‖s‖22}+ α2E{‖A−1n‖22}.

By taking the derivative with respect to α and setting it to zero, we obtain the optimal
value of α as

α =
E{‖s‖22}

E{‖s‖22}+ E{‖A−1n‖22}
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(b) Explain your result qualitatively: how should α change as the norm of the signal and noise
change? What role does A play?

Solution: When the norm of the signal increases, α should increase towards a maximum
of one. When the norm of A−1n increases, α should decrease towards a minimum of zero.
The matrix A−1 mixes the noise: what matters is ‖A−1n‖22, not ‖n‖22.

(c) Show that if A is a unitary matrix, then α coincides with the formula given in Slide 8-62.

Solution: We have

‖A−1n‖22 = (A−1n)TA−1n = nTA−TA−1n = nTn = ‖n‖22. (1)

Plugging in ‖A−1n‖22 = ‖n‖22, we have

α =
E{‖s‖22}

E{‖s‖22}+ E{‖n‖22}
.
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