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Different control approaches

There are many different control approaches for
legged robots.

Here | mean “control” in the large sense, i.e. control
+ trajectory planning

There are three broad categories:

« Model-based methods, strongly influenced by
traditional control engineering

 Learning-based methods, strongly influenced
by machine learning

 Bio-inspired approaches, strongly influenced
by computational neuroscience and
biomechanics



Model-based methods

Most extensively used

Extensive use of models (mainly dynamic,
sometimes only kinematic models)

Often use of simple models: LIP or SLIP
Sometimes use of full models, e.g. full dynamics
and inverse dynamics.

Sometimes use of two types of models, simple and
full models together (different control layers)
Increasing use of optimization (e.g. optimal
control and model predictive control)



Examples of model-based approaches

Model-based control:
. trajectory based methods (ZMP)
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. Virtual leg control (Raibert)

. Virtual model control (Pratt et
Hybrid Zero Dynamics contro
Planning methods (Little dog
nverse dynamics and model
(MPC)

al)

oroject)

oredictive control



Trajectory based methods

 Main idea: design walking kinematic trajectories
(.e. joint angles over time), and use the dynamic
equations to test and prove that locomotion is
stable

« Trajectories were Initially designed by trial-and-
error, from human recordings, and/or based on
simple models like LIP (now most people use
optimization)

* Most used stability criterion: Zero Moment Point
(ZMP) (Vukobratovic 1990)



Minimalistic control diagram
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More sophisticated: Inverse dynamics

Computes the torques necessary to

|nverse dyn make a specified displacement from a

controller

Specified]posture.
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A PID does not know anything about the
physics of the body (e.g. gravity, inertias).

The inverse dynamics uses knowledge of the
configuration and characteristics of the robot to
compute the exact torques necessary to make

a displacement
.



Trajectory-based with ZMP

Foot-print polygon

Locomotion is stable if the ZMP remains
within the foot-print polygons over time



Trajectory-based with ZMP

 Example: (early) Honda robot, Asimo

Note the crouched gait, with the CoM staying almost horizontal,
similarly to the LIP model



Trajectory-based with ZMP

Most used method in earlier papers:

1. Human motion capture, educated guesses for
getting trajectories, and/or use simple models like
LIP for online footstep planning.

2. Modify trajectories offline such that locomotion is
stable according to the ZMP criterion

3. Add online stabilization to deal with perturbations

Example of online stabilization:

« Use of two hip actuators to
manipulate the ZMP

« Alternatively: use of ankle actuators



Control diagram:

ZMP + online stabilization
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Trajectory-based with ZMP: conclusions

Pros:
« Well-defined methodology for proving dynamic balance
« Well-suited for expensive robots that should never fall

 Requires a perfect knowledge of the robot’s dynamics
and of the environment

« Defining good trajectories can be time-consuming

« Energetically inefficient (requires stiff actuation, and
often used with crouched-knee walking)

Reference: Vukobratovic, M. and Borovac, B. (2004). Zero-moment point - thirty five
years of life. International Journal of Humanoid Robotics, 1(1):157-173.

Kajita and Espiau. 2008. “Legged Robots.” In Springer Handbook of Robotics, edited
by Bruno Siciliano and Oussama Khatib, 361-89. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-30301-5 17.
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Note the huge progress

with Honda’'s Asimo
ASIMO (2011 -)
Key Specifications

Size
Height 130cm

48kg

Weight (decreased ekg from previous model)

Running Speed

Okm/hour

Max (previous model: ékm/hour)

Operating Degrees of Freedom
Head 3 DOF

Arm 7 DOF x 2

Hands 13 DOF x 2

Hip 2 DOF
Legs 6 DOF x 2
57 DOF
Total: (increase of 23 DOF from previous model)

*DOF=degrees of freedom

* http://world.honda.com/ASIMO/
* http://world.honda.com/ASIMO/video/index.html 13



http://world.honda.com/ASIMO/
http://world.honda.com/ASIMO/video/index.html

More recent ASIMQO’s controllers use the DCM

Takenaka, Toru, Takashi Matsumoto, and Takahide Yoshiike. "Real time motion generation and control for biped robot-1 st report: Walking gait
pattern generation." 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009.(Citation:299)
14



Examples of model-based approaches

Model-based control:
. Trajectory based methods (ZMP)
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. Virtual leg control (Raibert)
. Virtual model control (Pratt et
Hybrid Zero Dynamics contro
Planning methods (Little dog
nverse dynamics and model
(MPC)

al)

oroject)

oredictive control
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Virtual Leg Control

Developed by Marc Raibert and colleagues (CMU, MIT,
Boston Dynamics) for hopping/running robots (i.e. with
short flight phases). Closely related to the SLIP model.

