
Image Processing 2, Exercise 2

1 Structure tensor
[intermediate] An example of the power of the structure tensor to encode local gradient information
about an image.

(a) Consider computing over an image f the delocalized structure tensor J characterized by the

constant-valued observation window w = 1. Use Parseval to give an expression of J where f̂
appears instead of f .

Solution:

J =

∫
R2

∇f(x) (∇f(x))
H
dx

J =

∫
R2

 ∂f(x)
∂x1

(
∂f(x)
∂x1

)∗
∂f(x)
∂x1

(
∂f(x)
∂x2

)∗
∂f(x)
∂x2

(
∂f(x)
∂x1

)∗
∂f(x)
∂x2

(
∂f(x)
∂x2

)∗
 dx1dx2

(1)
=

1

4π2

∫
R2

 (
jω1 f̂(ω)

) (
jω1 f̂(ω)

)∗ (
jω1 f̂(ω)

) (
jω2 f̂(ω)

)∗(
jω2 f̂(ω)

) (
jω1 f̂(ω)

)∗ (
jω2 f̂(ω)

) (
jω2 f̂(ω)

)∗
 dω1dω2

(2)
=

1

4π2

∫
R2

(
ω2
1 ω1 ω2

ω2 ω1 ω2
2

) ∣∣∣f̂(ω)
∣∣∣2 dω1dω2

where (1) uses the differentiation property of Fourier transform; (2) uses the basic properties
of complex numbers.

(b) Let an image be f(x) = sinc(2x1 + 3x2)
1√
2π

e−
1
2 (x

2
1+4 x1 x2+4 x2

2). Determine its gradient ∇f .

Hint: To avoid direct calculation of ∇f which is complex, notice that image f can be written
as applying an affine transformation A to another image g that has a much simpler form, try
to find out A and g.

Solution: Observe that f(x) can be written as

f(x) = sinc(2x1 + 3x2)
1√
2π

e−
(x1+2x2)2

2 .

Let y1 = 2x1 + 3x2, y2 = x1 + 2x2, and g(y1, y2) = sinc(y1)
1√
2π

e−
y2
2
2 , then f(x) = g(y) =

g(Ax), where A =

[
2 3
1 2

]
.

Hence,

∇f(x) = ∇g(Ax)

= (Ax)′Tg′(Ax)

= AT g′(Ax)

= AT g′(y)|y=Ax.

The gradient of g is

g′(y) = ∇
(
sinc(y1)

1√
2π

e−
y2
2
2

)
=

1√
2π

(
cos(π y1)ππ y1−sin(π y1)π

(π y1)
2

sinc(y1) (−y2)

)
e−

y2
2
2 .
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Combining all the information above, we obtain

∇f(x) = AT g′(y)|y=Ax

=
1√
2π

(
2 cos(π (2 x1+3 x2))−sinc(2 x1+3 x2)

2 x1+3 x2
− sinc(2x1 + 3x2) (x1 + 2x2)

3 cos(π (2 x1+3 x2))−sinc(2 x1+3 x2)
2 x1+3 x2

− 2 sinc(2x1 + 3x2) (x1 + 2x2)

)

×e−
(x1+2x2)2

2 .

(c) Determine the Fourier transform f̂ of the image f .

Solution:

ĝ(ω) = Fx{sinc(x1)
1√
2π

e−
x2
2
2 }(ω)

= Fx1{sinc(x1)}(ω1)Fx2{
1√
2π

e−
x2
2
2 }(ω2)

= rect(
ω1

2π
) e−

ω2
2
2

f̂(ω) (1)
=

|det(A)|−1
ĝ(A−T ω)

= rect(
2ω1 − ω2

2π
) e−

1
2 (9ω2

1−12ω1 ω2+4ω2
2)

where (1) uses the affine transformation property of Fourier transfrom in the appendix.

(d) Determine the value of the delocalized structure tensor associated to f . You may want to take

advantage of
∫
R e−x2

dx =
√
π and

∫
R x2 e−x2

dx = 1
2

√
π.

Solution: Let
φ = A−T ω ω = AT φ

Combining the result of part (a) and (c),

J =
1

4π2

∫
R2

(
ω2
1 ω1 ω2

ω1 ω2 ω2
2

) ∣∣∣∣rect(2ω1 − ω2

2π
) e−

1
2 (9ω2

1−12ω1 ω2+4ω2
2)
∣∣∣∣2 dω1dω2

(1)
=

1

4π2

∫
R2

(
(2φ1 + φ2)

2
(2φ1 + φ2) (3φ1 + 2φ2)

(3φ1 + 2φ2) (2φ1 + φ2) (3φ1 + 2φ2)
2

)
rect(

φ1

2π
) e−φ2

2 dφ1dφ2

(2)
=

1

4π2

∫ ∞

−∞

∫ π

−π

(
4φ2

1 + 4φ1 φ2 + φ2
2 6φ2

1 + 7φ1 φ2 + 2φ2
2

6φ2
1 + 7φ1 φ2 + 2φ2

2 9φ2
1 + 12φ1 φ2 + 4φ2

2

)
dφ1 e

−φ2
2 dφ2

=
1

4π2

∫ ∞

−∞

(
8
3 π

3 + 2πφ2
2 4π3 + 4πφ2

2

4π3 + 4πφ2
2 6π3 + 8πφ2

2

)
e−φ2

2 dφ2

=
1

12
√
π

(
3 + 8π2 6 + 12π2

6 + 12π2 12 + 18π2

)
.

