

Image Processing 2, Exercise 3

1 Linear Interpolation

[basic] Using interpolation to shift a sequence.

(a) Let a sequence of samples be given by $f = \{\dots, -2, -2, -5, \boxed{1}, 3, 5, 5, \dots\}$. This sequence is linearly interpolated to produce the continuously defined function $f_1(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^1(x - k)$ with $x \in \mathbb{R}$ such that $f_1(x)|_{x=k} = f[k]$ for $k \in \mathbb{Z}$. Find the coefficients $c[k]$ for $k \in \mathbb{Z}$.

Solution: Since β^1 is interpolating, it is easy to see that $c[k] = f[k]$.

(b) By translating f_1 , one creates $g_1(x) = f_1(x - \frac{4}{3})$. Then, the sequence $g_1[k]$ satisfies $g_1[k] = g_1(x)|_{x=k}$ for $k \in \mathbb{Z}$. Find the filter w such that $g_1 = w * f$.

Solution:

$$\begin{aligned} g_1(n) &= f_1(n - \frac{4}{3}) \\ &= \sum_{k \in \mathbb{Z}} f[k] \beta^1(n - \frac{4}{3} - k), \end{aligned}$$

$$\text{where } \beta^1(x) = \begin{cases} 1 - |x|, & |x| \leq 1, \\ 0, & \text{else.} \end{cases}$$

The center of this filter is at: $k = n \Rightarrow \beta^1(n - \frac{4}{3} - n) = \beta^1(-\frac{4}{3}) = 0$.

Nonzero entries of this filter only happen at locations:

$$k = n - 1 \Rightarrow \beta^1(n - \frac{4}{3} - (n - 1)) = \beta^1(-\frac{1}{3}) = \frac{2}{3}$$

$$k = n - 2 \Rightarrow \beta^1(n - \frac{4}{3} - (n - 2)) = \beta^1(\frac{2}{3}) = \frac{1}{3}$$

Hence,

$$\begin{aligned} g_1[n] &= f[n] \cdot 0 + f[n - 1] \cdot \frac{2}{3} + f[n - 2] \cdot \frac{1}{3} \\ &= \left(f * \underbrace{\left[\dots, 0, \boxed{0}, \frac{2}{3}, \frac{1}{3}, 0, \dots \right]}_w \right) [n] \end{aligned}$$

2 B-spline derivatives

[basic] B-splines representation of a function can be extremely useful when dealing with the continuous-domain quantities related to the function, including its derivatives.

Compute the Fourier transform of the function $(\beta^{n-1}(x + \frac{1}{2}) - \beta^{n-1}(x - \frac{1}{2}))$, with $x \in \mathbb{R}$ and $n \in \mathbb{N} \setminus \{0\}$. Verify that it is equal to the Fourier transform of the function $\frac{d\beta^n(x)}{dx}$ (the derivative is sometimes also termed as $\dot{\beta}^n(x)$).

Solution: Fourier transform (FT) of a B-spline $\beta^n(x)$ is $\hat{\beta}^n(\omega) = \left(\frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}}\right)^{n+1}$.

Shift property of the FT: $f(x - x_0) \leftrightarrow e^{-j\omega x_0} \hat{f}(\omega)$ gives

$$\begin{aligned}\beta^{n-1}(x + \frac{1}{2}) &\leftrightarrow e^{\frac{j\omega}{2}} \hat{\beta}^{n-1}(\omega) \\ \beta^{n-1}(x - \frac{1}{2}) &\leftrightarrow e^{-\frac{j\omega}{2}} \hat{\beta}^{n-1}(\omega)\end{aligned}$$

Hence, the FT of the function $(\beta^{n-1}(x + \frac{1}{2}) - \beta^{n-1}(x - \frac{1}{2}))$ is

$$\begin{aligned}\hat{\beta}^{n-1}(\omega) \left(e^{\frac{j\omega}{2}} - e^{-\frac{j\omega}{2}} \right) &= \left(\frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}} \right)^n \left(\cos \frac{\omega}{2} + j \sin \frac{\omega}{2} - \left(\cos \frac{\omega}{2} - j \sin \frac{\omega}{2} \right) \right) \\ &= \left(\frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}} \right)^n 2j \sin \frac{\omega}{2} \\ &= 2j \frac{(\sin \frac{\omega}{2})^{n+1}}{(\frac{\omega}{2})^n}\end{aligned}$$

On the other hand, the differentiation property of FT: $\frac{\partial^n f(x)}{\partial x^n} \leftrightarrow (j\omega_i)^n \hat{f}(\omega)$ gives $\frac{d\beta^n(x)}{dx} \leftrightarrow j\omega \hat{\beta}^n(\omega)$.

