

Image Processing 1, Mock Midterm Exam

November 9, 2023

1 Fourier Transforms

(a) Compute the Fourier transform of

$$f(x, y) = x \text{sinc}(y) e^{-x^2 + j2\pi y}.$$

Solution: $f(x, y) = f_1(x)f_2(y)$, where $f_1(x) = xe^{-x^2}$ and $f_2(y) = \text{sinc}(y)e^{j2\pi y}$

$$\Rightarrow \hat{f}(\omega_x, \omega_y) = \hat{f}_1(\omega_x)\hat{f}_2(\omega_y)$$

Property	$g(x)$	$\hat{g}(\omega_x)$
1D-table	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	$e^{-\frac{\omega_x^2}{2}}$
Linearity	$e^{-\frac{x^2}{2}}$	$\sqrt{2\pi} e^{-\frac{\omega_x^2}{2}}$
Scaling ($a = \frac{1}{\sqrt{2}}$)	e^{-x^2}	$\frac{\sqrt{2\pi}}{\sqrt{2}} e^{-\frac{\omega_x^2}{4}}$
Multiplication by monomial	xe^{-x^2}	$-\frac{\sqrt{\pi}}{2} j\omega_x e^{-\frac{\omega_x^2}{4}}$

Property	$h(y)$	$\hat{h}(\omega_y)$
1D-table	$\text{sinc}(y)$	$\text{rect}\left(\frac{\omega_y}{2\pi}\right)$
Modulation	$\text{sinc}(y)e^{j2\pi y}$	$\text{rect}\left(\frac{\omega_y - 2\pi}{2\pi}\right)$

Hence,

$$\hat{f}(\omega_x, \omega_y) = -\frac{\sqrt{\pi}}{2} j\omega_x e^{-\frac{\omega_x^2}{4}} \text{rect}\left(\frac{\omega_y - 2\pi}{2\pi}\right)$$

(b) Compute the inverse Fourier transform of

$$\hat{g}(\omega_x, \omega_y) = e^{-\omega_x^2} \cos(100\omega_y).$$

Solution: $\hat{g}(\omega_x, \omega_y) = \hat{g}_1(\omega_x)\hat{g}_2(\omega_y)$, where $\hat{g}_1(\omega_x) = e^{-\omega_x^2}$ and $\hat{g}_2 = \cos(100\omega_y)$

$$\Rightarrow g(x, y) = g_1(x)g_2(y)$$

Property	$g(x)$	$\hat{g}(\omega_x)$
1D-table	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	$e^{-\frac{\omega_x^2}{2}}$
Scaling ($a = \sqrt{2}$)	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{4}}$	$\sqrt{2} e^{-\omega_x^2}$
Linearity	$\frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}}$	$e^{-\omega_x^2}$

Property	$h(y)$	$\hat{h}(\omega_y)$
1D-table	$\cos(100y)$	$\pi(\delta(\omega_y + 100) + \delta(\omega_y - 100))$
Duality	$\pi(\delta(y + 100) + \delta(y - 100))$	$2\pi \cos(-100\omega_y)$
Linearity	$\frac{1}{2}(\delta(y + 100) + \delta(y - 100))$	$\cos(100\omega_y)$

Hence,

$$g(x, y) = \frac{1}{4\sqrt{\pi}} e^{-\frac{x^2}{4}} (\delta(y + 100) + \delta(y - 100))$$

(c) Using Parseval's formula, show that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2x^2+j2\pi y} x \operatorname{sinc}(y) \cos(100y) dx dy = 0.$$

Solution:

$$A = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underbrace{e^{-2x^2+j2\pi y} x \operatorname{sinc}(y) \cos(100y)}_{=f(x,y)\hat{g}(x,y)} dx dy$$

where

$$\begin{cases} f(x, y) = x \operatorname{sinc}(y) e^{-x^2+j2\pi y} & (\text{Q1-a}) \\ \hat{g}(x, y) = e^{-x^2} \cos(100y) & (\text{Q1-b}) \end{cases}$$

$$\Rightarrow A = \langle f, \hat{g} \rangle \stackrel{\text{Parseval}}{=} \frac{1}{(2\pi)^2} \langle \hat{f}, \mathcal{F}\{\hat{g}\} \rangle \stackrel{\text{Duality}}{=} \frac{1}{(2\pi)^2} \langle \hat{f}, (2\pi)^2 g(-\cdot) \rangle \stackrel{g \text{ is even}}{=} \langle \hat{f}, g \rangle$$

$$\begin{aligned} \Rightarrow A &= \left(\int_{-\infty}^{\infty} -\frac{\sqrt{\pi}}{2} j x e^{-\frac{x^2}{4}} \frac{1}{4\sqrt{\pi}} e^{-\frac{x^2}{4}} dx \right) \left(\int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{y-2\pi}{2\pi}\right) (\delta(y+100) + \delta(y-100)) dy \right) \\ &= \left(-\frac{j}{8} \int_{-\infty}^{\infty} x e^{-\frac{1}{2}x^2} dx \right) \cdot \left(\underbrace{\operatorname{rect}\left(\frac{-100-2\pi}{2\pi}\right)}_{=0} + \underbrace{\operatorname{rect}\left(\frac{100-2\pi}{2\pi}\right)}_{=0} \right) = 0 \end{aligned}$$

2 Image Acquisition

A camera's acquisition system is modeled by the following block-diagram:

