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Mobile Robots that can go ANYwhere
to take over the dirty and dangerous jobs




Facts & Figures

- 6 PostDocs

- 25 PhD students

- 25 engineering/staff

Research areas at RSL

* Focus: Locomotion and mobile manipulation with uncertain/unstructured environments
— Design of actuators and robots
— Model-based planning and control for hybrid systems
— Reinforcement learning with sim-to-real transfer
— Multi-modal perception and classification for traversability estimation and navigation

« Different platforms
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Lecture today in 5 parts

1. Quadrupeds

2. Control

3. Navigation

4.  Applications

5. (if time) Future stuff
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Part 1:
RSL Quadrupeds




OSU walker, early 80ies
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Raibert, Leg Lab, late 80ies
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Legged (Quadruped) robots have become a commodity

E’HZUFiCh 04.09.24



From research prototypes to comercial products in 1 decade

2012

ETH Zurich |- Robotic Systems lab

Research on autonomous robots

ETH:zirich 18.10.2022



ARGOS - first field application of legged robots towards industrial inspection

« ARGOS competition 2013-2017

* 4 teams with classic tracked vehicles

» 1 team with a legged robot

ETH:zirich
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From research prototypes to comercial products in 1 decade

2012 2014 2016

Robotic Systems Lab

Research on autonomous robots

founded 2016, >150 employees
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Robotic Systems Lab
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Design for reliability

Reliability

Large operating temperature ranges,
thermal cycling, humidity
exposure/cycling, vibration/shock,
component lifetimes

ANYbotics — Get in touch at info@anybotics.com

Electromagnetic & radio
compliance

Emissions, immunity, electrostatic
discharge, radios

Environment

Water/dust ingress, UV radiation, corrosion,

humidity/condensation
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Part 2: Control




State of the Art Legged Robots — and their actuation

1.  High-gear system with elasticity or torque sensor

2.

ETH:zlrich 18.10.2022



Control, Planning and Autonomy for Legged Robots

“Torque-controllable,
multi-articulated system”

Y PIanm.ng Tracking Joint Control
Navigation * Motion + Follow the plan :
> . : » » Joint torque
* Foothold « Satisfy constraints . Joint position
i » Reference torque * Reactive behaviour P -
Proprioception
. . « Joint position
State Es‘tlmatlon . IMU
: - Contact sensors
Localization & Mapping |* Exteroception
« Camera
« Lidar
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Control, Planning and Autonomy for Legged Robots

continuous
“Torque-controllable,
Ve discrete multi-articulated system”
Planning 100 Hz Tracking 1kHz . 1
OkH
Navigation - Motion / |+ Follow the plan :Io’J"t_ Cttzntrol z
» Foothold « Satisfy constraints . Jofgt orq'l’:'en
‘ - Reference torque - Reactive behaviour oint positio |,
Proprioception
State Estimation »Joint position —
¥ « IMU
E « Contact sensors
Localization & Mapping |* Exteroception
« Camera
« Lidar
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Control, Planning and Autonomy for Legged Robots

Motion Planner
(~10-100Hz)

Whole-body control
~kHz
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Control, Planning and Autonomy for Legged Robots
Classic approach

Reference Velocity

Gait Patterns

LF LF

RF RF

LH LH

RH RH

LF LF

RF RF
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RH RH

Foothold Optimization
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Motion Planner I\I : R T
(~10-100Hz) |
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( Motion Optimization
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Control, Planning and Autonomy for Legged Robots

Motion Planner
(~10-100Hz)

Whole-body control
~kHz

Classic approach

Reference Velocity

Gait Patterns

LF LF

RF RF

LH LH

RH RH

LF LF

RF RF

LH LH vref ’ wref
RH RH

Foothold Optlmlzatlon
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L
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Whole- Body ControIIer
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Inverted pendulum

Vdes

femt /\
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Control, Planning and Autonomy for Legged Robots

Motion Planner
(~10-100Hz)

