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Abstract— This paper proposes a universal stability criterion of
the foot contact of legged robots. The proposed method checks if
the sum of the gravity and the inertia wrench applied to the COG
of the robot, which is proposed to be the stability criterion, is
inside the polyhedral convex cone of the contact wrench between
the feet of a robot and its environment. The criterion can be
used to determine the strong stability of the foot contact when
a robot walks on an arbitrary terrain and/or when the hands
of the robot are in contact with it under the sufficient friction
assumption. The determination is equivalent to check if the ZMP
is inside the support polygon of the feet when the robot walks on
a horizontal plane with sufficient friction. The criterion can also
be used to determine if the foot contact is sufficiently weakly
stable when the friction follows a physical law. Therefore, the
proposed criterion can be used to judge what the ZMP can, and
it can be used in more universal cases.

I. INTRODUCTION

The stability of the foot contact of a legged robot can be
determined by checking the ZMP[10] is inside the support
polygon of the feet of the robot without solving the equations
of motions when the robot is walking on a horizontal plane
with sufficient friction. But a legged robot may walk on
stairs or a rough terrain, and/or move using its hands as well
as its feet. Besides, the friction between the robot and the
environment may not be enough to prevent the robot from
slipping. Is it possible to determine the contact stability in the
cases without solving the equations of motions?

This paper studies the question and concludes that the
contact stability can be determined in the strongly stable
sense[7] when the friction is assumed to be sufficient and in the
weakly stable sense[7] without the assumption. The stability
is determined by checking if the sum of the gravity and the
inertia wrench applied to the COG of the robot is inside the
polyhedral convex cone of the contact wrench between the
feet of a robot and its environment. It is proved that the
determination is equivalent to check if the ZMP is inside
the support polygon of the feet when the robot walks on a
horizontal floor with sufficient friction. This paper proposes to
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let the sum of the gravity and the inertia wrench applied to the
COG of the robot be the stability criterion of the foot contact
of legged robots. The contact stability can be determined by
checking if the criterion is inside the polyhedral convex cone
of the contact wrench in the senses mentioned above. The goal
of the paper is to say “Adios ZMP”.

This paper is organized as follows. Section 2 reviews the
related works. Section 3 gives the proof of the results of
the paper. Section 4 presents a walking pattern generator of
a biped robot as an application of the proposed criterion.
Section 5 concludes the paper.

II. RELATED WORKS

Goswani proposed FRI (Foot Rotation Indicator) to judge
the contact stability and evaluate how much moment is applied
to break the contact when a robot is supported by single
foot[2]. Yoneda et al. presented a method to determine if a
robot should rotate about a contacting edge which may not be
horizontal[11]. Harada et al. proposed a generalized ZMP to
determine the contact stability when the hands of a robot are
in contact with the environment as well as its feet [3]. Saida et
al. considered the feasible solution of contact wrench (FSW),
which is essentially same as the criterion proposed here. But
neither rigorous proof was given to relate the FSW to the
contact stability, and nor method was proposed to generate
motion patterns based on it[8].

The contact stability problem has also been studied inten-
sively in the community of mechanical assembly to design
the optimal fixture, and the methods to determine the stability
have been proposed with rigorous proof in which the Coulomb
friction is assumed[1], [7], [9]. The results can be applied
to the problem considered here if the dynamic problem can
be reduced to a static equilibrium problem based on the
D’ Alembert principle as shown in the following. We also show
how to generate motion patterns of legged robots based on the
criterion.
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III. STABILITY CRITERION OF THE FOOT CONTACT
A. Definitions

1) Coordinates: Fig. 1 illustrates a legged robot whose
hands may be in contact with the environment. Let Xy be

Fig. 1.
the reference frame, Xp a frame fixed to the waist of the
robot, and X7, a frame fixed to the COG of the i-th link of
the robot (¢ =1,---, N).

Let p;;(= [zri yri 2z0:)7) be the origin ¥7; and pg(=
[z5 yp zp|") that of ¥ with respect to X . In the following,
the position vectors are represented with respect to X r unless
otherwise specified. Let p,, (k = 1,---,K) be the vertices
of the support polygons of the hands and feet, and ps(=
[zq yo 2c])T) the position of the COG of the robot. p, =
Zil\il m;pr,;/ Zf\il m;, where m; is the mass of the i-th link.