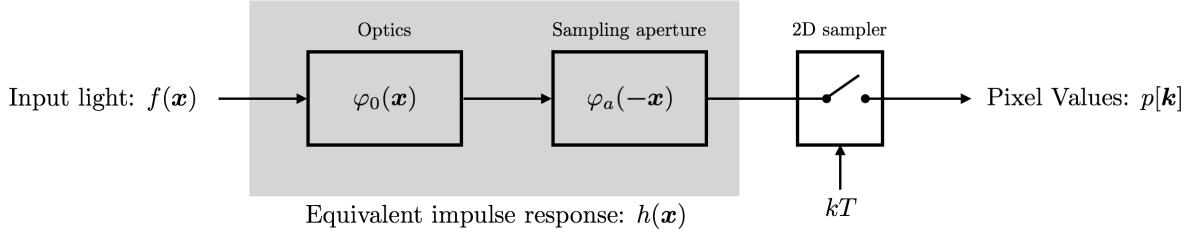


Figure 1: An image-acquisition system

In this system, we set

$$\widehat{\varphi}_0(\omega_x, \omega_y) = \operatorname{tri}\left(\frac{\omega_x}{\omega_0}\right) \operatorname{tri}\left(\frac{\omega_y}{\omega_0}\right),$$

and

$$\varphi_a(x, y) = \frac{\omega_0^2}{4\pi^2} \operatorname{sinc}\left(\frac{\omega_0 x}{2\pi}\right) \operatorname{sinc}\left(\frac{\omega_0 y}{2\pi}\right).$$

(a) Compute the Fourier transform of the equivalent impulse response $h(x, y)$ of the camera.

Solution:

$$\widehat{h}(\omega_x, \omega_y) = \mathcal{F}\{h(x, y)\} = \mathcal{F}\{\varphi_0 * \varphi_a(-\cdot)\} = \widehat{\varphi}_0(\omega_x, \omega_y) \widehat{\varphi}_a(-\omega_x, -\omega_y)$$

$$\begin{aligned}
 \left. \begin{aligned}
 \text{sinc}(x) &\xrightarrow{\mathcal{F}} \text{rect}\left(\frac{\omega_x}{2\pi}\right) \\
 \text{sinc}\left(\frac{\omega_0}{2\pi}x\right) &\xrightarrow{\mathcal{F}} \frac{2\pi}{\omega_0} \text{rect}\left(\frac{\omega_x}{\omega_0}\right)
 \end{aligned} \right\} \Rightarrow \widehat{\varphi_a}(\omega_x, \omega_y) = \frac{\omega_0^2}{4\pi^2} \left(\frac{2\pi}{\omega_0} \text{rect}\left(\frac{\omega_x}{\omega_0}\right) \right) \left(\frac{2\pi}{\omega_0} \text{rect}\left(\frac{\omega_y}{\omega_0}\right) \right) \\
 \Rightarrow \widehat{h}(\omega_x, \omega_y) &= \text{tri}\left(\frac{\omega_x}{\omega_0}\right) \text{tri}\left(\frac{\omega_y}{\omega_0}\right) \text{rect}\left(\frac{\omega_x}{\omega_0}\right) \text{rect}\left(\frac{\omega_y}{\omega_0}\right)
 \end{aligned}$$

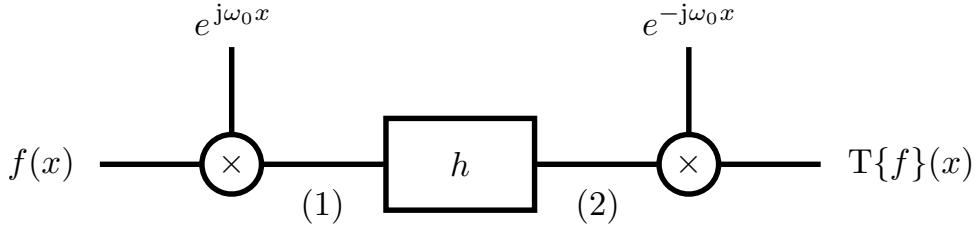
(b) Given a signal that has passed through the camera, what is the maximum step T that can be used to sample it without aliasing.

Solution:

$$\omega_{\max} = \frac{\omega_0}{2} \Rightarrow T_{\max} = \frac{\pi}{\omega_{\max}} = \frac{2\pi}{\omega_0}$$

3 Modulation

Consider the system T specified by the following block diagram.



In this system, we set $\hat{h}(\omega) = \text{tri}(\omega/\pi)$ and $\omega_0 = \pi$. Furthermore, suppose that the input $f(x)$ to the system has Fourier transform \hat{f} that is supported on $[-\pi, \pi]$.

- On what frequencies is the system supported on at (1) with input f ?
- On what frequencies is the system supported on at (2) with input f ?
- On what frequencies is the output of the system $T\{f\}$ supported on?
- Can you propose an equivalent implementation of T as an LSI filter? If yes, (i) give an explicit formula for the frequency response of the corresponding filter (ii) draw a picture of the frequency response and (iii) specify if the filter is all-pass (AP), low-pass (LP), band-pass (BP), high-pass (HP), band-cut (BC), or all-cut (AC). If no, explain why.

Solution:

- Since \hat{f} is supported on $[-\pi, \pi]$, after the modulation $e^{j\pi x}$, the frequency support will be $[0, 2\pi]$.
- Since \hat{h} is supported on $[-\pi, \pi]$, after the convolution with h , the frequency support will be $[0, \pi]$.
- After the (de)modulation $e^{-j\pi x}$, the output of the system will be supported on $[-\pi, 0]$.
- Notice that in the Fourier domain, the system is implemented as

$$\hat{h}(\omega + \pi) \hat{f}(\omega)$$

Therefore, T is specified by the frequency response $\text{tri}(\omega/\pi + 1)$. The picture would be a shifted triangle. Thus, this is a bandpass filter.