Image Processing 2, Exercise 2

1 Structure tensor

[intermediate] An example of the power of the structure tensor to encode local gradient information

about an image.

(a) Consider computing over an image f the delocalized structure tensor J characterized by the
constant-valued observation window w = 1. Use Parseval to give an expression of J where f

appears instead of f.

(b) Let an image be f(x) = sinc(2z1 + 3 x2)

Solution:
1= [, Vi (V)" dx
Of(x of(x) (9fx)\"
J - / aml (811> a1 (32 | deides
re | L) (af(x> af<x (0f x))
Oz 0x1 Ox2
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1 w? W wy - 2
(Z) 42 /Rz (w2w1 w3 f(w)’ dwrduwy
where (1) uses the differentiation property of Fourier transform; (2) uses the basic properties
of complex numbers.

ot
Hint: To avoid direct calculation of V f which is complex, notice that image f can be written
as applying an affine transformation A to another image g that has a much simpler form, try

to find out A and g.

2 2
3 (s1+4@1024423)  Dotermine its gradient V f.

Solution: Observe that f(x) can be written as
1 _ (= +224)2
2

e
V2T

Let y1 = 21 + 322, Y2 = 21 + 22, and g(y1,y2) = sinc(y)

f(x) = sinc(2z1 + 3z2)

7, then f(x) = g(y)

1 _
Var©
(Ax), where A = |2 3

g(Ax), where A =1, .

Hence,

Vg(Ax)
(Ax)Tg'(Ax)
ATg'(Ax)

AT g'(y)ly=ax-

V(x)

The gradient of g is

/5 = 9 (sinetn) =)

1 cos(myy) Tty —sin(myy) 7
(7y1)
Vam

v3
e 2.

sinc(y1) (—y2)
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(d)

()

Combining all the information above, we obtain

Vix) = ATQI(Y)‘y:Ax
9 cos(m (2x1+3x2))—sinc(2z1+3 z2)

—sinc(2x1 + 3x2) (1 + 222)

— 2x1+3z2
V2n ( g cosn@uitira))osne@aitira) _ 9gine(2y + 3a2) (11 + 2a2)

_ (z1+4229)2
xXe 2 .

Determine the Fourier transform f of the image f.

Solution:

Jlw) = Fx{sinc(xy)

= Fofsinc(e)}wr) Fas{ e e 7 H(w2)

1
——e
V2T
= rect(;—;) e 2

flw) (1) [des(A) ™" §(A™Tw)

2wy —wa ) o3 (9wi—12w1 watdwi)

= rect( 5

where (1) uses the affine transformation property of Fourier transfrom in the appendix.

Determine the value of the delocalized structure tensor associated to f. You may want to take
advantage of fR e~ dr = /7t and fR 226~ dp — %\/7?

Solution: Let
p=A"Tw w=AT¢p

Combining the result of part (a) and (c),

9 _ 2
g = L Cioo e rect(w)efé(9”%*12“’1“”““3) dwydws
472 Jpo \ wiwa  wj 27
2
0 1 / ( (2¢1 + ¥2) 21+ ¢2) (3¢ + 2¢2) ) rect(21) =5 dg,
= A Jra\ 31 +2¢2) (201 + ¢2) (31 +2¢2) 27

6o+ 7102 +205 99T +1201 02 +4¢3
1 8,3 2 3 2
_ 4 37t3+27t9022 47‘(3-1—471@% e,wgd%
am2 [\ 4T +4mp; 67 + 8Tp;

1 3+8m* 6+1272
12m \ 6+127% 124 1877

(1) applies the change of variables, dw;dws = |det(AT)|dp1dps. (2) uses the property that
function rect($%) is supported on [—7, 71].

o s 2 2 2 9
® e | [ (eaioen SATR A ) b v
= —oo J—T

Give the delocalized gradient energy of f.

Page 2 of 5

dipo



Solution:

E = tr(J)

oo+ T4

15 + 26 72
12/

(f) Give the delocalized coherency of f.

Solution:

¢ = % \/([J]Q,Q - [J}1,1)2 +4 [J]?Q

V225 + 756 2 + 676 7t
15 + 26 72

2 Spline Interpolation 1D

[basic] Interpolating the samples of a function using B-splines. Interpolation is fundamental in image
processing, because we often want to move back and forth between continuous-domain signals and
their discrete-domain representations.

Assume that f(z) = (10 — |6z + 3|)rect(% + £). Find the quadratic spline coefficients {c[m]}ncz
such that s(z) = 3", o5 ¢[m]B?(x —m) satisfies the interpolation condition s[k] = f[k] for all k € Z.

Solution: Let F(z) be the z-transform of the sequence f[k] for k € Z. It is given as
F2)=22+T2+7+271,

because f[k] is nonzero only at k =0= f[0] =7, k=1= f[1]=1,k=-1= f[-1] =7,
k=-2= f[-2]=1.

We now want that s[k] = f[k] for k € Z. This means their z-transform are equal too i.e.,
Vk eZ flk] = slk] = F(z) = S(2).
The z-transform of s[k] is given by

S(z) = C(2)B(z)

z2+6+271
5(2) = C(a)
From the previous equalities we get,
85(z)
Clz) = —————
(2) 246+ 271
_ 8F(z)
246+
_8z(z+6+z_1)—|—(z+6+z_1)
B 2464271 ’
=8z + 8.
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This gives

c[m] = 80[m] + 85[m + 1].

This example shows that given a sample of a function (in this case of f(x)), we can create a new
function s(z) using splines such that its samples are the same as of f(x).

Alternative solution:
Here, we present an alternative solution based on the implementation presented in slide 7-24 and
the table of transform function of B-splines in slide 7-34. Because we chose quadratic splines,

n=2and a =—-3+2V2.

We consider the discrete signal

and

FIk] = b c[k],

Whereb[k]:[--- i %}

Let y1 be the result of the causal filter on f, let y5 be the result of the anti-causal filter on y;.

Be very careful! They are the results of the filtering, not the filters themselves! Using the cascade
of a causal and anti-causal filter, we obtain the following partial signals.

Causal filter (recall y1[k] = f[k] + ay1[k — 1] from the causal filter cascade)

y1[k] =0, k < —3since filter is causal and f[k] =0 for k < —3

yi[=2] = f[-2] + 2131 (3]
=1

yi[=1] = f[-1] + ay1[-2]
=7-34+2V2

=4+2V2

y1[0] = f[0] + ay:[-1]
=3+2V2

yi[l] = f[1] + ay:[0]
=0

yi[k] =0 fork>1

and we have

plk =] 01 4+2v2 0 -],
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Anti-causal filter (recall ys[k] = y1[k] + aya[k + 1] from the filter cascade)

y2[k] =0 k > 1 since filter is anti-causal and y;[k] =0 for k > 1
Y2[0] = y1[0] + ay[1]
=3+2V2
y2[—1] = y2[—1] + ay2[0]
=44 2V2+ (-3+2V2)(3+2V?2)
=4+2vV2+8-9
=3+2V2
y2[—2] = y1[—2] + aya[-1]
=1+ (-3+2vV2)(3+2V?2)
—1-1
—0
ya2lk] =0 for k < —2

yz[k]:[~--0 0 3+2v2 0 }

and we have

8
cm:ajﬁmmzﬂnossﬂ()m}

We can finally verify that
FIR] = b c[k]
by computing the FIR convolution:

0o 0 o0 8 [8 0o o0 o0

FO\»—‘OO\P—‘OOU—‘OG\H(XD\HOO\H
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