Let f, be the force applied to the robot at py, and ny the
unit normal vector at p,, pointed to the robot. I; and w;, denote
the inertia tensor and the angular velocity of the i-th link with
respect to X respectively.

2) Gravity and the inertia force and torque to the robot:
Let the sum of the gravity and the inertia force applied to the
robot be f and the sum of the moments about the COG of
the robot 7 with respect to X, which can be given by

fa M(g —bc), (1
T¢ = PgxM(g-pg)-L, )
where M = Zfil m; is the total mass of the robot, g =
00 — g]* the gravity vector, and L(= [L, L, L.]") the

angular momentum of the robot with respect to the COG
defined by

Model of the System

N
L = > {milpy, — pg) x b1, + Liw;}. 3)
i=1

3) Set of the contact force and torque from the environment:
Let f~ be the contact force which can be applied from the
environment to the robot with respect to X and T¢ the
corresponding moment. The set of (f~,T¢) can be given by

K L
fo=>_) e(ni+uty), 4)

k=11=1

K L
To =YY ehpy x (ni + pth), ©)

k=11=1

where the friction cone at p, is approximated by a L-
polyhedral cone, tfc is a unit tangent vector to make ny —&—ukté
be the [-th edge of the polyhedral cone, uj the friction
coefficient at p,, and ei, a nonnegative scalar. 62 gives the
magnitude of the force of the [-th edge of the approximated
friction cone at the k-th contact point.

The set of (fo,T¢) forms a polyhedral convex cone in
the space of the contact force and torque, and is called a
polyhedral convex cone of the contact wrench here.

4) Strong stability and weak stability: The definitions of
the strong stability and weak stability[7] can be applied to our
problem as follows.

Definition 1: The contact between the robot and the en-
vironment is strongly stable when it is guaranteed that the
contact is stable to (f,Tq). The contact is weakly stable
when it is possible that the contact is stable to (f, 7). The
contact is strongly unstable when it is not weakly stable.
The strong stability can not always be determined since the
contact force is indeterminate in general. The contact is always
weakly stable in our problem when the motion of the robot is
feasible as we discuss in the following.

B. Strong stability determination

Let us assume that sufficient friction exists at the contact.
The assumption implies that an arbitrary friction force can be
generated at every contact point independent to the normal
force at the point, and it can be written by

K 4
fo=D (nmi+) et), (©)
k=1 =1
K 4
To =Y Py X (hm+ Y 6th), (7)
k=1 =1
where t\ (I = 1,...,4) are the unit tangent vectors at p;

whose nonnegative linear combination spans the tangent plane.
Then the strong contact stability can be determined as follows.
Theorem 1: (Strong stability criterion) If (—f~, —7¢)
is an internal element of the polyhedral convex cone of the
contact wrench given by Eqgs.(6) and (7), then the contact is
strongly stable to (fqo, T¢)-
(proof) Let (Axg, Q¢) be an admissible infinitesimal trans-
lation and rotation of p.. Then (Axzg, Q) must satisfy

ks (nf o (pr xmi)” ) < AQ””GG ) >0, ®
vk ()T (e x 8)T) < AQwGG ) >0, )

to prevent the robot from penetrating into the environment at
p;, and from slipping respectively. The inequalities must hold
at all of p,(k = 1,...,K) and forms homogeneous linear
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inequalities. The solution of homogeneous linear inequalities
is a polyhedral convex cone that can be written by

ACCG @
Qe )= > eqdy (10)
g=1
where e, : 6 x 1 is the m-th edge of the cone, J, an arbitrary
nonnegative scalar, and M the number of the edges. Let the
solution set be 51 (dxg, QLg), then
(nk (oxne)" )eg >0, (1)
()T Py xti)T ) e >0, (12)
hold, since §, may take an arbitrary nonnegative number.

Let S2(fq, 7o) be the set of (f~,T¢) given by Eqgs.(6)
and (7). Egs.(10), (11) and (12) imply that

V(éil:g, Qg) S Sl,V(fc,Tc) c SQ;

((Fe)" (re)") ( AQmGG ) >0.  (13)

From the inequality and Eq.(10), So(f~, T¢) is the solution
of homogeneous linear inequalities
el 0

(f2)=

3 :
€o 0

Yk, n;
Yk, 1, n;

(14)

To the contrary, it is well known that any element of the solu-
tion of the inequalities should be an element of Sa(fq-, T¢).
Therefore, Eq.(14) is the necessary and sufficient condition to
be an element of S3(f o, T¢), and (—f 4, —7T¢) is an internal
element of S3(fo,T¢) from the assumption, we obtain

(%)

3 :
€n 0

T
€1

5)

This implies that

((Eﬂj: eq(sq)T> ( _J:g > <0, (16)

unless Vm; 6, = 0, which shows that
V((s:ng, Qg) S 517 (&Bg, ﬂg) 7& 0;
((xa)" (Qa)") < fg > <0. (17)

That is, it is proved that the contact is always stable, since the
work done by (—f~, —7T¢) is always negative for an arbitrary
infinitesimal translation and rotation of the COG of the robot.
(q.e.d.)

