
Image Processing 1, Exercise 9

1 Neural network formalism
[basic] This exercise will investigate the mathematical formalism of convolutional neural networks.

Let f ∈ ℓ2(Z) and consider the 3-channel convolutional layer with input f :σ((h1 ∗ f)[k]
)

σ
(
(h2 ∗ f)[k]

)
σ
(
(h3 ∗ f)[k]

)
 ,

where h1, h2, h3 are filters of the form

h1 =
[
0 1 0

]
h2 =

[
1 −4 1

]
h3 =

[
0 1 0

]
and σ : R → R is a fixed pointwise nonlinearity. The 3-channel convolutional layer can be imple-
mented as the neural network architecture

σ(WfW [k]) =

σ((h1 ∗ f)[k]
)

σ
(
(h2 ∗ f)[k]

)
σ
(
(h3 ∗ f)[k]

)
 ,

where we recall that σ applies σ component-wise and

fW [k] = (f [k − k0])k0∈W

denotes the patch extraction operator. Let W = {−2,−1, 0, 1, 2}, so that

fW [k] =


f [k + 2]
f [k + 1]
f [k]

f [k − 1]
f [k − 2]

 ∈ R5.

Specify the size and the entries of the matrix W, with justification.

Solution: The matrix will be 3× 5 and will take the form

W =

0 0 1 0 0
0 1 −4 1 0
0 0 1 0 0

 .

2 Stability of convolution layers
[basic] To investigate the stability of convolution layers, you need to have a solid understanding of
discrete convolution operators.

The convolution masks used in CNNs are usually of finite length, which implies that they are abso-
lutely summable. Here, we show that the latter property is sufficient for the convolution layers to
be stable; that is, Lipschitz continuous.

(a) Prove that the convolution operator TLSI : f 7→ h ∗ f with h ∈ ℓ1(Zd) is Lipschitz continuous.
Hint: Derive a simple bound for the frequency response of h.
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Solution: First, we recall that the condition h ∈ ℓ1(Zd) is equivalent to

∥h∥ℓ1 =
∑
k∈Zd

∣∣h[k]∣∣ < +∞.

Consequently,

∀ω ∈ Rd :
∣∣H(ejω)

∣∣ = ∣∣∣ ∑
k∈Zd

h[k]e−j⟨ω,k⟩
∣∣∣ ≤ ∑

k∈Zd

|h[k]| |e−j⟨ω,k⟩|︸ ︷︷ ︸
=1

= ∥h∥ℓ1 ,

which implies that Lip(LLSI) ≤ ∥h∥ℓ1 < +∞.

(b) Lipschitz constant of spatial averagers: Consider the linear averaging operator Tave : f 7→ g ∗ f
with an impulse response g such g[k] ≥ 0 for all k and

∑
k∈Zd g[k] = 1 (lowpass condition).

Show that Lip(Tave) = 1, which tells us that the insertion of such an operator cannot degrade
the overall stability of a neural network.

Solution: Since g[·] is non-negative, we have that ∥g∥ℓ1 =
∑

k∈Zd |g[k]| =
∑

k∈Zd g[k] = 1,
which, in view, of the first question, implies that Lip(Tave) = Gmax ≤ 1. To show that
this estimate is sharp, we now simply observe that

∣∣G(ejω)
∣∣ achieves its maximum Gmax =

Lip(Tave) = 1 at the origin. Indeed,

G(ej0) =
∑
k∈Zd

g[k]e−j⟨ω,k⟩
∣∣∣
ω=0

=
∑
k∈Zd

g[k] = 1. (1)

(c) Composition of filters: Prove that h1, h2 ∈ ℓ1(Zd) ⇒ h2 ∗ h1 ∈ ℓ1(Zd). What happens when h1

and h2 are both averagers as in Question (b)?

Solution: To prove the claim, we estimate the ℓ1-norm of h2 ∗ h1 as

∥h2 ∗ h1∥ℓ1 =
∑
k∈Zd

∣∣∣ ∑
n∈Zd

h2[n]h1[k − n]
∣∣∣ ≤ ∑

k∈Zd

∑
n∈Zd

∣∣h2[n]
∣∣ ∣∣h1[k − n]

∣∣
≤

∑
m∈Zd

∑
n∈Zd

∣∣h2[n]
∣∣ ∣∣h1[m]

∣∣ (by change of variable)

≤

 ∑
n∈Zd

∣∣h2[n]
∣∣ ∑

m∈Zd

∣∣h1[m]
∣∣ = ∥h2∥ℓ1∥h1∥ℓ1 ,

where the interchange of sums is legitimate since the arguments are all positive.

