

Image Processing 2, Exercise 2

1 Structure tensor

[intermediate] An example of the power of the structure tensor to encode local gradient information about an image.

- (a) Consider computing over an image f the delocalized structure tensor \mathbf{J} characterized by the constant-valued observation window $w = 1$. Use Parseval to give an expression of \mathbf{J} where \hat{f} appears instead of f .
- (b) Let an image be $f(\mathbf{x}) = \text{sinc}(2x_1 + 3x_2) \frac{1}{\sqrt{2}\pi} e^{-\frac{1}{2}(x_1^2 + 4x_1x_2 + 4x_2^2)}$. Determine its gradient ∇f .
Hint: To avoid direct calculation of ∇f which is complex, notice that image f can be written as applying an affine transformation \mathbf{A} to another image g that has a much simpler form, try to find out \mathbf{A} and g .
- (c) Determine the Fourier transform \hat{f} of the image f .
- (d) Determine the value of the delocalized structure tensor associated to f . You may want to take advantage of $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$ and $\int_{\mathbb{R}} x^2 e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$.
- (e) Give the delocalized gradient energy of f .
- (f) Give the delocalized coherency of f .

2 Spline Interpolation 1D

[basic] Interpolating the samples of a function using B-splines. Interpolation is fundamental in image processing, because we often want to move back and forth between continuous-domain signals and their discrete-domain representations.

Assume that $f(x) = (10 - |6x + 3|) \text{rect}(\frac{x}{4} + \frac{1}{8})$. Find the quadratic spline coefficients $\{c[m]\}_{m \in \mathbb{Z}}$ such that $s(x) = \sum_{m \in \mathbb{Z}} c[m] \beta^2(x - m)$ satisfies the interpolation condition $s[k] = f[k]$ for all $k \in \mathbb{Z}$.