We propose (—f o, —T¢) to be a stability criterion for the
foot contact of a legged robot. The contact is strongly stable
if the criterion is inside the polyhedral convex cone of the
contact wrench. We will prove that the criterion is equivalent

to the ZMP when the robot walks on a horizontal plane as
follows.

Example 1: (Biped robot walking on a horizontal plane
with sufficient friction) Let us consider the case in which a
biped robot walks on a horizontal plane as shown in Fig.2.
Then the horizontal elements of f, and T about z-axis

\/

Fig. 2. Two feet on a horizontal plane

should always balance with the contact force and torque as

K

Mig = Z(e}c—ei),
k=1
K

Mje = Z(ei_ei)a
k=1
K

Magiic — Mygic + L., =

The polyhedral convex cone of the contact wrench is the
direct product of the linear subspace given by the right-hand
side of Eqs.(18),(19) and (20) and a polyhedral convex cone
in the complement of the subspace, and therefore the strong
stability can be determined by checking if (f~, T¢) is inside
the polyhedral convex cone in the complement subspace. The
relationship in the complement subspace can be written by

K

M(ZG+9) = Zega
k=1

M (3¢ + 9)ye — Mijczg + Ly

K K
Mg+ g)ze + Migzg + Ly, =
=1

where zg is the height of the horizontal floor. Note that the
second term of the right-hand sides in Eqs.(22) and (23) are
independent to the positions of the contact points, since z-
coordinate of all the contact points is zp. Then we can set
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0 3 4
E €LYk — 20 E (€x — €&),
k=1 k=1

(22)

= ehar =20 ) (ep — ),
k=1 k

(23)



zg = 0 without loss of the generality, and we obtain

K
>k, 24
k=1

K

= epwy. (25)
k=1

From Egs.(21),(24) and (25), (—fa,—T¢) is an internal
element of the polyhedral convex cone of the contact wrench
given by Eqgs.(6) and (7) if Egs.(24) and (25) hold for at least
three of positive €?, and then the contact is strongly stable
from Theorem 1.

Fig.3 illustrates the support polygon of the robot and the
corresponding intersection of the polyhedral convex cone
given by the right-hand sides of Eqs.(21),(24) and (25) with
plane f, = M(Zg + g). The set of ((7¢)z, (Tc)y) is the
dual polygon of the support polygon, since zj and y; are
exchanged in the right-hand sides of Eqs.(24) and (25) with
the minus sign in Eq.(25).

Mg+ 9)ye — Mijczg + L, =

Mg+ g)rg + Migzg + L:y =

XB

i 4>ZB

fz ) M(ZG ) g)“ -

Fig. 3. Support polygon and an intersection of the polyhedral convex cone

Let us consider the same contact stability using the ZMP.
The ZMP= (x¢, o) can be given by

Mzc(ic +9) — M(2c — 20)ic — L,

o= M((q +g) ’
v = Myc (26 + g) — M(2g — 20)iic + Le
’ M(2g + g) '

(26)

The ZMP is an internal point of the support polygon of the
feet if

o —

K
> e,
k=1
K
> Ners
k=1

Yo = 27)

K
Z/\k:L A >0,

k=1

(28)

and at least three of A\, are positive. Let zyg = 0, and from
Eqgs.(26),(27) we obtain

M('Z:G + g)xG — Mzgia — ‘CU _ i A
M(%g +g) P ’

. .. ; K
M(Zc + 9)yc — Mz2gijc + Lo Z)‘
= - kEYk-
M(:c +9)
(29)
Now we can prove that the proposed criterion is equivalent

to the ZMP in the case of Example 1. Let ¢ = ZkK:l .
Substituting Eq.(21) into Egs.(24),(25), we get

M(GZg + g)xg — Mzgia — Ly _ Z il‘k
M(Za +9) e
M (2 + 9)yc — Mzgijg + Lo €
=2 Lu
€

M(%c +g)

b
I

1
(30)

It is trivial t?at Eq.(30) should be identical with Eq.(29)
since Zle % = 1. This proved that the proposed criterion
is equivalent to the ZMP when a legged robot walks on a
horizontal plane with sufficient friction.