Whole-body control
~kHz

Classic approach

Reference Velocity

Gait Patterns

LF LF

RF RF

LH LH

RH RH

LF LF

RF RF

LH LH /U'ref ’ wref
RH RH

Foothold Optlmlzatlon

Gait Switcher Q;J\L }9 .
| fgﬁ 4

I\I

Y
) Support Polygons

My -

( Motion Optimization

ming  f(§)
s.t. () =0 h(€) >0

» Biomechanical studies suggest

SLIP models to describe
complex running behaviors

[Dickinson, Farley, Full 2000] [Geyer 2006]

» Simple step-length rule to adjust
the velocity

Constant speed Accelerate Decelerate

1

Whole- Body ControIIer ANYmal

‘{NJ%W — >

1.
e _2rHcd Tt+kFB(HCd rHC)\/E

[Raibert 1986]
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Control, Planning and Autonomy for Legged Robots
Classic approach

Reference Velocity

Gait Patterns

LF LF

RF RF
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Control, Planning and Autonomy for Legged Robots

Motion Planner
(~10-100Hz)

Whole-body control
~kHz

Classic approach

Reference Velocity

Gait Patterns

LF LF

RF RF
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RF RF
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Control, Planning and Autonomy for Legged Robots

Classic approach

Motion Planner
(~10-100Hz)

Whole-body control
~kHz

Gait Patterns

LF LF
RF RF
LH LH
RH RH
LF LF
RF RF
LH LH
RH RH|

Gait Switcher

I\I

Y

( LF ) T
RF > w‘_J(j }3))
E iy
- S e\

Reference Velocity

lvref7 Wref
Foothold Optlmlzatlon
«?p» -

Support | Polygons

Motion Optimization

ming  f(§)

s.t. () =0 h(€) >0 }T

1

Whole- Body ControIIer

ANYmal

‘{NJW >

Solves a cascade of prioritized tasks

Equation of motion
No slippage condition
Limits on torques
Motion tracking
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Control, Planning and Autonomy for Legged Robots

Control policy
w(t,x) = Uff(t) + K(t)x
_

Motion Planner
(,._1 0-100 HZ) Forward rollout the system

— m
N Ty

s R
Linear-Quadratic (LQ) approx. of
dynamics and cost

k Y,

Y z
P oP! v \
o fy
P1 f €

(Linear approx. of constraints
Whole-body control Updating LQ model.

~kHz = 2

Solve Riccati-like equations
using constrained LQ model
_ J
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Locomotion as optimization problem

Finite-Time Optimal Control Problem

Constrained DDP-based Algorithm (SLQ) [Farshidian 2017 IFAC]
[https://bitbucket.org/leggedrobotics/ocs?]
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https://bitbucket.org/leggedrobotics/ocs2

Locomotion as optimization problem

Source: youtube, video by Boston Dynamics, Talk by Scott Kuindersma
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Legged robots work well on structured ground
... but they often have issues over compliant, slippery or moving terrain

b Lots of handcrafted heuristics to compensate
« Corner cases of model-based controllers

— Online disturbance observer and r i
« Underlying assumptions: » — Slip detecti learn all of t e
— Contact only occurs at the feet ke the robot to
o . a
— The terrain is static (and planar) COU\d we notm nd frequency adaptation
— Regain contacts...

4

ETH:zlrich 27.09.2023 34



Reinforcement learning for locomotion control control policy

control action

» Learn from massive data generated with a fast and accurate simulator

T policy
gradient

\ 4

a

RL algorithm
4&

reward

robot state
Env. perception

robot, environment

27.09.2023 35




Deployment of learned policy on the robot

ETH:zlrich 18.10.2022



Sim-to-real: The reality gap

E’HZUI‘/C/’) 18.10.2022



Sim-to-real: The reality gap

Difficult to model. Easy to model.
Easy to learn Difficult to learn

ETH:zlrich 18.10.2022



Simulation-based RL for legged robots

18.10.2022



Every sequence:

ANYmal is (one of) the first RL-controlled robot product : lﬁ_gmig;graﬁons

~8.3 hours of simulated time

EYH zirich 18.10.2022



Real World Deployment

« Large variations in terrain in reality
— Impossible to model in simulation

— Hard to sense from perception

« What's important for locomotion

18.10.2022
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Method: privileged training

ETH:zlrich 27.09.2023 47



Friction estimation
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Foot trapping reflex

18.10.2022



Learning-based locomotion including perception

ETH:zlrich 18.10.2022



Teacher-Student training

ETH:zlrich 27.09.2023 55



What is recognized in the belief state?