(1) applies the change of variables, dω1dω2 =
∣∣det(AT )

∣∣dφ1dφ2. (2) uses the property that
function rect( φ1

2π
) is supported on [−π,π].

(e) Give the delocalized gradient energy of f .
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Solution:

E = tr(J)

= [J]2,2 + [J]1,1

=
15 + 26π2

12
√
π

(f) Give the delocalized coherency of f .

Solution:

C =
1

E

√(
[J]2,2 − [J]1,1

)2
+ 4 [J]

2
1,2

=

√
225 + 756π2 + 676π4

15 + 26π2

2 Spline Interpolation 1D
[basic] Interpolating the samples of a function using B-splines. Interpolation is fundamental in image
processing, because we often want to move back and forth between continuous-domain signals and
their discrete-domain representations.

Assume that f(x) = (10 − |6x + 3|) rect(x4 + 1
8 ). Find the quadratic spline coefficients {c[m]}m∈Z

such that s(x) =
∑

m∈Z c[m]β2(x−m) satisfies the interpolation condition s[k] = f [k] for all k ∈ Z.

Solution: Let F (z) be the z-transform of the sequence f [k] for k ∈ Z. It is given as

F (z) = z2 + 7z + 7 + z−1,

because f [k] is nonzero only at k = 0 ⇒ f [0] = 7, k = 1 ⇒ f [1] = 1, k = −1 ⇒ f [−1] = 7,
k = −2 ⇒ f [−2] = 1.

We now want that s[k] = f [k] for k ∈ Z. This means their z-transform are equal too i.e.,

∀k ∈ Z f [k] = s[k] =⇒ F (z) = S(z).

The z-transform of s[k] is given by

S(z) = C(z)B(z)

S(z) = C(z)
z + 6 + z−1

8
.

From the previous equalities we get,

C(z) =
8S(z)

z + 6 + z−1
,

=
8F (z)

z + 6 + z−1
,

= 8
z(z + 6 + z−1) + (z + 6 + z−1)

z + 6 + z−1
,

= 8z + 8.
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This gives

c[m] = 8δ[m] + 8δ[m+ 1].

This example shows that given a sample of a function (in this case of f(x)), we can create a new
function s(x) using splines such that its samples are the same as of f(x).

Alternative solution:

Here, we present an alternative solution based on the implementation presented in slide 7-24 and
the table of transform function of B-splines in slide 7-34. Because we chose quadratic splines,
n = 2 and a = −3 + 2

√
2.

We consider the discrete signal

f [k] =
[
· · · 0 0 1 7 7 1 0 0 · · ·

]
(1)

and

f [k] = b ∗ c[k],

where b[k] =
[
· · · 1

8
6
8

1
8 · · ·

]
.

Let y1 be the result of the causal filter on f , let y2 be the result of the anti-causal filter on y1.

Be very careful! They are the results of the filtering, not the filters themselves! Using the cascade
of a causal and anti-causal filter, we obtain the following partial signals.

Causal filter (recall y1[k] = f [k] + ay1[k − 1] from the causal filter cascade)

y1[k] = 0, k ≤ −3 since filter is causal and f [k] = 0 for k ≤ −3

y1[−2] = f [−2] + z1y1[−3]

= 1

y1[−1] = f [−1] + ay1[−2]

= 7− 3 + 2
√
2

= 4 + 2
√
2

y1[0] = f [0] + ay1[−1]

= 3 + 2
√
2

y1[1] = f [1] + ay1[0]

= 0

y1[k] = 0 for k > 1

and we have

y1[k] =
[
· · · 0 1 4 + 2

√
2 3 + 2

√
2 0 · · ·

]
.
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Anti-causal filter (recall y2[k] = y1[k] + ay2[k + 1] from the filter cascade)

y2[k] = 0 k ≥ 1 since filter is anti-causal and y1[k] = 0 for k ≥ 1

y2[0] = y1[0] + ay2[1]

= 3 + 2
√
2

y2[−1] = y2[−1] + ay2[0]

= 4 + 2
√
2 + (−3 + 2

√
2)(3 + 2

√
2)

= 4 + 2
√
2 + 8− 9

= 3 + 2
√
2

y2[−2] = y1[−2] + ay2[−1]

= 1 + (−3 + 2
√
2)(3 + 2

√
2)

= 1− 1

= 0

y2[k] = 0 for k < −2

and we have

y2[k] =
[
· · · 0 0 3 + 2

√
2 3 + 2

√
2 0 · · ·

]
.

Gain (G = 8
3+2

√
2
)

c[k] =
8

3 + 2
√
2
y2[k] =

[
· · · 0 0 8 8 0 · · ·

]
We can finally verify that

f [k] = b ∗ c[k]

by computing the FIR convolution:

0 0 0 8 8 0 0 0
1
8 1 6 1
1
8 1 6 1
1
8 1 6 1
1
8 1 6 1
1
8 1 6 1
1
8 1 6 1

0 0 1 7 7 1 0 0
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