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Different control approaches

• There are many different control approaches for 

legged robots.

• Here I mean “control” in the large sense, i.e. control 

+ trajectory planning

• There are three broad categories:

• Model-based methods, strongly influenced by 

traditional control engineering

• Learning-based methods, strongly influenced 

by machine learning

• Bio-inspired approaches, strongly influenced 

by computational neuroscience and 

biomechanics
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Model-based methods

• Most extensively used

• Extensive use of models (mainly dynamic, 

sometimes only kinematic models)

• Often use of simple models: LIP or SLIP

• Sometimes use of full models, e.g. full dynamics 

and inverse dynamics.

• Sometimes use of two types of models, simple and 

full models together (different control layers)

• Increasing use of optimization (e.g. optimal 

control and model predictive control)
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Examples of model-based approaches

Model-based control:

1. trajectory based methods (ZMP) 

2. Virtual leg control (Raibert)

3. Virtual model control (Pratt et al)

4. Hybrid Zero Dynamics control

5. Planning methods (Little dog project)

6. Inverse dynamics and model predictive control 

(MPC)
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Trajectory based methods

• Main idea: design walking kinematic trajectories 

(i.e. joint angles over time), and use the dynamic 

equations to test and prove that locomotion is 

stable

• Trajectories were initially designed by trial-and-

error, from human recordings, and/or based on 

simple models like LIP (now most people use 

optimization)

• Most used stability criterion: Zero Moment Point 

(ZMP) (Vukobratovic 1990)
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Minimalistic control diagram
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More sophisticated: Inverse dynamics
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A PID does not know anything about the 

physics of the body (e.g. gravity, inertias).

The inverse dynamics uses knowledge of the 

configuration and characteristics of the robot to 

compute the exact torques necessary to make 

a displacement

Computes the torques necessary to 

make a specified displacement from a 

specified posture.
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Trajectory-based with ZMP

Locomotion is stable if the ZMP remains 

within the foot-print polygons over time

Foot-print polygon
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Trajectory-based with ZMP

• Example: (early) Honda robot, Asimo

Note the crouched gait, with the CoM staying almost horizontal, 

similarly to the LIP model
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Trajectory-based with ZMP

Most used method in earlier papers:

1. Human motion capture, educated guesses for 

getting trajectories, and/or use simple models like 

LIP for online footstep planning.

2. Modify trajectories offline such that locomotion is 

stable according to the ZMP criterion

3. Add online stabilization to deal with perturbations

Example of online stabilization:

• Use of two hip actuators to                         

manipulate the ZMP

• Alternatively: use of ankle actuators
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Control diagram: 

ZMP + online stabilization
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Trajectory-based with ZMP: conclusions

Pros:

• Well-defined methodology for proving dynamic balance

• Well-suited for expensive robots that should never fall

Cons:

• Requires a perfect knowledge of the robot’s dynamics 

and of the environment

• Defining good trajectories can be time-consuming

• Energetically inefficient (requires stiff actuation, and 

often used with crouched-knee walking)

Reference: Vukobratovic, M. and Borovac, B. (2004). Zero-moment point - thirty five 

years of life. International Journal of Humanoid Robotics, 1(1):157–173. 

Kajita and Espiau. 2008. “Legged Robots.” In Springer Handbook of Robotics, edited 

by Bruno Siciliano and Oussama Khatib, 361–89. Berlin, Heidelberg: Springer. 

https://doi.org/10.1007/978-3-540-30301-5_17.

https://doi.org/10.1007/978-3-540-30301-5_17
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Note the huge progress

with Honda’s Asimo

• http://world.honda.com/ASIMO/

• http://world.honda.com/ASIMO/video/index.html

http://world.honda.com/ASIMO/
http://world.honda.com/ASIMO/video/index.html
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More recent ASIMO’s controllers use the DCM

Takenaka, Toru, Takashi Matsumoto, and Takahide Yoshiike. "Real time motion generation and control for biped robot-1 st report: Walking gait 
pattern generation." 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009.(Citation:299)
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Examples of model-based approaches

Model-based control:

1. Trajectory based methods (ZMP) 

2. Virtual leg control (Raibert)

3. Virtual model control (Pratt et al)

4. Hybrid Zero Dynamics control

5. Planning methods (Little dog project)

6. Inverse dynamics and model predictive control 

(MPC)
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Virtual Leg Control

• Developed by Marc Raibert and colleagues (CMU, MIT, 

Boston Dynamics) for hopping/running robots (i.e. with 

short flight phases). Closely related to the SLIP model.