ETH:zlrich 18.10.2022
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Robustness

ETH:zlrich 18.10.2022
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Part 3: Navigation




Conventional approach

Planning assumes static environment

Global path

l Waypoints

Navigation planner
(~2Hz)

l Refined path

Path following controller
(10 Hz)

1 Twist command

Locomotion controller

ETH:zurich
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Conventional approach

Planning assumes static environment

Global path

l Waypoints

Navigation planner
(~2Hz)

l Refined path

Path following controller
(10 Hz)

1 Twist command

Locomotion controller

ETH:zurich

ART Planner. Wellhausen et al. (2023)
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Traversability estimation and navigation

ETH:zlrich 18.10.2022



Finding the right local path
C/.Goal

» Traversability estimation

- —. !l u, cg(e) Energy consumption

1 1

1 1

_J ' Cost cr(e) Time consumption
--------- FLOtflal - Predictor|
catures cr(€) Failure probability (risk)

Local Patch Feature Extractor Local Motion Cost Predictor
(for training)

18.10.2022
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Finding the right local path
C/.Goal

» Traversability estimation

- —. !l u, cg(e) Energy consumption
1 1
1 1
_J ' Cost cr(e) Time consumption
FLOtflal - Predictor !
CAIIEs cr(€) Failure probability (risk)
Feature Extractor Local Motion Cost Predictor
[ue ] [ l [e(e))]
* Find the best path
Parallel
Pgigggﬁ:d —> Roadmap — Path
_— Construction
Sampling-based
Global Map Planner
oio

18.10.2022
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Conventional approach

Dynamics-unaware control and delayed response

Global path

l Waypoints

Navigation planner
(~2Hz)

4

l Refined path

Path following controller -
(10 Hz)
Information
1 Twist commar{d loss
| . .
Locomotion controller | == + communication delay

+ computation delay
+ abstraction

ETH:zurich



Method (1/4): Revise the system design

Everything into a single module

ETH:zurich

Global path

l Waypoints

Navigation policy
(10 Hz)

Full states Command

Locomotion policy
(50 Hz)

70




Method (2/4): Revise the system design

ETHzurich

Global path

l Waypoints

Navigation policy
(PointNet)

Full states Command

Locomotion policy
(RNN)

1. Proprioceptive measurements
2. Hidden states

7



Fast and dynamics-aware control

The resulting navigation controller is very reliable

ETH:zurich
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Exploration behavior

Limited field of view — Overcomes with exploration

ETH:zurich
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Method (1/4): Revise the system design

Everything into a single module

ETH:zurich

Target
position

Robot
state

Perception

ﬁ

Actuator
commands

74



Avoid human guidance - Let the robot figure out how to move

Target
position

RO bOt —
state

Perception

[D. Hoeller, N. Rudin, E. Sako, M. Hutter,
ANYmal parkour: Learning agile navigation for quadrupedal robots.
Sci. Robot.9,eadi7566(2024).]

ETHzurich

Actuator
commands

29.10.24
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Locomotion Module

ETH:zurich

Climb up

Jump

Climb down

Crouch

29.10.24
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* Onboard sensing only
* No handcrafting
* No a priori knowledge

of the environment

ETH:zlrich 27.09.202380
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ANYmal perception

RTK GPS

Velodyne Lidar

4-6x active stereo 2 x RGB wide angle




SLAM video

ETH:zlrich 20.06.24 84






Traversability estimation and navigation

» Depends on the Hardware (Robot) and Software (Motion Control)

* Depends on the Terrain (Geometrical Obstacles, Semantics, Slipping)

N
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Traversability estimation and navigation

» Depends on the Hardware (Robot) and Software (Motion Control)

* Depends on the Terrain (Geometrical Obstacles, Semantics, Slipping)

N

ETH:zlrich 18.10.2022



Visual Traversability Estimation

Problem:

» Simulating realistic images and physics is hard
« Real-world data with labels is expensive
Solution:

« Self-supervised learning

» Adaptation during deployment from few data

» Supervision by velocity-tracking error

[Frey, J., Khattak, S., Patel, M., Atha, D., Nubert, J., Padgett, C., Hutter, M., & Spieler, P. (2024). RoadRunner - Learning Traversability Estimation for Autonomous Off-road Driving.]
[Mattamala, M., Frey, J., Libera, P., Chebrolu, N., Martius, G., Cadena, C., Hutter, M., & Fallon, M. (2024). Wild Visual Navigation: Fast Traversability Learning via Pre-Trained Models and Online Self-Supervision.]