Hence, the FT of $\frac{d\beta^n(x)}{dx}$ is

$$j\omega \hat{\beta}^n(\omega) = j\omega \left(\frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}} \right)^{n+1} = 2j \frac{(\sin \frac{\omega}{2})^{n+1}}{(\frac{\omega}{2})^n}.$$

Remark: This example shows that if

$$f(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^n(x - k),$$

then

$$\begin{aligned}\dot{f}(x) &= \sum_{k \in \mathbb{Z}} c[k] \dot{\beta}^n(x - k), \\ &= \sum_{k \in \mathbb{Z}} c[k] \left(\beta^{n-1} \left(x - k + \frac{1}{2} \right) - \beta^{n-1} \left(x - k - \frac{1}{2} \right) \right),\end{aligned}$$

3 B-spline properties

[intermediate] Practice with the definition and properties of B-splines.

For nonnegative arguments, show that polynomial B-splines are non-increasing functions. Suggestion: Establish a recurrence relation. You may want to partition the set of nonnegative numbers as $\mathbb{R}_+ = [0, \frac{1}{2}) \cup [\frac{1}{2}, \infty)$.

Solution:

We distinguish 3 cases:

1. $n = 0$: $\beta^0(x) = \text{rect}(x) = \begin{cases} 1, & 0 \leq x \leq \frac{1}{2} \\ 0, & x \geq \frac{1}{2} \end{cases}$, it is easy to see that $\beta^n(x) \geq \beta^n(y)$, $0 \leq x \leq y$;

2. $n = 1 : \beta^1(x) = \text{tri}(x) = \begin{cases} 1-x, & 0 \leq x \leq 1 \\ 0, & x \geq 1 \end{cases}$, it is easy to see that $\beta^n(x) \geq \beta^n(y)$, $0 \leq x \leq y$;

3. $n \geq 1$: from question 2 we have that $\dot{\beta}^{n+1}(x) = \beta^{n-1}(x + \frac{1}{2}) - \beta^{n-1}(x - \frac{1}{2})$, and $\beta^{n+1}(x)$ is continuous on $[0, +\infty)$ when $n \geq 1$.

We further distinguish 2 cases:

(a) $0 \leq x < \frac{1}{2}$:

$$\begin{aligned} \dot{\beta}^{n+1}(x) &= \underbrace{\beta^{n-1}(x + \frac{1}{2})}_{>0} - \underbrace{\beta^{n-1}(x - \frac{1}{2})}_{<0} \\ &\stackrel{(1)}{=} \beta^{n-1}(x + \frac{1}{2}) - \beta^{n-1}(\frac{1}{2} - x) \\ &\stackrel{(2)}{\leq} 0, \end{aligned}$$

(1) is due to the fact that B-splines are even functions, i.e. $\beta^{n-1}(x + \frac{1}{2}) = \beta^{n-1}(\frac{1}{2} - x)$ and (2) is because $x + \frac{1}{2} \geq \frac{1}{2} - x > 0$.

(b) $x \geq \frac{1}{2}$:

$$\begin{aligned} \dot{\beta}^{n+1}(x) &= \underbrace{\beta^{n-1}(x + \frac{1}{2})}_{>0} - \underbrace{\beta^{n-1}(x - \frac{1}{2})}_{>0} \\ &\stackrel{(3)}{\leq} 0, \end{aligned}$$

(3) is due to $x + \frac{1}{2} \geq x - \frac{1}{2} \geq 0$.

Hence, B-splines are non-increasing functions.

