

Image Processing 2, Exercise 1

1 Radon transform

[basic] Practice applying the Radon transform, which is the mathematical model for several medical imaging modalities, including X-ray CT scanners.

- (a) Determine the one-dimensional Fourier transform of the Gaussian $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}$, with $x \in \mathbb{R}$ and $0 < \sigma$.
- (b) Let an image be given by $f(x_1, x_2) = \frac{\sqrt{2}}{\sigma^2 2\pi} e^{-\frac{x_1^2+x_2^2}{2\sigma^2}}$. Give its Radon transform. Hint: use the central-slice theorem.

2 Directional Derivatives

[refresher] Review of directional derivatives, which are useful for defining steerable filters.

Let $f(x_1, x_2) = \cos(\pi x_1)$.

- (a) Compute $D_{\mathbf{u}}f(\frac{1}{2}, 0)$ with $\mathbf{u} = (1, 0)$.
- (b) Compute $D_{\mathbf{u}}f(\frac{1}{2}, 0)$ with $\mathbf{u} = (0, 1)$.
- (c) Compute $D_{\mathbf{u}}f(\frac{1}{2}, \frac{1}{4})$ with $\mathbf{u} = \frac{1}{2}(\sqrt{3}, 1)$.
- (d) For a generic image, f , express $D_{\mathbf{u}_\theta}^3 f(x_1, x_2)$ in terms of the angle θ and the partial derivatives of f . Do not simplify the result, but do clearly specify the limits of any sums involved.

3 Third Order Detector

[intermediate] The course notes show how to realize steerable edge (gradient-based) detectors and ridge (Hessian-based) detectors. For this exercise, we want you to go beyond edges and ridges by considering directional derivatives of third order.

- (a) In two dimensions, how many filters do you need to compute all third order derivatives?
- (b) Give the impulse response of each filter, assuming that the isotropic lowpass function is the Gaussian $\varphi(\mathbf{x}) = \frac{1}{\sigma^2 2\pi} e^{-\frac{\|\mathbf{x}\|^2}{2\sigma^2}}$.

4 Identifying a rotation matrix

[basic] An example of determining a transform matrix directly from a pair of images.

Determine the matrix \mathbf{G} such that $g(\mathbf{x}) = f(\mathbf{G}\mathbf{x})$. The coordinate $\mathbf{x} = \mathbf{0}$ is the center of the clock face in the images f and g . Pay attention to the image-processing conventions for the orientation of the axes and explain your answer.



5 Steerable filter

[intermediate] Design and analysis of a steerable filter, which is useful for rotation-invariant detection, e.g., in analysis of microscopy images.

- (a) Let the impulse response of a two-dimensional filter be $h(\mathbf{x}) = \frac{\partial g(\mathbf{x})}{\partial x_1} + \frac{\partial g(\mathbf{x})}{\partial x_2}$ with $g(\mathbf{x}) = \frac{1}{2\pi} e^{-\frac{\|\mathbf{x}\|^2}{2}}$. This filter is steerable of order $M = 2$. Give all nontrivial expansion coefficients $\alpha_{m,n}$ that are needed to expand h in terms of the $(m-n, n)$ th partial derivative of the Gaussian g .

- (b) Give all nontrivial coefficients $a_{m,n}(\theta)$ that must be applied in order to steer h .
- (c) Take advantage of steering to summarize the spatial-domain convolutions needed to compute $(h_\theta * f)(\mathbf{x})$. The purpose of this summary is to highlight how many convolutions must be performed by the algorithm, and with precisely which filters $g_{m,n}$. It is not necessary that you further develop the expressions once that goal is reached.