

Learning Control Laws

Stable Estimator of Dynamical Systems (SEDS)

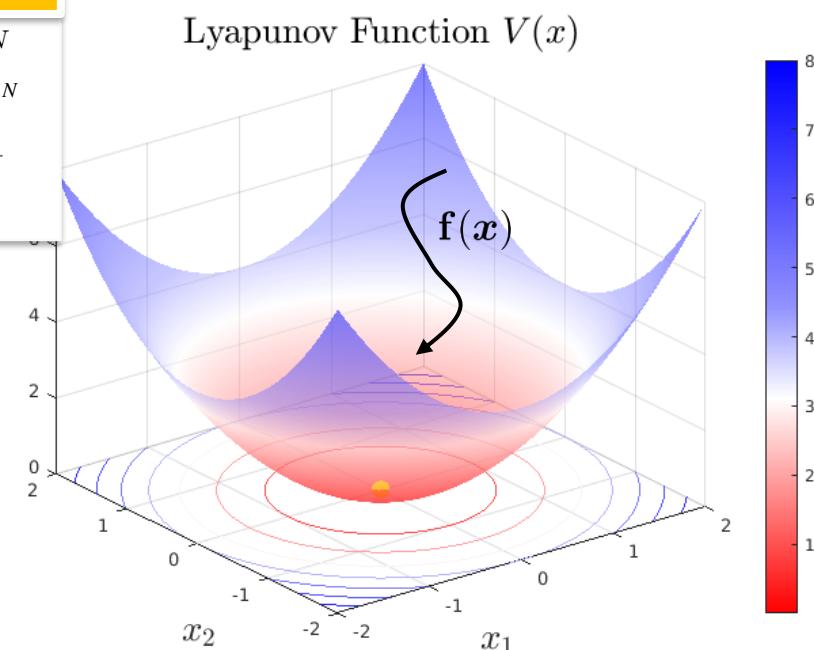
Global Asymptotic Stability of Autonomous Dynamical System (DS)

Lyapunov's Theorem for Global Asymptotic Stability

Theorem: A DS is *globally asymptotically stable* at $x^* \in \mathbb{R}^N$ if there exists a Lyapunov candidate function $V(x): \mathbb{R}^N \rightarrow \mathbb{R}^N$ that is radially unbounded; i.e. $V(x) \rightarrow \infty$ as $\|x\| \Rightarrow \infty$, \mathcal{C}^1 and satisfies the following conditions:

- (I) $V(x^*) = 0$, (II) $V(x) > 0 \forall x \in \mathbb{R}^N \setminus x = x^*$
- (III) $\dot{V}(x^*) = 0$, (IV) $\dot{V}(x) < 0 \forall x \in \mathbb{R}^N \setminus x = x^*$

$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) < 0$$



V should be non-increasing along all trajectories of $f(x)$

Lyapunov Function ~ Energy-like Function

Global Asymptotic Stability of Autonomous Dynamical System (DS)

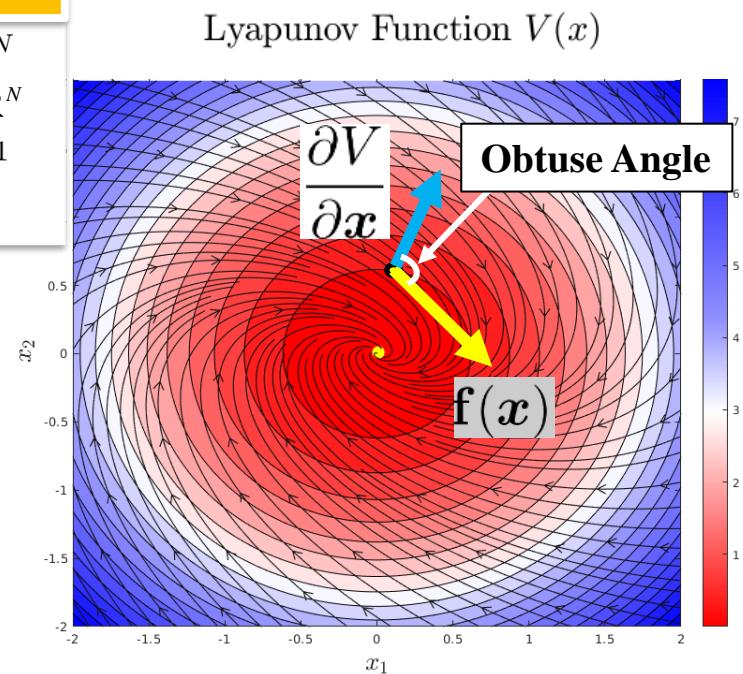
Lyapunov's Theorem for Global Asymptotic Stability