• One- two- and four-legged robots controlled by a similar 

approach

• Key idea: to decompose the problem into three 

(independent) control loops:

1. Hopping control: Supporting the body with a vertical bouncing 

motion

2. Attitude control: Controlling the attitude of the body by 

servoing the body through hip torques during stance

3. Speed control: Placing the feet in key locations on each step 

using symmetry principles (a.k.a. Raibert’s heuristics)
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Control diagram: 

Virtual Leg Control
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Robots at MIT LegLab
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Similarities between 1, 2, and 4 legs 

Raibert, 1990, Trotting, pacing and bounding by a 

quadruped robot, Journal of Biomechanics Volume 

23, Supplement 1, 1990, Pages 79–81, 83–98

Key idea to extend to more legs:

When two legs are coordinated to 

act in unison, they can be 

represented by a functionally 

equivalent virtual leg

Same forces and moments as the 

pair of legs

Note: this is not strictly a model-

based approach (no explicit model 

used in the control loop), but the 

SLIP model has been important in 

designing the heuristic control loops.
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Virtual Leg Control: summary

Pros:

• The most impressive locomotion skills in current robots 

(e.g. BigDog)

• Quite simple to implement (e.g. no complex models 

needed)

Cons:

• Needs very powerful actuators (hydraulic)

• No (analytical) proof of stability

• Only applicable to hopping/running robots (no walking)

References:  
• Raibert, M. H. and Hodgins, J. K. (1993). Legged robots. In Beer, R. D., Ritzmann, R. E., 

and McKenna, T. M., editors, Biological Neural Networks in Invertebrate Neuroethology 

and Robotics, pages 319–354. Academic Press.

• M.H. Raibert, M. Chepponis, and H. Benjamin Brown, "Running on Four Legs As Though 

They Were One," IEEE Journal of Robotics and Automation, Vol. RA-2, No. 2, June, 1986, 

pp. 70 - 82.
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Examples of model-based approaches

Model-based control:

1. Trajectory based methods (ZMP) 

2. Virtual leg control (Raibert)

3. Virtual model control (Pratt et al)

4. Hybrid Zero Dynamics control

5. Planning methods (Little dog project)

6. Inverse dynamics and model predictive control 

(MPC)
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Virtual Model Control

• Nice example of model-based control: Virtual Model Control 

(G.Pratt)

• Idea: create virtual elements to keep the robot upright and 

have it move forward

• Then compute the necessary torques such that the robot 

motors replicate the effect of those virtual elements

Virtual granny walker 

for balance control

Virtual bunny 

for velocity control
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Virtual Model Control

• For each virtual element producing a force F, the joint torque 

needed to produce that virtual force can be computed with:

• J is the Jacobian relating the reference frame of the virtual 

element to the robot 
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Example

F

a
k

h

Mapping the forces of the virtual 

elements to torques in the motors
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Virtual Model Control

Finite state machine (set of if-then rules) for 

cycling through different actuation phases

Only some motors should be activated at 

particular phases in the locomotor cycle
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Control diagram: 

Virtual Model Control
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Virtual Model
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Directly produces torques, 

no tracking of a desired trajectory
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Virtual Model Control

• Example: Flamingo robot at MIT Leg LAB
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Virtual Model Control: summary

Pros:

• Intuitive way of designing a controller

• Does not need an accurate model of the environment

• Robust against pertubations

• No need of a dynamic model (only a kinematic model)

Cons:

• Need to make sure that the virtual forces can actually be

generated by the robot’s motors

• Cannot be used for running gaits??

