
Image Processing 2, Exercise 5

1 The DFT matrices
Specific examples of DFT matrices.

(a) A periodic sequence is given by its length-2 period x =
[
x[0] x[1]

]
, with x[0], x[1] ∈ C.

Knowing that the discrete Fourier transform is an orthonormal transform that maps x to y,

give the periodic sequence (with length-2 period) as y =
[
y[0] y[1]

]
. Express y[0] and y[1] in

terms of x[0] and x[1].

Solution: Use the definition of DFT we have

y[n] =

N−1∑
k=0

(
1√
N

e−jn
2π
N k

)
x[k]

N=2
=

1√
2

2−1∑
k=0

x[k]e−jnπk

=
1√
2
x[0] +

1√
2
x[1]e−jnπ.

Hence, [
y [0]
y [1]

]
︸ ︷︷ ︸
ycol

=

[√
2
2

√
2
2√

2
2 −

√
2
2

]
︸ ︷︷ ︸

Acol

[
x [0]
x [1]

]
︸ ︷︷ ︸
xcol

(b) A periodic sequence is given by its length-4 period x =
[
x[0] x[1] x[2] x[3]

]
. Its discrete

Fourier transform is y =
[
y[−1] y[0] y[1] y[2]

]
. Express y[−1], y[0], y[1], and y[2] in explicit

terms of the samples of x.

Solution: Similar to 1(a), we have

y[n] =
1

2

4−1∑
k=0

x[k] e−jn
2π
4 k

=
1

2
x[0] +

1

2
x[1] e−jn

π
2 +

1

2
x[2] e−jnπ +

1

2
x[3] e−jn

3π
2 .

Hence, 
y [−1]
y [0]
y [1]
y [2]


︸ ︷︷ ︸

yrow

=


1
2

j
2 − 1

2 − j
2

1
2

1
2

1
2

1
2

1
2 − j

2 − 1
2

j
2

1
2 − 1

2
1
2 − 1

2


︸ ︷︷ ︸

Arow


x [0]
x [1]
x [2]
x [3]


︸ ︷︷ ︸
xrow

(c) Let a periodic image be characterized by the (4× 2) rectangular tile

x =

[
x[0, 0] x[1, 0] x[2, 0] x[3, 0]

x[0, 1] x[1, 1] x[2, 1] x[3, 1]

]
.
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Give the vector representation x of the tile, according to the image-processing conventions
detailed in the Table 1 which is a complete and commented version of the table on pp. 8-13 of
your course notes.

Solution:

x =
[

x[0, 0] x[1, 0] x[2, 0] x[3, 0] x[0, 1] x[1, 1] x[2, 1] x[3, 1]
]T
.

(d) Now, we want to compute the discrete Fourier transform of the image. Give the matrix A such
that (Ax) corresponds to the vector representation y of the tile

y =

[
y[−1, 0] y[0, 0] y[1, 0] y[2, 0]

y[−1, 1] y[0, 1] y[1, 1] y[2, 1]

]
.

Hint: Take advantage of the separability of the Fourier transform and proceed in two indepen-
dent steps using the results from 1(a) and 1(b).

Solution: When applying DFT on a 2D image, thanks to the separability of FT, we can
apply DFT first on the columns of this 2D image and then on the rows (or first on rows
then on columns) (see lecture slides 8-31).

This means that matrix A can be decomposed as a multiplication of two matrices Ahorizontal

and Avertical. Ahorizontal (Avertical) applies DFT on the row (column) vectors of the 2D
image.

y = Ax = ArowAcolx.

From 1(b) we have
yrow = Arowxrow. (1)

From 1(a) we have
ycol = Acolxcol. (2)

The first row of the image y can be obtained by applying the transformation in (1) to the
first row of x. The same applies for the second row of y and the second row of x.

Hence, Ahorizontal =

[
Arow O
O Arow

]
, where O is a 4× 4 zero matrix.

Similarly, the columns of y can be obtained by applying the transformation in (2) to the
corresponding columns of x.

Hence, Avertical =

[
Acol[1, 1]I Acol[1, 2]I
Acol[2, 1]I Acol[2, 2]I

]
=

[√
2
2 I

√
2
2 I√

2
2 I −

√
2
2 I

]
, where I is a 4 × 4 identity

matrix.