4 Two-scale relation

[intermediate] The two-scale relation is a key ingredient of wavelets, which we study in-depth in Chapter 8.

For some special φ , it is possible to write the relation $\forall x \in \mathbb{R} : \varphi(\frac{x}{2}) = \sum_{k \in \mathbb{Z}} h[k] \varphi(x - k)$ for a well-chosen sequence h which is called the refinement filter. The relation itself is called the two-scale relation.

(a) Given that the Fourier transform of φ is $\hat{\varphi}$ and that the z -transform of h is H , express the two-scale relation in the Fourier domain.

Solution:

Scaling property of the Fourier transform (FT): $f(\frac{x}{a}) \leftrightarrow |a| \hat{f}(a\omega)$, the FT of $\varphi(\frac{x}{2})$ is $2\hat{\varphi}(2\omega)$.

Shift property of the FT: $f(x - x_0) \leftrightarrow e^{-j\omega x_0} \hat{f}(\omega)$, the FT of $\varphi(x - k)$ is $e^{-j\omega k} \hat{\varphi}(\omega)$.

Hence, applying the FT on both sides of the two-scale relation gives

$$2\hat{\varphi}(2\omega) = \underbrace{\left(\sum_{k \in \mathbb{Z}} h[k] e^{-j\omega k} \right)}_{H(z)|_{z=e^{j\omega}}} \hat{\varphi}(\omega),$$

In other words,

$$\left(H(e^{j\omega}) = \frac{2\hat{\varphi}(2\omega)}{\hat{\varphi}(\omega)} \right)$$

is the two-scale relation in the Fourier domain.

(b) Show how to use the previous result to determine $H_2^n(e^{j\omega})$ for all $\omega \in \mathbb{R}$ when $\varphi = \beta_+^n$.

Solution:

On lecture slide 7-81, B-spline dilated by an integer factor m is defined as

$$\beta_+^n\left(\frac{x}{m}\right) = \sum_{k \in \mathbb{Z}} h_m^n[k] \beta_+^n(x - k), \quad H_m^n(z) = \frac{1}{m^n} \left(\sum_{k=0}^{m-1} z^{-k} \right)^{n+1},$$

hence, when $m = 2$ and $\varphi = \beta_+^n$, we have

$$H_2^n(e^{j\omega}) = \frac{1}{2^n} \left(\sum_{k=0}^1 e^{-j\omega k} \right)^{n+1}. \quad (1)$$

Now we use the result in part (a) to derive this formula.

According to the result in part (a), in order to compute $H(e^{j\omega})$, we need to compute $\hat{\beta}_+^n$ first.

$\beta_+^n(x) := \beta^n(x - \frac{n+1}{2})$, using the shifting property of the FT and the fact that

$$\hat{\beta}^n(\omega) = \left(\frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}} \right)^{n+1} = \left(\frac{e^{\frac{j\omega}{2}} - e^{-\frac{j\omega}{2}}}{j\omega} \right)^{n+1}$$

we have

$$\begin{aligned} \hat{\beta}_+^n(\omega) &= e^{-\frac{j\omega}{2}(n+1)} \hat{\beta}(\omega) \\ &= e^{-\frac{j\omega}{2}(n+1)} \left(\frac{e^{\frac{j\omega}{2}} - e^{-\frac{j\omega}{2}}}{j\omega} \right)^{n+1} \\ &= \frac{(1 - e^{-j\omega})^{n+1}}{(j\omega)^{n+1}} \end{aligned}$$

Hence,

$$\begin{aligned} H(e^{j\omega}) &= \frac{2\hat{\beta}_+^n(2\omega)}{\hat{\beta}_+^n(\omega)} \\ &= \frac{2(1 - e^{-2j\omega})^{n+1}}{(2j\omega)^{n+1}} \cdot \frac{(j\omega)^{n+1}}{(1 - e^{-j\omega})^{n+1}} \\ &= \frac{1}{2^n} \cdot \frac{(1 - e^{-2j\omega})^{n+1}}{(1 - e^{-j\omega})^{n+1}} \\ &= \frac{1}{2^n} (1 + e^{-j\omega})^{n+1} \end{aligned}$$

which is exactly as (1).