Reference: Pratt et al, Virtual Model Control: An intuitive 

approach for bipedal locomotion, The International Journal 

of Robotics Research, Vol. 20, No. 2, 129-143 2001 .
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Examples of model-based approaches

Model-based control:

1. Trajectory based methods (ZMP) 

2. Virtual leg control (Raibert)

3. Virtual model control (Pratt et al)

4. Hybrid Zero Dynamics control

5. Planning methods (Little dog project)

6. Inverse dynamics and model predictive control 

(MPC)



30

Hybrid Zero Dynamics control

Developed by Grizzle, Chevallereau and 

others for the Rabbit and MABEL robots

Specific property: no feet

Very nice theoretical framework to obtain 

provably asymptotically stable walking 

and running gaits

Hybrid zero dynamics: method to reduce the 

number of degrees of freedom to control. 

This is done using virtual constraints to 

link different DOFs.

Existence and stability of stable gaits can be 

determined on the basis of a scalar 

Poincaré return map

Rabbit robot
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Hybrid Zero Dynamics control, MABEL robot

http://www.youtube.com/user/DynamicLegLocomotion
https://www.youtube.com/watch?v=xlOwk6_xpWo

http://www.youtube.com/user/DynamicLegLocomotion
https://www.youtube.com/watch?v=xlOwk6_xpWo
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Hybrid Zero Dynamics: summary

Pros:

• The most complete theoretical foundation

• Analytical proof of stability

Cons:

• Not so easy to understand when applied to system with

a high number of DOFs.

References:  
• C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas-de-Wit, and J.W. Grizzle

RABBIT: A Testbed for Advanced Control Theory, IEEE Control Systems Magazine, Vol. 23, No. 5, 

October, 2003, pp. 57-79

• C. Chevallereau, E.R. Westervelt, and J.W. Grizzle, Asymptotically Stable Running for a Five-Link, 

Four-Actuator, Planar Bipedal Robot, International Journal of Robotics Research, Volume 24, Issue 6, 

June 2005, pp. 431 - 464.

• Sreenath, K., Park, H.-W., Poulakakis, I., & Grizzle, J. W. (2011). A Compliant Hybrid Zero Dynamics 

Controller for Stable, Efficient and Fast Bipedal Walking on MABEL. The International Journal of 

Robotics Research, 30(9), 1170–1193. https://doi.org/10.1177/0278364910379882

• Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., & Morris, B. (2007). Feedback Control of 

Dynamic Bipedal Robot Locomotion. CRC Press. https://doi.org/10.1201/9781420053739

https://doi.org/10.1177/0278364910379882
https://doi.org/10.1201/9781420053739
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Examples of model-based approaches

Model-based control:

1. Trajectory based methods (ZMP) 

2. Virtual leg control (Raibert)

3. Virtual model control (Pratt et al)

4. Hybrid Zero Dynamics control

5. Planning methods (Little dog project)

6. Inverse dynamics and model predictive control 

(MPC)
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Planning methods

• DARPA’s Little Dog project

• Main idea: control locomotion on 

very rough terrain by providing very

accurate 3D information about the 

ground and the robot absolute

position and orientation

• Competition with 5 US teams

• Most teams highly depend on 

planning methods

• Several use learning, e.g. for foot 

placement

Buchli et al 2009
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Planning methods

• Example: Stanford’s team (Ng and colleagues)

Kolter et al 2008

Different types of planning done 

thanks to good models of the 

environment and the robot
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Minimalistic control diagram
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Planning methods

• Example: USC’s team (Schaal, Buchli and colleagues)

USC_LittleDog_Overview

USC_LittleDog_Overview

../movies/others/USC_LittleDog_Overview.mov
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Planning methods: summary

• Pros:

• Ability to handle very complex terrain that requires

careful foot holds.

• Cons:

• Requires very accurate 3D maps of the ground. 

• It is not clear how performance degrades with less good 

sensory input

• Not well suited for biped locomotion (except slow 

statically stable locomotion)

References:
Buchli, J.;Kalakrishnan, M.;Mistry, M.;Pastor, P.;Schaal, S. (2009). Compliant quadruped 

locomotion over rough terrain, Proceedings of IROS 2009, pp.814-820. 