One- two- and four-legged robots controlled by a similar
approach

Key Idea: to decompose the problem into three
(independent) control loops:

. Hopping control: Supporting the body with a vertical bouncing
motion

. Attitude control: Controlling the attitude of the body by
servoing the body through hip torques during stance

. Speed control: Placing the feet in key locations on each step
using symmetry principles (a.k.a. Raibert’s heuristics) 16



Control diagram:
Virtual Leg Control

Directly produces torques,
no tracking of a desired trajectory
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Robots at MIT LegLab

Crlre Leg Laboratory
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Similarities between 1, 2, and 4 legs
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Fig. 3. Virtual legs. When two legs are coordinated to act in
unison, they can be represented by a functionally equivalent
virtual leg. The virtual leg and the original pair of physical
legs both exert the same forces and moments on the body, so
they both result in the same behavior. When each pair of legs
is replaced by a virtual leg, the trot, the pace, and the bound
are transformed into equivalent virtual biped gaits. One
virtual leg is used for support at a time. Sutherland first
introduced the concept of the virtual leg to simplify the
design of a six-legged walking machine (Sutherland and
Ullner, 1984).

Key idea to extend to more legs:

When two legs are coordinated to
act in unison, they can be
represented by a functionally
equivalent virtual leg

Same forces and moments as the
pair of legs

Note: this is not strictly a model-
based approach (no explicit model
used in the control loop), but the
SLIP model has been important in
designing the heuristic control loops.

Raibert, 1990, Trotting, pacing and bounding by a
guadruped robot, Journal of Biomechanics Volume
23, Supplement 1, 1990, Pages 79-81, 83-98 19



Virtual Leg Control: summary

Pros:
« The most impressive locomotion skills in current robots
(e.g. BigDoqg)
* Quite simple to implement (e.g. no complex models
needed)
Cons:

* Needs very powerful actuators (hydraulic)
* No (analytical) proof of stability
* Only applicable to hopping/running robots (no walking)

References:

. Raibert, M. H. and Hodgins, J. K. (1993). Legged robots. In Beer, R. D., Ritzmann, R. E.,
and McKenna, T. M., editors, Biological Neural Networks in Invertebrate Neuroethology
and Robotics, pages 319-354. Academic Press.

. M.H. Raibert, M. Chepponis, and H. Benjamin Brown, "Running on Four Legs As Though
They Were One," IEEE Journal of Robotics and Automation, Vol. RA-2, No. 2, June, 1986,
pp. 70 - 82.
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Examples of model-based approaches

Model-based control:
. Trajectory based methods (ZMP)
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. Virtual leg control (Raibert)

. Virtual model control (Pratt
Hybrid Zero Dynamics contro
Planning methods (Little dog
nverse dynamics and model
(MPC)

et al)

oroject)

oredictive control

21



Virtual Model Control

* Nice example of model-based control: Virtual Model Control
(G.Pratt)

 |dea: create virtual elements to keep the robot upright and
have it move forward

 Then compute the necessary torques such that the robot
motors replicate the effect of those virtual elements

Virtual granny walker Virtual bunny

for balance control

for velocity control

22



Virtual Model Control

For each virtual element producing a force F, the joint torque
needed to produce that virtual force can be computed with:

—

T=JF

J is the Jacobian relating the reference frame of the virtual
element to the robot

X =f(0)
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Example

The forward kinematic map from frame { A} to frame | B}
of this example is as follows:

[ x —| { —Ly15g — Lo Sayk —|
Euir: Z = Llfa+L2fu+k 5 (1)
o] | a-a-0 |

where s;. Sgik, Cq. and ¢z denote sinif,), sin{fg. ),
cos(d,), and cos(f, + &;). respectively.
Partial differentiation produces the Jacobian,

—Lyecg—Lacask —Lacgyr 0
gl =| —Lisg—Lassey —Lasger 0 |0 (2)
—1 —1 —1

The Jacobian relates the virtual velocity ﬁX between

frames A and B with the joint velocities © = [4, 8, 8, ]7
AX =310 (3)