When h1 and h2 are both averagers—that is, their impulse responses are non-negative and
sum up to one—then, the same holds true for h2 ∗ h1, with the above bound being sharp.
Specifically, we have that supω∈Rd

∣∣H2(e
jω)H1(e

jω)
∣∣ = H2(e

j0)H1(e
j0) = 1.
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Figure 1: Block diagram of a simple residual denoiser.
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3 Analysis of residual denoiser
[intermediate] This exercise will train you to derive stability bounds for simple neuronal architectures
that combine convolution operators and pointwise nonlinearities.

The task here is to perform a stability analysis of the residual denoiser in Fig. 1 with THP : f 7→
f − h ∗ f where h is Gaussian-like smoother. Specifically, h is a lowpass filter whose frequency
response is such that 0 ≤ H(ejω) ≤ H(ej0) = 1. The pointwise clipping operator is defined as

σT (x) =


T, x ≥ T

x, x ∈ [−T, T ]

−T, x ≤ −T

(a) Prove that Lip(THP) ≤ 1.

Solution: THP is a highpass filter whose frequency response is W (ejω) = 1−H(ejω). The
condition 0 ≤ H(ejω) ≤ 1 implies that 0 ≤ W (ejω) ≤ 1, so that Wmax ≤ 1, which is the
desired result. We also note that this estimate is sharp if and only if W (ejω) has some
frequency nulls.

(b) Compute Lip(σT ) with σT : R → R.

Solution: The derivative of the clipping pointwise nonlinearity is simply

σ′
T (x) =


0, x ≥ T

1, x ∈ [−T, T ]

0, x ≤ −T,

which yields Lip(σT ) = supx∈R
∣∣σ′

T (x)
∣∣ = 1.

(c) Global stability of pointwise operators. Let σ : R → R with Lip(σ) = L. We then define
the image-wide version of the operator σ with σ{f}[k] = σ(f [k]), for all k ∈ Zd. Prove that
σ : ℓ2(Zd) → ℓ2(Zd) with Lip(σ) = L. The latter is a basic result that is listed in the course
and that can be invoked in exercises for deriving basic stability estimates.

Solution: To characterize the stability of σ, we construct the estimate

∥σ{f} − σ{g}∥2ℓ2 =
∑
k∈Zd

∣∣σ(f [k])− σ(g[k])
∣∣2 ≤

∑
k∈Zd

∣∣L|f [k])− g[k]|
∣∣2 ≤ L2∥f − g∥2ℓ2 . (2)

In particular, if we take f ∈ ℓ2(Zd) with g = 0, then we get that ∥σ{f}∥ℓ2 ≤ L∥f∥ℓ2 < ∞,
which implies that σ{f} ∈ ℓ2(Zd). More generally, for any f, g ∈ ℓ2(Zd), we have that
∥σ{f} − σ{g}∥ℓ2 ≤ L∥f − g∥ℓ2 , which proves that Lip(σ) ≤ L.

To prove that the bound is sharp, we recall that the hypothesis Lip(σ) = L implies the
existence of x1, x2 ∈ R such that

∣∣σ(x2) − σ(x1)
∣∣ = L|x2 − x1|. This suggests to consider

the pair of impulsive signals x1δ[·], x2δ[·] ∈ ℓ2(Zd). Indeed, ∥σ{x1δ[·]} − σ{x2δ[·]}∥ℓ2 =∣∣σ(x2)−σ(x1)
∣∣ = L|x2−x1| = L∥x1δ[·]−x2δ[·]∥ℓ2 , which shows that the bound is achievable.

(d) Use the previous results to obtain a simple bound of the Lipschitz constant of the whole system.

Solution: The composition of the highpass filter and the clipping operation results in a
transformation with L1 = Lip(σT ◦THP) ≤ 1× 1 = 1 (upper branch of the block diagram).
The output is then formed by taking a linear combination with the identity, which yields
the upper Lipschitz bound: L1 + Lip(−Identity) = 2.
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