Kalakrishnan, M.;Buchli, J.;Pastor, P.;Schaal, S. (2009). Learning locomotion over rough terrain 

using terrain templates, Proceedings of IROS 2009 pp.167-172. 

J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng. A Control Architecture for Quadruped 

Locomotion over Rough Terrain. In Proceedings of ICRA2008, 2008. 
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Examples of model-based approaches

Model-based control:

1. Trajectory based methods (ZMP) 

2. Virtual leg control (Raibert)

3. Virtual model control (Pratt et al)

4. Hybrid Zero Dynamics control

5. Planning methods (Little dog project)

6. Inverse dynamics and model predictive 

control (MPC)
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Inverse dynamics and model predictive control

• For torque-controlled robots for which an accurate

dynamical model exists:

• Possibility:

• To compute the inverse-dynamics of the robot, i.e. 

finding the torques needed to perform specific movements

• To run optimizations to find torques that optimize some

objective functions and that respect some constraints.

• And perform foot step planning using model predictive

control

• And therefore to obtain highly versatile gaits and whole

body control.

• Probably used on the latest videos of Boston Dynamics
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Salman Faraji 

Inverse dynamics,

Online optimization

of torques for all DOFs

Optimization of 

footsteps,

Model predictive 

control

Linear Inverted 

Pendulum model

Faraji, S., Pouya, S., & Ijspeert, A. (RSS 

2014). Robust and Agile 3D Biped Walking 

With Steering Capability Using a Footstep 

Predictive Approach. 

https://doi.org/10.15607/RSS.2014.X.028

https://doi.org/10.15607/RSS.2014.X.028
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10N 10N

10N

10N



44

Linear Inverted

Pendulum and MPC 

for step planning
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10N 10N

10N 10N

10 ms delay

Thigh +1 kg 

±5cm 

roughness

1 rad/sec 

0.4 m/s

Noise 3o

-10o to 15o
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Inverse dynamics and model predictive control

• Pros:

• Ability to generate a large class of movements: walking

+ many others

• Allows one to design controllers in task space, as 

opposed to joint space

• Cons:

• Requires accurate dynamic models

• Requires (very) good torque control

• Heavy computation, but many approaches can now do 

this online

References:
Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., & Righetti, L. (2016). Momentum control with hierarchical inverse dynamics 

on a torque-controlled humanoid. Autonomous Robots, 40(3), 473–491. https://doi.org/10.1007/s10514-015-9476-6

Salman Faraji, Soha Pouya, Christopher G. Atkeson, and Auke Jan Ijspeert (2014) Versatile and Robust 3D Walking with the Humanoid 

Robot Atlas: a Model Predictive Control Approach. ICRA 2014.

Neunert, M., Stäuble, M., Giftthaler, M., Bellicoso, C. D., Carius, J., Gehring, C., Hutter, M., & Buchli, J. (2018). Whole-Body Nonlinear 

Model Predictive Control Through Contacts for Quadrupeds. IEEE Robotics and Automation Letters, 3(3), 1458–1465. 

https://doi.org/10.1109/LRA.2018.2800124

Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., & Kim, S. (2018). Dynamic locomotion in the mit cheetah 3 through convex model-

predictive control. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1–9.

https://doi.org/10.1007/s10514-015-9476-6
https://doi.org/10.1109/LRA.2018.2800124
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Learning-based methods

• Learning-based methods are recently becoming popular 

thanks to progress in machine learning, increased 

computation power, and faster simulators. 

• Most people use Reinforcement learning (RL), which can 

be seen as a generalization of optimal control.

• Different approaches exist: e.g. hierarchical reinforcement 

learning (Peng et al., 2017) or direct end-to-end learning 

(Jain et al., 2019). 