Fig. 3. Single-leg implementation. Reaction frame [A} is
assumed to be in the same orientation as reference frame

o that O p —
{O}sothat fR=1.

and the virtual force F = [f: f- fs]" to joint torque T =
[7a T 7]’

Mapping the forces of the virtual

/ elements to torques in the motors

T =(30) (3F). (4)

24



Virtual Model Control

Only some motors should be activated at
particular phases in the locomotor cycle

Orver Right
or

Finite state machine (set of if-then rules) for
cycling through different actuation phases

25



Control diagram:
Virtual Model Control

Directly produces torques,
no tracking of a desired trajectory

Virtual Model| U 0
Controller -_

0 Actual robot posture

U Command (torque)
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Virtual Model Control

 Example: Flamingo robot at MIT Leg LAB

27



Virtual Model Control: summary

« Intuitive way of designing a controller

« Does not need an accurate model of the environment
« Robust against pertubations

* No need of a dynamic model (only a kinematic model)

* Need to make sure that the virtual forces can actually be
generated by the robot’s motors
« Cannot be used for running gaits??

Reference: Pratt et al, Virtual Model Control: An intuitive

approach for bipedal locomotion, The International Journal
of Robotics Research, Vol. 20, No. 2, 129-143 2001 .

28



Examples of model-based approaches

Model-based control:

1
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. Trajectory based methods (ZMP)

. Virtual leg control (Raibert)

. Virtual model control (Pratt et al)

Hybrid Zero Dynamics control

Planning methods (Little dog project)

nverse dynamics and model predictive control
(MPC)

29



Hybrid Zero Dynamics control

Developed by Grizzle, Chevallereau and
others for the Rabbit and MABEL robots

Specific property: no feet

Very nice theoretical framework to obtain
provably asymptotically stable walking
and running gaits

Hybrid zero dynamics: method to reduce the
number of degrees of freedom to control.
This is done using virtual constraints to SE——
link different DOFs. Rabbit robot

Existence and stability of stable gaits can be
determined on the basis of a scalar

Poincaré return map 30



Hybrid Zero Dynamics control, MABEL robot
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https://www.youtube.com/watch?v=xIOwk6_xpWo
http://www.youtube.com/user/DynamiclLegLocomotion .,



http://www.youtube.com/user/DynamicLegLocomotion
https://www.youtube.com/watch?v=xlOwk6_xpWo

Hybrid Zero Dynamics: summary

Pros:
« The most complete theoretical foundation
« Analytical proof of stability

Cons:
« Not so easy to understand when applied to system with
a high number of DOFs.

References

C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas-de-Wit, and J.W. Grizzle
RABBIT: A Testbed for Advanced Control Theory, IEEE Control Systems Magazine, Vol. 23, No. 5,
October, 2003, pp. 57-79

. C. Chevallereau, E.R. Westervelt, and J.W. Grizzle, Asymptotically Stable Running for a Five-Link,
Four-Actuator, Planar Bipedal Robot, International Journal of Robotics Research, Volume 24, Issue 6,
June 2005, pp. 431 - 464.

. Sreenath, K., Park, H.-W., Poulakakis, I., & Grizzle, J. W. (2011). A Compliant Hybrid Zero Dynamics
Controller for Stable, Efficient and Fast Bipedal Walking on MABEL. The International Journal of
Robotics Research, 30(9), 1170-1193. https://doi.org/10.1177/0278364910379882

. Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., & Morris, B. (2007). Feedback Control of
Dynamic Bipedal Robot Locomotion. CRC Press. hitps://doi.org/10.1201/9781420053739 33
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Examples of model-based approaches

Model-based control:
1. Trajectory based methods (ZMP)
. Virtual leg control (Raibert)
. Virtual model control (Pratt et al)
Hybrid Zero Dynamics control
Planning methods (Little dog project)
nverse dynamics and model predictive control
(MPC)
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Planning methods

DARPA's Little Dog project

Main idea: control locomotion on e
very rough terrain by providing very ,‘
accurate 3D information about the ’ o5
ground and the robot absolute o
position and orientation Buchli et al 2009