The proposed criterion is more universal than the ZMP
as described below. A question is if the criterion has any
merit or demerit compared to the ZMP in the specific case of
example 1. The proposed criterion does not need the division
to find the ZMP in Eq.(26) and therefore its computation is
more numerically stable especially when the vertical contact
force is small. The trajectory of the ZMP can be plotted more
comprehensively since it is a point on a plane. The proposed
criterion should require an intersection plane of f, to be
plotted on a plane. See Fig.3.

Example 2: (Biped robot walking on stairs with suffi-
cient friction) Let us consider the case in which a biped robot
walks on stairs as shown in Fig.4. The contact stability can not
be determined based on the ZMP without some approximation.
Let one foot contact with a stair at p;,, k = 1,..., K1 whose
height is 21 and another at p,, k = Kp1+1,..., Kp1+Kpo
whose height is zpo. Then Eqgs.(18),(19), (21) and (20) remain
identical essentially, and Egs.(22) and (23) become

M(2¢ + 9)ye — Mijcza + Ly

Krp1+KF2
0
= E €LYk
k=1
Kp1 Kr1 Krp1+Kp2 Krp1+Kr2
3 4 3

—( E € — E €x)zF1 — ( E € — E €k)ZF2,

k=1 k=1 k=Kp1+1 k=Kpi1+1
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Fig. 4. Two feet on stairs

\

Mg+ g)zg + Migzg + Ey

Kri1+Kr2
= — E ngk
k=1
Kp1 Kp1 Krpi1+KF2 Krp1+Kp2
1 2 1
+( E €x — E ex)zr + ( § €k — E
k=1 k=1 k=Kpi1+1 k=Kp1+1

When motion patterns of a legged robot is planned, the
planner may generate motion patterns which are not feasible
in the physical world. So the weak stability criterion can be
used to check if the planned motions should be feasible, but
it does not tell if the contact should be stable. An alternative
idea is to judge if (— f o, —7¢) should be included in a proper
subset of the polyhedral convex cone of the contact wrench.
Then the contact is likely to be stable with a margin, but there
is no guarantee that the contact should be stable. The idea is
summarized as follows

Definition 2: (Weak stability criterion) If (—f., —7¢) is
an element of a proper subset of the polyhedral convex cone
of the contact wrench given by Eqgs.(4) and (5), the contact is
called sufficiently weakly stable to (f o, Tc).

IV. PATTERN GENERATOR OF A HUMANOID ROBOT
A pattern generator of a humanoid robot is presented as an
application of the proposed stability criterion.
A. Equations of momentum

See Fig.1 again. Let vp and wp be the velocity and angular

6%)Zmovelocity of Y5 with respect to X respectively and 6 (n x 1)

joint vector of the robot. Then the momentum P of the robot

(32)and angular momentum £ about the COG can be given by

The second term in the right-hand side of Eq.(31) or Eq.(32) is
the contact torque about z-axis of one foot and the third term
that of another foot. Therefore the balance of the torque about
z or y-axis should depend on the ratio of the horizontal force
applied to two feet. Theorem 1 is still valid in the case, but the
strong stability should be checked in the six-dimensional force
and torque space rather than the three dimensional space in the
case of example 1. Note that the decision of the strong stability
can be computed in a five dimensional space for example 2 and
in a two dimensional space for example 1, since the algorithm
should check if the direction of (—f~, —7T¢) is include in the
polyhedral convex cone.

C. Weak stability criterion

When the sufficient friction assumption is removed, it is not
possible to determine the strong stability in general[7], [9]. In
the proof of Theorem 1,

)0

(33)
does not hold instead of Eq.(8) when a slip occurs at p,.
Then we may consider to check the weak stability, but the
weak stability always holds for the contact of a legged robot
when the motion of the robot is feasible. Let us consider
the causality of our problem. The inputs of the equations of
motions of the robot are the joint torque of the robot and
the gravity. Then the contact force between the robot and the
environment is determined physically, and the acceleration of
the robot is generated which determines the inertia force and
torque applied to the robot. (f, T¢) are the sum of the inertia
force and torque and those from the gravity and therefore must
balance with the contact force and torque.