ETH:zlrich 20.1.2023 106



Visual Traversability Estimation

Problem:

» Simulating realistic images and physics is hard
« Real-world data with labels is expensive
Solution:

« Self-supervised learning

» Adaptation during deployment from few data

» Supervision by velocity-tracking error

use high-dimensional features from pre-trained self-supervised models,
* implicitly encode semantic information
* massively simplifies the learning task

ETH:zlrich 20.1.2023 107



Visual Traversability Estimation

Problem:

» Simulating realistic images and physics is hard
« Real-world data with labels is expensive
Solution:

« Self-supervised learning

» Adaptation during deployment from few data

» Supervision by velocity-tracking error

* Online training

ETH:zlrich 20.1.2023 108



Visual Traversability Estimation V1
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Part 4: Applications




DARPA SubT Challenge (2019-2021)
Mobile robots for challenging environments

Goal: map, navigate, search, and explore complex underground environments

unstructured & unknown environment of different scale,
Challenges: rough and hardly traversable terrain,

degraded perception,

missing communication, ...




DARPA SubT Challenge — Mobile robots for challenging environments

Team CERBERUS

At Finals:

ARL — UNR/NTNU
RSL - ETHZ

ASL -ETHZ

Other Contributors:
Oxford, Flyability, Berkeley, SNC
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CERBERUS Competing:
Final Event
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CERBERUS Competing: Final Event




CERBERUS Competing: Final Event




We are on the verge of the

next robotic revolution

AUTOMATED
MANUFACTURING

Enabled by 3 million
industrial robots in operation

_l Workforce shortage

) Repetitive motions

== Structured tasks

SMART
WAREHOUSING

Enabled by 600000
warehouse robots in operation

_l Workforce shortage

Q) Repetitive tasks

== Structured environment

AUTONOMOUS
INDUSTRY

Enabled by
autonomous mobile robots

’ #® Workforce shortage
' C& Repetitive work
BE Structured problem

0 Dangerous environment

N
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Industrial plant inspection

1 USE-CASES //

Q Periodic condition monitoring and hazard detection of equipment

0 Remote sensing from control room

ETHzurich



Thank you!

More information:

* leggedrobotics.com

» youtube.com/leggedrobotics
» bitbucket.org/leggedrobotics
» github.com/leggedrobotics

Start to collaborate
 anymal-research.orqg

FESTO

18.10.2022


http://www.leggedrobotics.com/
http://www.youtube.com/leggedrobotics
https://bitbucket.org/leggedrobotics/
https://github.com/leggedrobotics
http://www.anymal-research.org/

Possible exam questions

» Sketch a typical framework required to enable a legged robot to autonomously navigate unknown
environments. List the most important building blocks.

* What type of sensors are often used on legged robots and what are they used for?
» Provide different abstraction levels for legged robots. What is this useful for?

« Motion planning for legged systems is a hybrid problem. What is a hybrid problem? What are possible
approaches to solve it?

» What is the reality gap and how could one overcome it?

» Reinforcement learning allows training a locomotion policy for legged robots. What are typical
observations (i.e. input signals to the neural network) and actions (i.e. output signals of the neural
network) for a robot that walks blindly (i.e. without lidar or camera sensors)?

* How can a robot identify, if a terrain is traversable?

 What are possible fields of application of legged robots?

ETH:zlrich 18.10.2022



Part 5: Future stuff
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Important Events

+ 1.11.2024 Swiss Robotics Day (www.swissroboticsday.ch)

« 6.12.2024 RSL open lab evening (Friday evening, robots & party) www.rsl.ethz.ch

ETH:zlrich 18.10.2022
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