Competition with 5 US teams

Most teams highly depend on
planning methods

Several use learning, e.g. for foot
placement

35



Planning methods

Example: Stanford’s team (Ng and colleagues)

p
& N —
High-Level Planner 1. Generate collision and
Terrain Feature Body Path Footstep height maps from a 3D
Extraction Planner [% | Planner model of the terrain.
-
¥ .
Low-Level Planner
2. d each point in the
COG Trajectory Moving Foot Argun St potuf in die
. height map, create local
Planner Trajectory Planner ; .
) maps of different sizes,
¥ — and compute features
A (e.g., slope, max height).
Low-Level Controller
PD Control Body Stabilizati
o il 3. Form the foot cost as a
Stability Detection / Closed-loop inear conianlin oF the
features and collision
Recovery Foot Placement ) )
map information.
"y
KOlter et al 2008 4. Form body cost map by
aggregating foot costs,
and plan body path using
dynamic programming.
Different types of planning done
thankS tO gOOd mOde|S Of the 5. Plan footsteps along
. desired body path by
environment and the robot R




Minimalistic control diagram

Feedback u

Controller (PID)

0 Desired robot posture
0 Actual robot posture

U Command (torque)
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Planning methods

Example: USC'’s team (Schaal, Buchli and colleagues)

Learning Locomotion
with LittleDog

http://www-clmc.usc.edu

Mrinal Kalakrishnan, Jonas Buchli,
Peter Pastor, and Stefan Schaal



../movies/others/USC_LittleDog_Overview.mov

Planning methods: summary

* Pros:
« Ability to handle very complex terrain that requires
careful foot holds.
« Cons:
« Requires very accurate 3D maps of the ground.
* Itis not clear how performance degrades with less good
sensory input
* Not well suited for biped locomotion (except slow
statically stable locomotion)

References:
Buchli, J.;Kalakrishnan, M.;Mistry, M.;Pastor, P.;Schaal, S. (2009). Compliant quadruped
locomotion over rough terrain, Proceedings of IROS 2009, pp.814-820.

Kalakrishnan, M.;Buchli, J.;Pastor, P.;Schaal, S. (2009). Learning locomotion over rough terrain
using terrain templates, Proceedings of IROS 2009 pp.167-172.

J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng. A Control Architecture for Quadruped
Locomotion over Rough Terrain. In Proceedings of ICRA2008, 2008. 39



Examples of model-based approaches

Model-based control:

1
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. Trajectory based methods (ZMP)

. Virtual leg control (Raibert)

. Virtual model control (Pratt et al)

Hybrid Zero Dynamics control

Planning methods (Little dog project)
nverse dynamics and model predictive
control (MPC)
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Inverse dynamics and model predictive control

For torgue-controlled robots for which an accurate
dvynamical model exists:

Possibility:

« To compute the inverse-dynamics of the robot, i.e.
finding the torques needed to perform specific movements

« Torun optimizations to find torques that optimize some
objective functions and that respect some constraints.

« And perform foot step planning using model predictive
control

* And therefore to obtain highly versatile gaits and whole
body control.

* Probably used on the latest videos of Boston Dynamics
41



Coronal, Sagittal and Steering velocities

Optimization of

d
footsteps, 3" layer:
Model predictive Foot-step planner

control .

Linear Inverted

Next footstep location
Pendulum model

2" layer:
Trajectory pattern generator

Cartesian acc. of CoM, base and feet

Inverse dynamics, 1" layer:

Online optimization Whole body optimization
of torques for all DOFs *

Faraji, S., Pouya, S., & ljspeert, A. (RSS ‘
2014). Robust and Agile 3D Biped Walking Joint torques
With Steering Capability Using a Footstep
Predictive Approach.
https://doi.org/10.15607/RSS.2014.X.028
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Inverse dynamics and model predictive control

* Pros:
« Ability to generate a large class of movements: walking

+ many others
« Allows one to design controllers in task space, as
opposed to joint space

« Cons:
« Requires accurate dynamic models
 Requires (very) good torque control
« Heavy computation, but many approaches can now do

this online

References:

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., & Righetti, L. (2016). Momentum control with hierarchical inverse dynamics
on a torque-controlled humanoid. Autonomous Robots, 40(3), 473—-491. https://doi.org/10.1007/s10514-015-9476-6

Salman Faraji, Soha Pouya, Christopher G. Atkeson, and Auke Jan ljspeert (2014) Versatile and Robust 3D Walking with the Humanoid
Robot Atlas: a Model Predictive Control Approach. ICRA 2014.

