

Image Processing 2, Exercise 4

1 Bases and Frames

[refresher] In this problem, we build a geometric intuition for bases and frames, which are key concepts in understanding the transforms used in image processing.

Let the signal $\mathbf{x} = [2 \ 1]^T$ be a vector in \mathbb{R}^2 and consider the vectors $\mathbf{u}_1 = \frac{\sqrt{2}}{2} [1 \ 1]^T$ and $\mathbf{u}_2 = [1 \ 0]^T$.

- (a) Plot \mathbf{x} , \mathbf{u}_1 , and \mathbf{u}_2 .
- (b) Add to your plot two vectors, $a_1\mathbf{u}_1$ and $a_2\mathbf{u}_2$ such that $a_1\mathbf{u}_1 + a_2\mathbf{u}_2 = \mathbf{x}$. You should not need to explicitly compute a_1 and a_2 !
- (c) Is $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2]$ a basis? Justify your answer.
- (d) Is \mathbf{U} an orthonormal basis? Justify your answer.
- (e) Give the dual basis, $\tilde{\mathbf{U}}$.
- (f) Using $\tilde{\mathbf{U}}$, compute \mathbf{a} such that $\mathbf{Ua} = \mathbf{x}$. Do these values make sense considering the picture you drew in (b)?
- (g) Pick a \mathbf{u}_3 different from \mathbf{u}_1 and \mathbf{u}_2 and make two new plots graphically expressing \mathbf{x} as $a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3$ in two different ways. Which property of frames does this demonstrate?

2 Karhunen-Loeve Transform

[intermediate] A concrete example of computing the KLT.

Consider two Gaussian independent random variables x_1 and x_2 with zero mean and unit variance. Define the random variables $y_1 = \frac{3x_1 - x_2}{2}$ and $y_2 = \frac{-x_1 + 3x_2}{2}$.

- (a) Let $\mathbf{x} = (x_1, x_2)$. Compute the covariance matrix of \mathbf{x} .
- (b) Identify the matrix \mathbf{A} such that $\mathbf{y} = \mathbf{Ax}$, where $\mathbf{y} = (y_1, y_2)$.
- (c) Compute the covariance matrix of \mathbf{y} .
- (d) Compute the KLT of \mathbf{y} , \mathbf{A}_{KLT} . Give $\mathbf{z} = \mathbf{A}_{\text{KLT}}\mathbf{y}$ in terms of \mathbf{x} .
- (e) Compute the covariance matrix of \mathbf{z} .
- (f) Based on your analysis, is there a unique representation of \mathbf{y} of the form \mathbf{Bq} , where q_1 and q_2 are decorrelated?

3 LSI Systems and Circulant Matrices

[intermediate] Because the DFT diagonalizes circulant matrices, it can be an efficient way to implement digital LSI systems. Here, we explore the connection between LSI systems, circulant matrices, and the DFT.

- (a) Give the result of the application of an LSI system with impulse response $h = [\dots \ 0 \ \boxed{a} \ b \ c \ 0 \ \dots]$ to the signal $[\dots \ 0 \ \boxed{x} \ y \ z \ 0 \ \dots]$.
- (b) Write the nonzero part of the computation from part (a) as a matrix-vector product, i.e.

$$\left[\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right] \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \left[\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right].$$

Note whether the matrix is Toeplitz, circulant, or neither.

(c) Give the result of the application of an LSI system with impulse response $h = \begin{bmatrix} a & b & c \end{bmatrix}$ to the signal $\begin{bmatrix} x & y & z \end{bmatrix}$, this time assuming periodic boundary conditions. Is the result the same as the nonzero part of part (a)?

(d) Write the computation in part (c) in the form of a matrix-vector product. Note whether the matrix is Toeplitz, circulant, or neither.

(e) Find the 5×5 circulant matrix, \mathbf{H} , such that $\mathbf{H} \begin{bmatrix} x & y & z & 0 & 0 \end{bmatrix}^T$ matches the nonzero part of the result from part (a).