• Some perform learning directly on the hardware platform in 

the real world (Choi & Kim, 2019; Ha et al., 2020, 2018), but 

most approaches rely on simulation and then tackle the 

sim-to-real transfer challenge (Hwangbo et al., 2019; Tan 

et al., 2018, Peng et al 2020).
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Learning with ANYmal

• Example: (Hwangbo et al., 2019) nice combination of 

reinforcement learning and supervised learning.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning agile and dynamic motor 

skills for legged robots. Science Robotics, 4(26), eaau5872. https://doi.org/10.1126/scirobotics.aau5872  

https://www.science.org/doi/10.1126/scirobotics.aau5872

Good simulator

Supervised 

learning of 

actuator 

dynamics

Reinforcement learning 

in simulation

Sim-to-real transfer

https://doi.org/10.1126/scirobotics.aau5872
https://www.science.org/doi/10.1126/scirobotics.aau5872
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Learning with ANYmal

See Movie 1:

https://www.science.org/doi/10.1

126/scirobotics.aau5872

https://www.science.org/doi/10.1126/scirobotics.aau5872
https://www.science.org/doi/10.1126/scirobotics.aau5872
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Learning with ANYmal

https://www.youtube.com/watch?v=aTDkYFZFWug

https://www.youtube.com/watch?v=aTDkYFZFWug
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Learning-based methods

Pros:

• They offer generic design methods that require less expertise 

than model-based approaches. 

• Their performance can beat human-designed model-based 

controllers. 

• They can combine supervised and unsupervised learning.

• They can generate new movements that would be 

difficult/impossible to hand-design. 

Cons:

• need for very long training sequences

• a strong reliance on simulation and sim-to-real transfer

• need of expertise in designing cost functions and training 

scenarios, 

• Black-box controller, lack of proof of stability/performance

• possibly poor generalization to handle situations (e.g. terrains) 

that have not been explored during training. 
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Learning-based methods

References:
Choi, S., & Kim, J. (2019). Trajectory-based Probabilistic Policy Gradient for Learning Locomotion Behaviors. 

2019 International Conference on Robotics and Automation (ICRA), 1–7. 

https://doi.org/10.1109/ICRA.2019.8794207

Ha, S., Kim, J., & Yamane, K. (2018). Automated Deep Reinforcement Learning Environment for Hardware of 

a Modular Legged Robot. 2018 15th International Conference on Ubiquitous Robots (UR), 348–354. 

https://doi.org/10.1109/URAI.2018.8442201

Ha, S., Xu, P., Tan, Z., Levine, S., & Tan, J. (2020). Learning to Walk in the Real World with Minimal Human 

Effort. ArXiv:2002.08550 [Cs]. http://arxiv.org/abs/2002.08550

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning agile 

and dynamic motor skills for legged robots. Science Robotics, 4(26), eaau5872. 

https://doi.org/10.1126/scirobotics.aau5872

Jain, D., Iscen, A., & Caluwaerts, K. (2019). Hierarchical Reinforcement Learning for Quadruped Locomotion. 

ArXiv:1905.08926 [Cs]. http://arxiv.org/abs/1905.08926

Peng, X. B., Berseth, G., Yin, K., & Van De Panne, M. (2017). DeepLoco: Dynamic Locomotion Skills Using 

Hierarchical Deep Reinforcement Learning. ACM Trans. Graph., 36(4), 41:1–41:13. 

https://doi.org/10.1145/3072959.3073602

Peng, X. B., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., & Levine, S. (2020). Learning Agile Robotic 

Locomotion Skills by Imitating Animals. RSS 2020. ArXiv:2004.00784 [Cs]. 

http://arxiv.org/abs/2004.00784

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. 

International Conference on Machine Learning, 1889–1897.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter, M. (2020). Learning quadrupedal locomotion over 

challenging terrain. Science Robotics, 5(47). https://doi.org/10.1126/scirobotics.abc5986

Siekmann, J., Godse, Y., Fern, A., & Hurst, J. (2021). Sim-to-Real Learning of All Common Bipedal Gaits via 

Periodic Reward Composition. ArXiv:2011.01387 [Cs]. http://arxiv.org/abs/2011.01387

https://doi.org/10.1126/scirobotics.abc5986
http://arxiv.org/abs/2011.01387


54

Bio-inspired approaches

• Replicate some of the control principles identified in vertebrate 

and invertebrate animals

• They are strongly influenced by the idea of embodied 

intelligence proposed by Rolf Pfeifer and colleagues, and 

Rodney Brooks’ observation that “the world is its own best 

model”. 