Precisely,

Ahorizontal =



1
2

j
2 − 1

2 − j
2 0 0 0 0

1
2

1
2

1
2

1
2 0 0 0 0

1
2 − j

2 − 1
2

j
2 0 0 0 0

1
2 − 1

2
1
2 − 1

2 0 0 0 0

0 0 0 0 1
2

j
2 − 1

2 − j
2

0 0 0 0 1
2

1
2

1
2

1
2

0 0 0 0 1
2 − j

2 − 1
2

j
2

0 0 0 0 1
2 − 1

2
1
2 − 1

2


,
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Avertical =



√
2
2 0 0 0

√
2
2 0 0 0

0
√
2
2 0 0 0

√
2
2 0 0

0 0
√
2
2 0 0 0

√
2
2 0

0 0 0
√
2
2 0 0 0

√
2
2√

2
2 0 0 0 −

√
2
2 0 0 0

0
√
2
2 0 0 0 −

√
2
2 0 0

0 0
√
2
2 0 0 0 −

√
2
2 0

0 0 0
√
2
2 0 0 0 −

√
2
2


.

A = AhorizontalAvertical =

√
2

4



1 j −1 −j 1 j −1 −j
1 1 1 1 1 1 1 1
1 −j −1 j 1 −j −1 j
1 −1 1 −1 1 −1 1 −1
1 j −1 −j −1 −j 1 j
1 1 1 1 −1 −1 −1 −1
1 −j −1 j −1 j 1 −j
1 −1 1 −1 −1 1 −1 1


.

(e) Give the basis U associated to matrix A.

Solution: Because DFT is a linear transform,

U = A−1
orthonormality

= AH =

√
2

4



1 1 1 1 1 1 1 1
−j 1 j −1 −j 1 j −1
−1 1 −1 1 −1 1 −1 1
j 1 −j −1 j 1 −j −1
1 1 1 1 −1 −1 −1 −1
−j 1 j −1 j −1 −j 1
−1 1 −1 1 1 −1 1 −1
j 1 −j −1 −j −1 j 1


.

(f) Is U symmetric? Hermitian? Toeplitz? circulant? Motivate your answers.

Solution: (
[U]1,2 = 1 6= −j =

[
UT
]
1,2

)
⇒ (¬symmetric)(

[U]1,2 = 1 6= j =
[
UH
]
1,2

)
⇒ (¬Hermitian)(

[U]1,2 = 1 6= j = [U]2,3

)
⇒ (¬Toeplitz)

(¬Toeplitz)⇒ (¬circulant)

2 DFT properties
[basic] Proving simple properties of the DFT.

(a) Show that
∑N−1
k=0 e−jn

2π
N k = N

∑
m∈Z δ[n − mN ] for n ∈ Z, N ∈ N\{0}. Suggestion: Pay

attention to distinguish Dirac from unit sample.

Solution:
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n = mN :

N−1∑
k=0

e−jn
2π
N k =

N−1∑
k=0

e−jm 2π k︸ ︷︷ ︸
1

= N

n 6= mN :

N−1∑
k=0

e−jn
2π
N k =

N−1∑
k=0

(
e−jn

2π
N

)k
=

1− e−jn
2π
N N

1− e−jn
2π
N

(Sum of a geometric sequence)

= 0

⇒

(
N−1∑
k=0

e−jn
2π
N k = N

∑
m∈Z

δ[n−mN ]

)

(b) For n ∈ Z, show that 1√
N

∑N−1
k=0 x[k] e−jn

2π
N k = [FN x]1+(n mod N). (The mathematical defini-

tion of the mod operator is such that (p mod q) ∈ [0 . . . q − 1] for p ∈ Z, q ∈ N\{0}.)

Solution:

[FNx]n =
1√
N

N−1∑
k=0

x[k]e−j
2π
N (n−1)k n = 1, · · · , N

[FNx]1+(n mod N) =
1√
N

N−1∑
k=0

x[k]e−j
2π
N (1+(n mod N)−1)k

=
1√
N

N−1∑
k=0

x[k]e−j
2π
N (n mod N)k.

Since n mod N = n−N
⌊
n
N

⌋
, we have

[FNx]1+(n mod N) =
1√
N

N−1∑
k=0

x[k]e−j
2π
N (n−Nb nN c)k

=
1√
N

N−1∑
k=0

x[k]e−j
2π
N nk · ej

2π
N b nN ck︸ ︷︷ ︸

=1, since b nN c∈Z

=
1√
N

N−1∑
k=0

x[k]e−j
2π
N nk.