Neunert, M., Stauble, M., Giftthaler, M., Bellicoso, C. D., Carius, J., Gehring, C., Hutter, M., & Buchli, J. (2018). Whole-Body Nonlinear
Model Predictive Control Through Contacts for Quadrupeds. IEEE Robotics and Automation Letters, 3(3), 1458—-1465.
https://doi.org/10.1109/LRA.2018.2800124

Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., & Kim, S. (2018). Dynamic locomotion in the mit cheetah 3 through convex model-
predictive control. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-9. 47
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Learning-based methods

Learning-based methods are recently becoming popular
thanks to progress in machine learning, increased
computation power, and faster simulators.

Most people use Reinforcement learning (RL), which can
be seen as a generalization of optimal control.

Different approaches exist: e.g. hierarchical reinforcement
learning (Peng et al., 2017) or direct end-to-end learning
(Jain et al., 2019).

Some perform learning directly on the hardware platform in
the real world (Choi & Kim, 2019; Ha et al., 2020, 2018), but
most approaches rely on simulation and then tackle the
sim-to-real transfer challenge (Hwangbo et al., 2019; Tan
et al., 2018, Peng et al 2020).
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Learning with ANYmal

« Example: (Hwangbo et al., 2019) nice combination of

reinforcement learning and supervised learning.

Reinforcement learning
in simulation

Good simulator

X?

Stochastic
rigid body modeling

ISupe_rvisefd = O
actuator e S Sim-to-real transfer
dynamics ey

Fig. 1. Creating a control policy. In the first step, we identify the physical parameters of the robot and estimate uncertainties in the identification. In the second step,
we train an actuator net that models complex actuator/software dynamics. In the third step, we train a control policy using the models produced in the first two steps.
In the fourth step, we deploy the trained policy directly on the physical system.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning agile and dynamic motor
skills for legged robots. Science Robotics, 4(26), eaau5872. hitps://doi.org/10.1126/scirobotics.aau5872 49
https://www.science.orqg/doi/10.1126/scirobotics.aaus5872
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Hybrid simulator

Learning with ANYmal
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See Movie 1:
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Learning with ANYmal

Science Robotics, Special Issue on Learning-Beyond Immitation

Learning Agile and Dynamic Motor Skills
for Legged Robots

Jemin Hwangbo', Joonho Lee', Alexey Dosovitskiy?,
Dario Bellicoso', Vassilios Tsounis', Vladlen Koltun?, Marco Hutter!
2018/08/16

I Robotic Systems Lab, ETH Zurich, Switzerland
2 Intelligent Systems Lab, Intel

ETH iirich SNSL (inte)

www.rsl.ethz.ch Intelligent Systems Lab

https://www.youtube.com/watch?v=aTDkKYFZFWu



https://www.youtube.com/watch?v=aTDkYFZFWug

Learning-based methods

Pros:

cons: Guillau

They offer generic designh methods that require less expertise
than model-based approaches.

Their performance can beat human-designed model-based
controllers.

They can combine supervised and unsupervised learning.
They can generate new movements that would be

difficult/impossible to hand-design. See the practical a”d,s
me Be\\egafda

nin a few weeks

need for very long training sequences presentatic
a strong reliance on simulation and sim-to-real transfer
need of expertise in designing cost functions and training
scenarios,

Black-box controller, lack of proof of stability/performance
possibly poor generalization to handle situations (e.g. terrains)
that have not been explored during training. 52



Learning-based methods

References:
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Bio-inspired approaches

Replicate some of the control principles identified in vertebrate
and invertebrate animals

They are strongly influenced by the idea of embodied
Intelligence proposed by Rolf Pfeifer and colleagues, and
Rodney Brooks’ observation that “the world is its own best
model”.

Bioinspired locomotion controllers typically combine numerical
models of central pattern generators implemented as
recurrent neural networks and coupled nonlinear oscillators
and reflexes, implemented as feedback laws.

Some (sensory-driven) approaches only rely on reflexes.

And a few approaches use reinforcement learning for setting
control parameters.

R. Pfeifer and J. Bongard, How the body shapes the way we think: a new view of intelligence. MIT press, 2006.

R. Pfeifer, M. Lungarella, and F. lida, “Self-Organization, Embodiment, and Biologically Inspired Robotics,” Science, vol. 318, no. 5853, pp.
1088-1093, Nov. 2007, doi: 10.1126/science.1145803.