• Bioinspired locomotion controllers typically combine numerical 

models of central pattern generators implemented as 

recurrent neural networks and coupled nonlinear oscillators 

and reflexes, implemented as feedback laws. 

• Some (sensory-driven) approaches only rely on reflexes. 

• And a few approaches use reinforcement learning for setting 

control parameters.
R. Pfeifer and J. Bongard, How the body shapes the way we think: a new view of intelligence. MIT press, 2006.

R. Pfeifer, M. Lungarella, and F. Iida, “Self-Organization, Embodiment, and Biologically Inspired Robotics,” Science, vol. 318, no. 5853, pp. 

1088–1093, Nov. 2007, doi: 10.1126/science.1145803.

R. A. Brooks, “How to Build Complete Creatures Rather than Isolated Cognitive Simulators,” Architectures for Intelligence, Jan. 14, 2014. 

https://www.taylorfrancis.com/ (accessed Apr. 07, 2020).
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Examples of bio-inspired approaches

1. Passive and dynamic walkers

2. Sensory-driven methods,

3. CPG-and-reflex based methods
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Robotics: passive walkers

• The laws of physics should be exploited: passive walkers

Cornell Univ.

Movie by Jun Nakanishi

Nice example of 

mechanical limit cycle 

behavior
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Passive walkers (ct’d)

A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees, 

Collins, S. H., Wisse, M., Ruina, A. International Journal of Robotics Research, Vol. 

20, No. 2, Pages 607-615, 2001
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Passive and dynamic walkers

• The laws of physics can be exploited to produce

relatively robust control-less walking

• Instead of cancelling-out the natural dynamics of the robot 

(by using high-power electric motors), takes advantage of 

the natural frequencies of the robot

• Self-stabilizing phenomenon

• Dynamic walkers are passive walkers

+ actuation

• Require little energy when

actuated E.g. robot Mike at Delft Univ. 

with McKnibben muscles

• See the Cornel Ranger that can walk

65 km on one battery. Bhounsule et al (IJRR_2014)

Robot Mike
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Examples of bio-inspired approaches

1. Passive and dynamic walkers

2. Sensory-driven methods,

3. CPG-and-reflex based methods
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Runbot project

Exploitation of natural dynamics

Sensor driven controller implemented with a neural 

network, locomotion as a chain of reflexes

Policy gradient reinforcement learning algorithm to 

tune the parameters in real time.

Note: this sensory-driven controller share similarities 

with neuromechanical models of human 

locomotion (e.g. Geyer and Herr 2010).

Reference: Gen, Porr, and Wörgötter, Fast Biped Walking with a Sensor-driven 

Neuronal Controller and Real-time Online Learning, The International Journal of 

Robotics Research, Vol. 25, No. 3, 243-259, 2006.
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Runbot project

Exploitation of natural 

dynamics

Sensor driven controller

(like Geyer’s model)

implemented with a 

neural network

Policy gradient reinforcement learning algorithm to 

tune the parameters in real time

Gen, Porr, and Wörgötter, Fast Biped Walking with a Sensor-driven 

Neuronal Controller and Real-time Online Learning, The International 

Journal of Robotics Research, Vol. 25, No. 3, 243-259, 2006.
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Runbot project
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Sensory-driven control: summary

Pros:

• Very close link between the controller and what the robot 

actual does

• Can be very energy efficient by benefiting from passive 

dynamics (as opposed to stiff actuation) 

Cons:

• because of the lack of a centrally generated rhythm, 

non-negligible risk that locomotion might be completely 

stopped because of damage in the sensors and/or 

external constraints that force the robot in a particular 

posture.
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Examples of bio-inspired approaches

1. Passive and dynamic walkers

2. Sensory-driven methods,

3. CPG-and-reflex based methods
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CPG-and-reflex control

• Main idea: to use oscillators and to replicate the distributed

control mechanisms found in vertebrates. CPG = Central 

Pattern Generator

CPG

Visuomotor Coord.

Visual System Vestibular Sys.