Theorem: A DS is *globally asymptotically stable* at $x^* \in \mathbb{R}^N$ if there exists a Lyapunov candidate function $V(x): \mathbb{R}^N \rightarrow \mathbb{R}^N$ that is radially unbounded; i.e. $V(x) \rightarrow \infty$ as $\|x\| \Rightarrow \infty$, \mathcal{C}^1 and satisfies the following conditions:

- (I) $V(x^*) = 0$, (II) $V(x) > 0 \forall x \in \mathbb{R}^N \setminus x = x^*$
- (III) $\dot{V}(x^*) = 0$, (IV) $\dot{V}(x) < 0 \forall x \in \mathbb{R}^N \setminus x = x^*$

$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) < 0$$

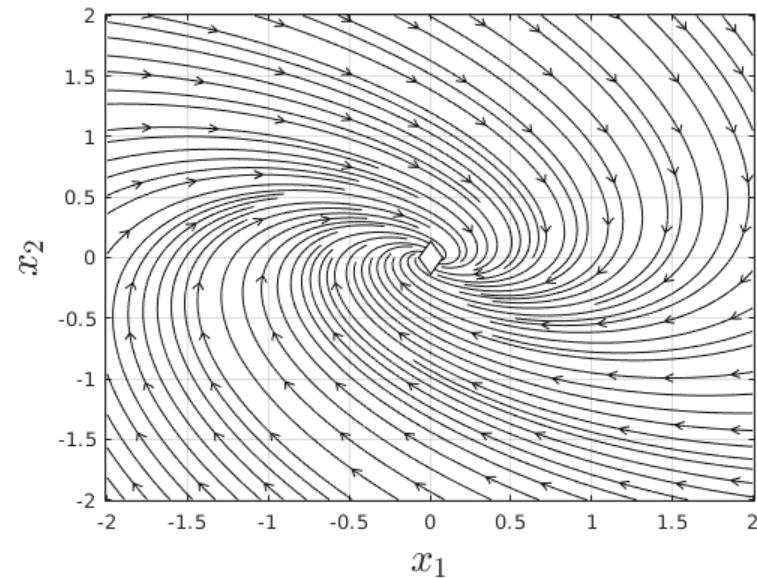
V should be non-increasing along all trajectories of $f(x)$



Level Sets of Lyapunov Function

Stability of a Linear Autonomous Dynamical System (DS)

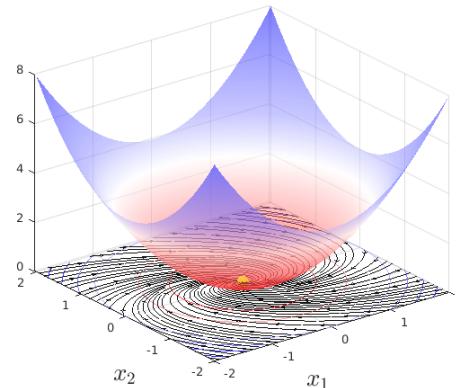
Stable Linear DS $\dot{x} = Ax + b$



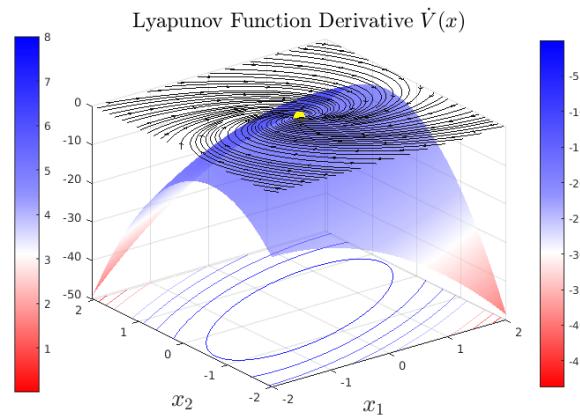
Quadratic Lyapunov Function (QLF)

$$V(x) = (x - x^*)^T (x - x^*)$$

Lyapunov Function $V(x) = (x - x^*)^T (x - x^*)$



Lyapunov Function Derivative $\dot{V}(x)$



How to ensure $\dot{V}(x)$ is always negative?

$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) < 0$$

→ $A^T + A \prec 0$

Enforce the eigenvalues to be negative!

Stability of non-linear DS

What if $f(x)$ is non-linear?

- Not easy to assess whether the system is stable.
- Traditionally, the following has been done:
 - local linearization;
 - numerical estimation of stability;
 - analytical solution in special cases.