A:EG

(s th)” (oo xf + et ) ) (g5

N UB
P o ME _MTB*)G Mé
[ﬁ}_[ 0 7 Hy || @ | (34)

where E is the (3 x 3) unit matrix, r _,¢ the position vector
from pp to the COG, I the (3 x 3) inertia matrix about the
COG, M, and H the (3 x 3) inertia matrix that gives the
momentum and angular momentum depending on the joint
velocities, and operation ~ converts a (3 x 1) vector into the
equivalent (3 x 3) skew symmetric matrix. Let vp, and
wpr, be the velocity and angular velocity of g, (i = 1,2)
respectively, where X5, (i = 1,2) are coordinates fixed to the
tip of the feet respectively. Then we have
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where J ., is the (6 x 6) Jacobian matrix determined by the
structure of the leg and its posture, 7p_, r, the position vector
from p;, to the tip of the leg, élegi(i =1,2) the (6 x 1) joint
velocity vector of the leg. From Eq.(35), élegi can be given

by
_ E v
—Jl6;i|:0 :||:wi lu
(36)

_”A'BA»FI'

T }+J@ﬁ@”<%>

—TB—F;

; — VFE,
Oreg, = Tt :
leg; leg; Wr, E

when J ., is regular. Let us impose an artificial constraint to
the tip of the hands to move the tip by a desired velocity, then

0 .rm,; can be given by
VH; 7J71 E UB
W, arm; 0 wp
(37)

where the symbols are defined in the same way as the leg and
J arm,; 18 assumed to be regular.

1 _7A"B~>Hi
0‘”"’”«1‘ = ']armi E
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Let us decompose the joint velocity vector into the leg
part 9@1,01@92 and the arm part BMml,Oarmz to compute
the momentum under the constraints, and the inertia matrices
correspondingly as

. . T . T . T T

0 = [Olegl 0l692 garml Oarmz}T7
MG = [Mlegl Ml692 Marml MarmzL
H@ = [-lqleg1 Hleg12 Harml Haer] .

Substituting Eqs.(36) and (37) into into Eq.(34), we can
derive the relationship between the momentum and angular
momentum of the robot and the velocity of the robot under
the constraint as

(2] (3o 3 e+ 2 o
39
where
v VF, VH,
leiwiila £Fi_|:wi7:|7 éHl_|:(.dZ7:|7
B . ME —-Mrg_g
w1

| Hy, E
M}‘l — ]\4'legZ —1
H}:_‘L N le.‘]i legy?
Mflll — Marm J- 1
H;L - Harmi arm;

B. Generation of the reference momentum pattern by a pre-
view control

When the ZMP is used as the stability criterion of the foot
contact of a legged robot, a reference trajectory of the ZMP
is first planned and that of the COG is generated by solving
the ZMP equations. The reference trajectory of the ZMP is
usually chosen to be a smooth curve inside the support polygon
of the robot. When the proposed stability criterion is used, a
reference trajectory of the sum of the gravity and the inertia
wrench is first planned to balance a smooth one-dimensional
manifold inside the polyhedral convex cone of the contact
wrench, and that of the COG is generated by solving the
differential equations which relate the derivatives of the COG
position and the reference wrench.

For example, we can simply take the average of possible
wrench vectors as

K L
Frei=3 0% En + wty), (39)
k=11=1
K L
rref = Z Z (n + prtl,), (40)

V(s
= ((¢ +9) >0,

KL “D

then (f"¢/,77¢f) should be inside the contact wrench and
a smooth one-dimensional manifold can be generated by
connecting such wrenches smoothly.

Let fT'ef — (fref fref f;‘ef) and Tref _
(rp¢f el r7el). Then the balance of the moment about
z-axis and y-axis can be written respectively by

M + 9)ye — Mijgzc + Lo = 7,7,
Mg+ g)ze + Migzg + £y = T;ef,

(42)
(43)

where 77¢/ and 77/ can be found by taking a positive sum of
the edges of the polyhedral convex cone of the contact wrench
like Eq.(41).

When the reference of {p, £, and &g, are given, the ref-
erence angular momentum £7¢f can be computed by Eq.(38)
without considering the contact stability and then Eqs.(42) and
(43) can be written as

M(Zc + g)ye — Mijgza = 7, - Ege.fv
—M (¢ + 9)za + Migza =7, — L.