R. A. Brooks, “How to Build Complete Creatures Rather than Isolated Cognitive Simulators,” Architectures for Intelligence, Jan. 14, 20y
https://www.taylorfrancis.com/ (accessed Apr. 07, 2020).



Examples of bio-inspired approaches
1. Passive and dynamic walkers
2. Sensory-driven methods,

3. CPG-and-reflex based methods

55



Robotics: passive walkers

* The laws of physics should be exploited: passive walkers

Nice example of
mechanical limit cycle

behavior

45
s S

C

ornell Univ.
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Passive walkers (ct'd)

A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees,
Collins, S. H., Wisse, M., Ruina, A. International Journal of Robotics Research, Vol.

20, No. 2, Pages 607-615, 2001
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Passive and dynamic walkers

The laws of physics can be exploited to produce
relatively robust control-less walking

Instead of cancelling-out the natural dynamics of the robot
(by using high-power electric motors), takes advantage of
the natural frequencies of the robot

Self-stabilizing phenomenon
Dynamic walkers are passive walkers
+ actuation

Require little energy when

actuated E.g. robot Mike at Delft Univ.
with McKnibben muscles

See the Cornel Ranger that can walk Robot Mike
65 km on one battery. Bhounsule et al (IJRR_2014)
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Examples of bio-inspired approaches
1. Passive and dynamic walkers
2. Sensory-driven methods,

3. CPG-and-reflex based methods
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Runbot project
Exploitation of natural dynamics

Sensor driven controller implemented with a neural
network, locomotion as a chain of reflexes

Policy gradient reinforcement learning algorithm to
tune the parameters in real time.

Note: this sensory-driven controller share similarities
with neuromechanical models of human
locomotion (e.g. Geyer and Herr 2010).

Reference: Gen, Porr, and Worgotter, Fast Biped Walking with a Sensor-driven
Neuronal Controller and Real-time Online Learning, The International Journal of
Robotics Research, Vol. 25, No. 3, 243-259, 2006. 60



Runbot project

: ‘~h AF At iral teftWip Right HIp | .
Exploitation of natural & & e & OV,
SR S S 13 1 GL(GR): sensor neuron for groun d

dyn a,m i CS contact of left (rlghl) foot

SRR EON ho i "o ioVAg o EM(FM): Extensor (Flexor) motor-neuron

ES (FS): Extensor (Flexor) sensor-neuron

Sensor driven controller

(like Geyer's model) BTN P O W
implemented witha &'’ e —pmoe

neural network

Policy gradient reinforcement learning algorithm to
tune the parameters in real time

Gen, Porr, and Worgoétter, Fast Biped Walking with a Sensor-driven
Neuronal Controller and Real-time Online Learning, The International
Journal of Robotics Research, Vol. 25, No. 3, 243-259, 2006. 61



Runbot project
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Sensory-driven control: summary

Pros:
* Very close link between the controller and what the robot
actual does
« Can be very energy efficient by benefiting from passive
dynamics (as opposed to stiff actuation)

Cons:
 Dbecause of the lack of a centrally generated rhythm,
non-negligible risk that locomotion might be completely
stopped because of damage in the sensors and/or
external constraints that force the robot in a particular
posture.
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Examples of bio-inspired approaches
1. Passive and dynamic walkers
2. Sensory-driven methods,

3. CPG-and-reflex based methods
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CPG-and-reflex control

« Main idea: to use oscillators and to replicate the distributed
control mechanisms found Iin vertebrates. CPG = Central
Pattern Generator

Visual System Vestibular Sys.
< <

[Visuomotor Coord.} <:> { Balance Control }<

\% A4

<_Reflexes

VITII 317 Ve

[ Actuators } Proprioception




Concept of Limit Cycle

A limit cycle is an oscillatory regime in a dynamical system:

\K//

Limit cycles

If the limit cycle Is stable, the states of the system will return
to it after perturbations

66



CPG-and-reflex control

Two types of implementations:

CPG produces desired positions:

CPG-and-
reflex

1

Feedback

0 5
+ Controller (PID)

_5

i

u
- robor

CPG directly produces torques:

CPG-and-
reflex

u

L

»
»

~

0
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Taga’'s neuromechanical simulation

Neural Rhythm
Generatory

hip
oscillator

Sensory
Signal

This approach has been strongly e
Influenced by Taga's models of
biped locomotion.

ankle o @ ('x(: 15X 2 )
oscillator| 1 ]
@ 6] -.

