
Image Processing 2, Exercise 5

1 The DFT matrices
Specific examples of DFT matrices.

(a) A periodic sequence is given by its length-2 period x =
[
x[0] x[1]

]
, with x[0], x[1] ∈ C.

Knowing that the discrete Fourier transform is an orthonormal transform that maps x to y,

give the periodic sequence (with length-2 period) as y =
[
y[0] y[1]

]
. Express y[0] and y[1] in

terms of x[0] and x[1].

(b) A periodic sequence is given by its length-4 period x =
[
x[0] x[1] x[2] x[3]

]
. Its discrete

Fourier transform is y =
[
y[−1] y[0] y[1] y[2]

]
. Express y[−1], y[0], y[1], and y[2] in explicit

terms of the samples of x.

(c) Let a periodic image be characterized by the (4× 2) rectangular tile

x =

[
x[0, 0] x[1, 0] x[2, 0] x[3, 0]

x[0, 1] x[1, 1] x[2, 1] x[3, 1]

]
.

Give the vector representation x of the tile, according to the image-processing conventions
detailed in the Table 1 which is a complete and commented version of the table on pp. 8-13 of
your course notes.

(d) Now, we want to compute the discrete Fourier transform of the image. Give the matrix A such
that (Ax) corresponds to the vector representation y of the tile

y =

[
y[−1, 0] y[0, 0] y[1, 0] y[2, 0]

y[−1, 1] y[0, 1] y[1, 1] y[2, 1]

]
.

Hint: Take advantage of the separability of the Fourier transform and proceed in two indepen-
dent steps using the results from 1(a) and 1(b).

(e) Give the basis U associated to matrix A.

(f) Is U symmetric? Hermitian? Toeplitz? circulant? Motivate your answers.

2 DFT properties
[basic] Proving simple properties of the DFT.

(a) Show that
∑N−1

k=0 e−jn
2π
N k = N

∑
m∈Z δ[n − mN ] for n ∈ Z, N ∈ N\{0}. Suggestion: Pay

attention to distinguish Dirac from unit sample.

(b) For n ∈ Z, show that 1√
N

∑N−1
k=0 x[k] e−jn

2π
N k = [FN x]1+n mod N . (The mathematical defini-

tion of the mod operator is such that (p mod q) ∈ [0 . . . q − 1] for p ∈ Z, q ∈ N\{0}.)
(c) Given x ∈ RN , define xs ∈ RN such that [xs]i = [x]1+(1−i) mod N . Then, show that F∗N x =

FN xs.

3 Multirate operations

[basic] The goal of this exercise is to study the combination of linear systems with down/up sampling
operators

(a) Develop the operation —�
��
↑ 2 —�
��

↓ 2 — in the z domain.

(b) Show that —�
��
↓ 2 — H(z) — ⇔ — H(z2) —�
��

↓ 2 —.

(c) Show that —�
��
↑ 2 — H(z2) — ⇔ — H(z) —�
��

↑ 2 —.
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] j
,x
〉

y
=

Ũ
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