Image Processing 1, Exercise 9

1 Neural network formalism

[basic] This exercise will investigate the mathematical formalism of convolutional neural networks.

Let f € ¢5(Z) and consider the 3-channel convolutional layer with input f:

o ((h * f)[K])
o (hz*f)[k]g ;
o ((hs * f)[K]

where hy, ho, hg are filters of the form

m = o of n=[1 1] m=]o 0]

and 0 : R — R is a fixed pointwise nonlinearity. The 3-channel convolutional layer can be imple-
mented as the neural network architecture

o ((hy = f)[])
o(Wfwlk]) = 0((h2*f)[k]; ,
o ((hs * f)[K]

where we recall that o applies ¢ component-wise and

fwlkl = (flk — kol koew

denotes the patch extraction operator. Let W = {—2,—1,0, 1,2}, so that

flk+ 2]
flk+1]
fwlkl=| flk] | R
flk—=1]
flk—2]

Specify the size and the entries of the matrix W, with justification.

Solution: The matrix will be 3 x 5 and will take the form

00 1 0O
W=101 -4 1 0
00 1 00

2 Stability of convolution layers

[basic] To investigate the stability of convolution layers, you need to have a solid understanding of
discrete convolution operators.

The convolution masks used in CNNs are usually of finite length, which implies that they are abso-
lutely summable. Here, we show that the latter property is sufficient for the convolution layers to
be stable; that is, Lipschitz continuous.

(a) Prove that the convolution operator Trsr : f + h * f with h € £,(Z%) is Lipschitz continuous.
Hint: Derive a simple bound for the frequency response of h.
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Solution: First, we recall that the condition h € £ (Z?) is equivalent to
lle, = > [hlk]] < +oo.
kezd
Consequently,
W e R H(E)| = | 30 hlkleR| < 37 [hlk]|[e7R) = all,
kezd kezd -

which implies that Lip(Lysi) < ||klle, < +o0.

(b) Lipschitz constant of spatial averagers: Consider the linear averaging operator Tuye : f +— g * f
with an impulse response g such g[k] > 0 for all k and }, ;. g[k] = 1 (lowpass condition).
Show that Lip(Tayve) = 1, which tells us that the insertion of such an operator cannot degrade
the overall stability of a neural network.

Solution: Since g[-] is non-negative, we have that |glle, = ez [9[K]] = > peza glk] =1,
which, in view, of the first question, implies that Lip(Tave) = Gmax < 1. To show that
this estimate is sharp, we now simply observe that |G (ej“’)‘ achieves its maximum G ax =
Lip(Tave) = 1 at the origin. Indeed,

G(el®) = 3 glkle i@®| =3 glk] = 1. (M)

w=0
kez? kezd

(c) Composition of filters: Prove that hy, hy € £1(Z%) = ho * hy € £1(Z%). What happens when h;
and ho are both averagers as in Question (b)?

Solution: To prove the claim, we estimate the £1-norm of ho * hy as

o s halley = 32 | D2 holltall —n)| < 337 [haln]| [alk —n)

kezd neZd keZd nezd
< Z Z |ha[n]| |h1[m]| (by change of variable)
mEZI neZd
< | D Ihelll | [ Do [mlmll | = llhzlle[Balle,
nezd mezd

where the interchange of sums is legitimate since the arguments are all positive.

When hy and ho are both averagers—that is, their impulse responses are non-negative and
sum up to one—then, the same holds true for ho % hy, with the above bound being sharp.
Specifically, we have that sup,,cgs |Hz(e))Hy(e)*)| = Hy(el%)Hy(e10) = 1.

f Lov\'/_pass +C [ Jelip
filter -2

Figure 1: Block diagram of a simple residual denoiser.
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3 Analysis of residual denoiser

[intermediate] This exercise will train you to derive stability bounds for simple neuronal architectures
that combine convolution operators and pointwise nonlinearities.

The task here is to perform a stability analysis of the residual denoiser in Fig. 1 with Typ : f —
f — h % f where h is Gaussian-like smoother. Specifically, h is a lowpass filter whose frequency
response is such that 0 < H(e/*) < H(e)?) = 1. The pointwise clipping operator is defined as

T, x>T
or(x) =z, xe[-T,T]
=T, < -T

(a) Prove that Lip(Tgp) < 1.

Solution: Typ is a highpass filter whose frequency response is W (e/*) = 1 — H(el*). The
condition 0 < H(el*) < 1 implies that 0 < W (el*) < 1, so that Wiyayx < 1, which is the
desired result. We also note that this estimate is sharp if and only if W (e*) has some
frequency nulls.

(b) Compute Lip(or) with op : R — R.

Solution: The derivative of the clipping pointwise nonlinearity is simply

0, z>T
op(z) =141, z¢€[-T,T)
0, z<-T,

which yields Lip(o7) = sup, g |o/7(z)| = 1.

(c) Global stability of pointwise operators. Let ¢ : R — R with Lip(0) = L. We then define
the image-wide version of the operator o with o{f}[k] = o(f[k]), for all k € Z?. Prove that
o : l5(Z%) — l5(Z4) with Lip(e) = L. The latter is a basic result that is listed in the course
and that can be invoked in exercises for deriving basic stability estimates.

Solution: To characterize the stability of o, we construct the estimate

lo (s} = a{g}llz, = Y [o(fIk]) — olglkD)|” < > |LIfFIK]) — glKll|” < L2If - gl3,. (2)

kezd kezd

In particular, if we take f € £3(Z%) with g = 0, then we get that ||o{f}|le, < L f]le, < oo,
which implies that o{f} € ¢2(Z%). More generally, for any f,g € (2(Z%), we have that
loe{f} —oa{g}lle, < L|lf — glle,, which proves that Lip(e) < L.

To prove that the bound is sharp, we recall that the hypothesis Lip(c) = L implies the
existence of z1,x2 € R such that |o(22) — o(21)| = L|za — 21]. This suggests to consider
the pair of impulsive signals x16[-], 226[] € £2(Z%). Indeed, ||o{z10[-]} — o{z20[|}]e, =
|o(22)—0(21)| = Llwa—a1| = L||x16[]—226[-]||,, which shows that the bound is achievable.

(d) Use the previous results to obtain a simple bound of the Lipschitz constant of the whole system.

Solution: The composition of the highpass filter and the clipping operation results in a
transformation with L; = Lip(or o Tygp) < 1 x 1 =1 (upper branch of the block diagram).
The output is then formed by taking a linear combination with the identity, which yields
the upper Lipschitz bound: L; + Lip(—Identity) = 2.
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