Quite a few labs have taken a e righ
similar approach,

Motor
Command

Skeletal
System

Environment

G. Taga. Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system
and the environment. Physica D: Nonlinear Phenomena, 75(1-3):190-208, 1994
G. Taga. A model of the neuro-musculo-skeletal system for human locomotion. i. emergence of basic gait.
Biological Cybernetics, 73(2):97-111, 1995
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Using CPG models for quadruped robots

Y. Fukuoka, H. Kimura, and A.H. Cohen. Adaptive dynamic
walking of a quadruped robot on irregular terrain based on
biological concepts. The International Journal of Robotics
Research, 3-4:187-202, 2003.

3 actuated DOF per limb
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CPG model

The CPG is made of Matsuoka oscillators: two mutually inhibiting
neurons.

zwij Yej U0

Feed,;

T i =  —Upe i + WeeVirei — Bl )

extensor neuron
of other N.O.’s

—{—H{}, —+ F{f‘{f‘{i’{{,__f}j + Z Wii Ve r1j

-l
-

flexor neuron
of other N.O.’s

Vie.ryi = max (g ¢, 0)

Feedy

fm
T Ve.ryi — U4 + Vie. f

L Flexor Neuron )

O—— Excitatory Connection
Twjyg uo Y
®—— Inhibitory Connection
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CPG architecture

1o o
¥

zwij Yej U0

3 ( Extensor Neuron A
(a) (b)

Feed,;

extensor neuron
of other N.O.’s

-

Gait transitions by changing
connection weights in the Jex et
network of oscillators (

L Flexor Neuron

O—— Excitatory Connection
Twjyg uo Y
®—— Inhibitory Connection
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Reflexes:

The following reflexes are implemented:
« stumbling-corrective reaction. Contact to the paw dorsum

generates an extension or retraction of the limb depending if
it is loaded or not.

pitch plane

« Vestibulospinal reflex to
maintain the body close to
horizontal

downward
-inclined
leg

-inclined

72



Examples




CPG-and-reflex Control: summary

* Pros:
« Distributed control, potentially robust against hardware
faults.

« Limit cycle behavior (controller-body-environment)
« Robust against pertubations
 Smooth trajectories due to the oscillators

e Cons:
« Fewer mathematical tools than model-based methods

* Not (yet) a clear design methodology, it is recommended
to use reinforcement learning or optimization algorithms
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Overall Summary: Model-based methods

Pros:

well established designh methods from control engineering,

can benefit from mechanical design expertise for making kinematic and
dynamic models.

offer mathematical proofs of stability for some approaches, like hybrid
zero dynamics.

When used with offline and online optimization, can lead to impressive
motor behaviors that would be difficult to hand-design.

They can be well suited for planning and for anticipatory behavior

cons:

require extensive expert knowledge.

The tuning of different control modules can take a long time.

Their performance is highly dependent on the quality of the robot
and environment models.

They are generally fragile against hardware lesions.

Methods relying on online optimization and planning are probably not as
reactive as bio-inspired approaches.

And some approaches are computationally very intensive (e.g. for
offline and online optimization). 75



Overall Summary: Learning-based methods

Pros:

« They offer generic design methods that require less
expertise than model-based approaches.

« Their performance can beat human-designed model-
based controllers.

« They can combine supervised and unsupervised learning.

« They can generate surprising new movements that
would be difficult/impossible to hand-design.

Cons:

* need for very long training sequences

e astrong reliance on simulation and sim-to-real transfer

* need of expertise in designing cost functions and training
scenarios,

« Jlack of proof of stability/performance, no interpretability

« possibly poor generalization to handle situations (e.g.
terrains) that have not been explored during training. 76



Overall Summary: Bio-inspired approaches

Pros:

 They are very good for producing reactive and robust
behavior.

 They do not depend on explicit models.

 They can be robust against hardware faults.

 Well suited for robots with passive dynamics, compliant
behavior.

« They are computationally light.

Cons:

 No well-established design methods.

« They normally cannot offer proof of stability/performance.

« They have not much been used to do planning and to
generate anticipatory behavior (mainly focused on

reactive behavior)
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Possible exam guestions

* Present key ideas, and the pros and cons of the
different presented control approaches

* Note: this was just an introduction.

« Some next lectures and the student presentations
will go deeper in several of these control
approaches.
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