(c) Given x ∈ RN , define xs ∈ RN such that [xs]i = [x]1+(1−i) mod N . Then, show that F∗N x =
FN xs.

Solution:
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[FNxs]n =
1√
N

N∑
i=1

[xs]i e−j
2π
N (n−1)(i−1)

=
1√
N

N∑
i=1

[x]1+(1−i) mod N e−j
2π
N (n−1)(i−1)

Substitute i = N + 2− k,

[FNxs]n =
1√
N

N+1∑
k=2

[x](1+(1−(N+2−k)) mod N) e−j
2π
N (n−1)(N+2−k−1)

=
1√
N

N+1∑
k=2

[x](1+(k−N−1) mod N) e−j
2π
N (n−1)(N−k+1)

Since (k −N − 1) mod N = (k − 1) mod N ,

e−j
2π
N (n−1)(N−k+1) = e−j

2π
N (n−1)(1−k) · e−j 2πN (n−1)N︸ ︷︷ ︸

1

= ej
2π
N (n−1)(k−1)

Hence,

[FNxs]n =
1√
N

N+1∑
k=2

[x]1+(k−1) mod N · e
j 2πN (n−1)(k−1)︸ ︷︷ ︸

Ak

[FNxs]n =
1√
N

N+1∑
k=2

Ak =
1√
N

(
−A1 +

N∑
k=1

Ak + AN+1

)

A1 = [x]1 · e
j 2πN (n−1)(0) = 1,

AN+1 = [x]1 · e
j 2πN (n−1)(N) = 1.

For 1 ≤ k ≤ N : 1 + (k − 1) mod N = 1 + (k − 1) = k, therefore,

[FNxs]n =
1√
N

N∑
k=1

[x]k ej
2π
N (n−1)(k−1)

= [F∗N x]n .

3 Multirate operations

[basic] The goal of this exercise is to study the combination of linear systems with down/up sampling
operators

(a) Develop the operation —�
��
↑ 2 —�
��

↓ 2 — in the z domain.
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Solution:

Let X(z) be the input, U(z) the output after upsampling, Y (z) the output after downsam-
pling.

U(z) = X(z2)

Y (z) =
1

2

(
U
(
z

1
2

)
+ U

(
−z 1

2

))
=

1

2

(
X

((
z

1
2

)2)
+X

((
−z 1

2

)2))
=

1

2
(X (z) +X (z))

= X(z)

(b) Show that —�
��
↓ 2 — H(z) — ⇔ — H(z2) —�
��

↓ 2 —.

Solution:

LHS: Let X(z) be the input, U ′(z) the output after downsampling, Y ′(z) the output after
filtering.

RHS: Let X(z) be the input, Y ′′(z) the output after downsampling, U ′′(z) the output after
filtering.

LHS:

U ′(z) =
1

2

(
X
(
z

1
2

)
+X

(
−z 1

2

))
Y ′(z) = H(z)U ′(z)

= H(z)
1

2

(
X
(
z

1
2

)
+X

(
−z 1

2

))
RHS:

U ′′(z) = H(z2)X(z)

Y ′′(z) =
1

2

(
U ′′
(
z

1
2

)
+ U ′′

(
−z 1

2

))
=

1

2

(
H

((
z

1
2

)2)
X
(
z

1
2

)
+H

((
−z 1

2

)2)
X
(
−z 1

2

))
=

1

2

(
H(z)X

(
z

1
2

)
+H(z)X

(
−z 1

2

))
= Y ′(z)

(c) Show that —�
��
↑ 2 — H(z2) — ⇔ — H(z) —�
��

↑ 2 —.

Solution:

LHS: Let X(z) be the input, U ′(z) the output after upsampling. Y ′(z) the output after
filtering.

RHS: Let X(z) be the input, Y ′′(z) the output after upsampling. U ′′(z) the output after
filtering.

LHS:

U ′(z) = X(z2)
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Y ′(z) = H(z2)U ′(z)

= H(z2)X(z2)

RHS:

U ′′(z) = H(z)X(z)

Y ′′(z) = U ′′(z2)

= H(z2)X(z2)

= Y ′(z)
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