Balance Control

Actuators Proprioception

Reflexes

Reflexes
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Concept of Limit Cycle

• A limit cycle is an oscillatory regime in a dynamical system:

• If the limit cycle is stable, the states of the system will return 

to it after perturbations

Limit cycles
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CPG-and-reflex control

Two types of implementations:

Robot
Feedback

Controller (PID)

CPG-and-

reflex

θ
~

θ u
+

-

CPG produces desired positions:

Robot
CPG-and-

reflex

θ
~

u

CPG directly produces torques:
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Taga’s neuromechanical simulation

G. Taga. Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system 

and the environment. Physica D: Nonlinear Phenomena, 75(1-3):190-208, 1994

G. Taga. A model of the neuro-musculo-skeletal system for human locomotion. i. emergence of basic gait. 

Biological Cybernetics, 73(2):97-111, 1995

This approach has been strongly 

influenced  by Taga’s models of 

biped locomotion.

Quite a few labs have taken a 

similar approach,
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Using CPG models for quadruped robots

Y. Fukuoka, H. Kimura, and A.H. Cohen. Adaptive dynamic 

walking of a quadruped robot on irregular terrain based on 

biological concepts. The International Journal of Robotics 

Research, 3-4:187-202, 2003.

3 actuated DOF per limb
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CPG model

The CPG is made of Matsuoka oscillators: two mutually inhibiting 

neurons. 
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CPG architecture

Gait transitions by changing 

connection weights in the 

network of oscillators
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Reflexes:

The following reflexes are implemented:

• stumbling-corrective reaction. Contact to the paw dorsum 

generates an extension or retraction of the limb depending if 

it is loaded or not.

• Vestibulospinal reflex to                                             

maintain the body close to                                          

horizontal
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Examples
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CPG-and-reflex Control: summary

• Pros:

• Distributed control, potentially robust against hardware 

faults.

• Limit cycle behavior (controller-body-environment)

• Robust against pertubations

• Smooth trajectories due to the oscillators

• Cons:

• Fewer mathematical tools than model-based methods

• Not (yet) a clear design methodology, it is recommended

to use reinforcement learning or optimization algorithms
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Overall Summary: Model-based methods
Pros:
• well established design methods from control engineering, 

• can benefit from mechanical design expertise for making kinematic and 

dynamic models.

• offer mathematical proofs of stability for some approaches, like hybrid 

zero dynamics. 

• When used with offline and online optimization, can lead to impressive 

motor behaviors that would be difficult to hand-design. 

• They can be well suited for planning and for anticipatory behavior

Cons:
• require extensive expert knowledge. 

• The tuning of different control modules can take a long time.

• Their performance is highly dependent on the quality of the robot 

and environment models. 

• They are generally fragile against hardware lesions.

• Methods relying on online optimization and planning are probably not as 

reactive as bio-inspired approaches.

• And some approaches are computationally very intensive (e.g. for 

offline and online optimization).
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Overall Summary: Learning-based methods

Pros:

• They offer generic design methods that require less 

expertise than model-based approaches. 

• Their performance can beat human-designed model-

based controllers. 

• They can combine supervised and unsupervised learning.

• They can generate surprising new movements that 

would be difficult/impossible to hand-design. 

Cons:

• need for very long training sequences

• a strong reliance on simulation and sim-to-real transfer

• need of expertise in designing cost functions and training 

scenarios, 

• lack of proof of stability/performance, no interpretability

• possibly poor generalization to handle situations (e.g. 

terrains) that have not been explored during training. 
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Overall Summary: Bio-inspired approaches

Pros:

• They are very good for producing reactive and robust 

behavior. 

• They do not depend on explicit models. 

• They can be robust against hardware faults. 

• Well suited for robots with passive dynamics, compliant 

behavior.

• They are computationally light. 

Cons:

• No well-established design methods.

• They normally cannot offer proof of stability/performance.

• They have not much been used to do planning and to 

generate anticipatory behavior (mainly focused on 

reactive behavior)
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Possible exam questions

• Present key ideas, and the pros and cons of the 

different presented control approaches

• Note: this was just an introduction. 

• Some next lectures and the student presentations 

will go deeper in several of these control 

approaches.
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