(44)
(45)

In the following, let us consider the motions for which
we can assume that zg is approximately constant and Zg is
negligible. We also assume that we have a sufficient friction.
Then Eqs.(42) and (43) become respectively

Mgyc — Mjczc = 7, = L3, (46)
~Mgzg + Migzg = 7,0 — L7, (47)
which can be re-written by state equations as
ya 0 1 0 ya 0
4 ge |=10 01 vo |+ 0 | uy,
e} 0 0 O el 1
e}
So=(Mg 0 —Mzg )| 9e |.
(e
pitel 0 1 0 el 0
41 ig |=(0 0 1 e |+ 0 | ug,
fife] 0 0 O fide] 1
el
by=(-Mg 0 Mz )| ic |, (48)
ftel
where
o= e =L (49)
gef = et Lt (50)
up = Zg, (51)
u, = o (52)

A solution of the state equations can be found by a

preview control[5]. Let the solution be (xgef ,ygef ) and

3¢ determined by Eq.(38) be ng . Then the wrench
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,ygef ref,T;ef,T;ef,szf) should be inside the con-

tact wrench from the sufficient friction assumption, and the
reference of the momentum (P;¢/,Pre/) can be given by

( ref

~ref

pref = (53)
Pref = My“f (54)
pref = Mz (55)

C. Resolved momentum control

The resolved momentum control proposed by Kajita et al.[4]
is applied here. The equations of momentum Eq.(38) can be
rewritten as

y:Ang (56)
where
pref M T e My 7 gre
= () B e B e
(57)
M
A = [Hﬂ (58)

From Eq.(56), {p that realizes a reference momentum P
angular momentum L7, velocity of foot &r Tef and velocity of

hand 5 H, can be given by

tp=Aly (59)

From obtained & 5, the joint velocity of the legs and arms can

be given by
o ). wo

élegi = J;i < ;if -
éarmb '-];’rlTn1 <£T€f {E TB—>H :|£B> .(61)

D. Simulation example

The proposed pattern generator is implemented on dy-
namic simulator OpenHRP[6]. Fig.5 shows that humanoid
robot HRP-2 walks on a horizontal plane with a sufficient
friction. Fig.6 shows an example of the reference trajectory of

4 OpenHRP Online Viewer
File Option

B ] e ] ©
O

Time:6.81

Fig. 5. HRP-2 walks on a horizontal plane with a sufficient friction

(T;;ef,ry“f ) with the polyhedral convex cone of the contact
wrench on the intersection plane f, = Mg in f,7,7, space,
where each polygon corresponds to the contact cone at each
step. The reference trajectory is the dual of the ZMP trajectory

Fig. 6. Example of the reference contact moment

as illustrated in Fig.3.

V. CONCLUSIONS

This paper proposed a universal stability criterion of the
foot contact of legged robots. The proposed method checks
if the sum of the gravity and the inertia wrench applied to
the COG of the robot, which was proposed to be the stability
criterion, is inside the polyhedral convex cone of the contact
wrench between the feet of a robot and its environment. The
contribution of the paper is summarized as follows.

o The proposed criterion can be used to determine the
strong stability of the foot contact even when a robot
walks on an arbitrary terrain other than a horizontal plane
and/or when the hands of the robot are in contact with
the terrain under the assumption that sufficient friction
should exist at the contact.

« It was proved that the determination is equivalent to check
if the ZMP is inside the support polygon of the feet
when the robot walks on a horizontal plane with sufficient
friction.

e The criterion can also be used to determine if the foot
contact is sufficiently weakly stable when the friction
follows a physical law.

The ZMP can be a rigorous stability criterion of the foot
contact of legged robots in a specific case in which the robots
walk on a flat plane with a sufficient friction. The proposed
criterion is an equivalent criterion in the specific case, and it
is also a rigorous criterion in more universal cases. We are
afraid that the only advantage of the ZMP over the proposed
criterion is that the ZMP can be drawn on a plane as shown
in Fig.3. Therefore, we claim to say “Adios ZMP”.

The part of the pattern generator after Eq.(46) assumes that
z¢ 1s approximately constant and Zg is negligible. The future
works include the removal of the assumptions, then a variety
of motions can be planned using the proposed criterion which
should prove the merits of the proposed criterion over the
ZMP. When the goal is attained, we can say “Adios ZMP” in
a loud voice.
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