Stable Estimator of Dynamical Systems (SEDS)

Khansari-Zadeh, S.M. and Billard, A., 2011. Learning stable nonlinear dynamical systems with gaussian mixture models. *IEEE Transactions on Robotics*, 27(5), pp.943-957.

Mohi Khansari

Stable Estimator of Dynamical Systems (SEDS)



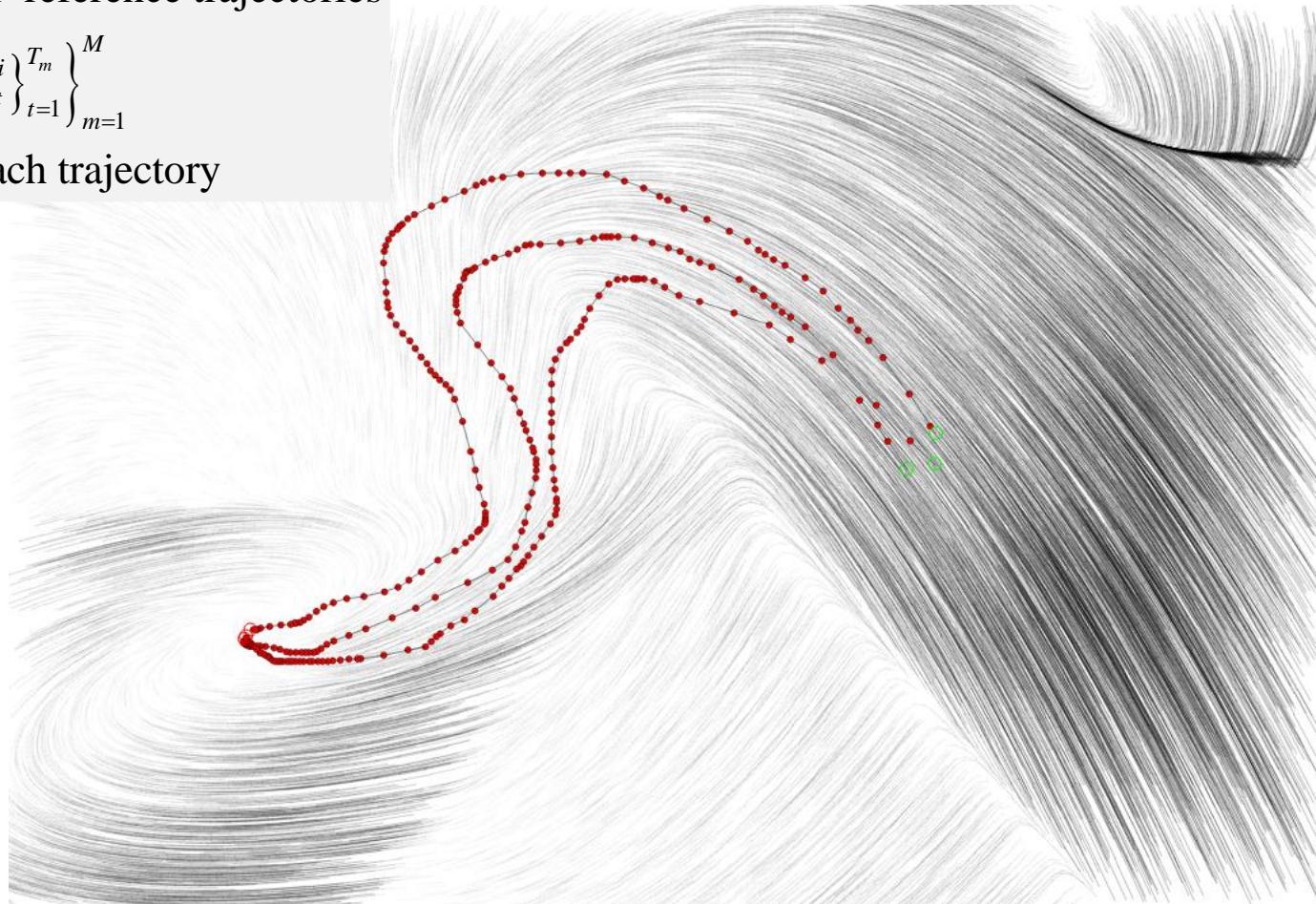
How to model this non-linear dynamical system?

SEDS starting point

DATA: set of M reference trajectories

$$\{X, \dot{X}\} = \left\{ \left\{ x_t^i, \dot{x}_t^i \right\}_{t=1}^{T_m} \right\}_{m=1}^M$$

T_m : Length of each trajectory

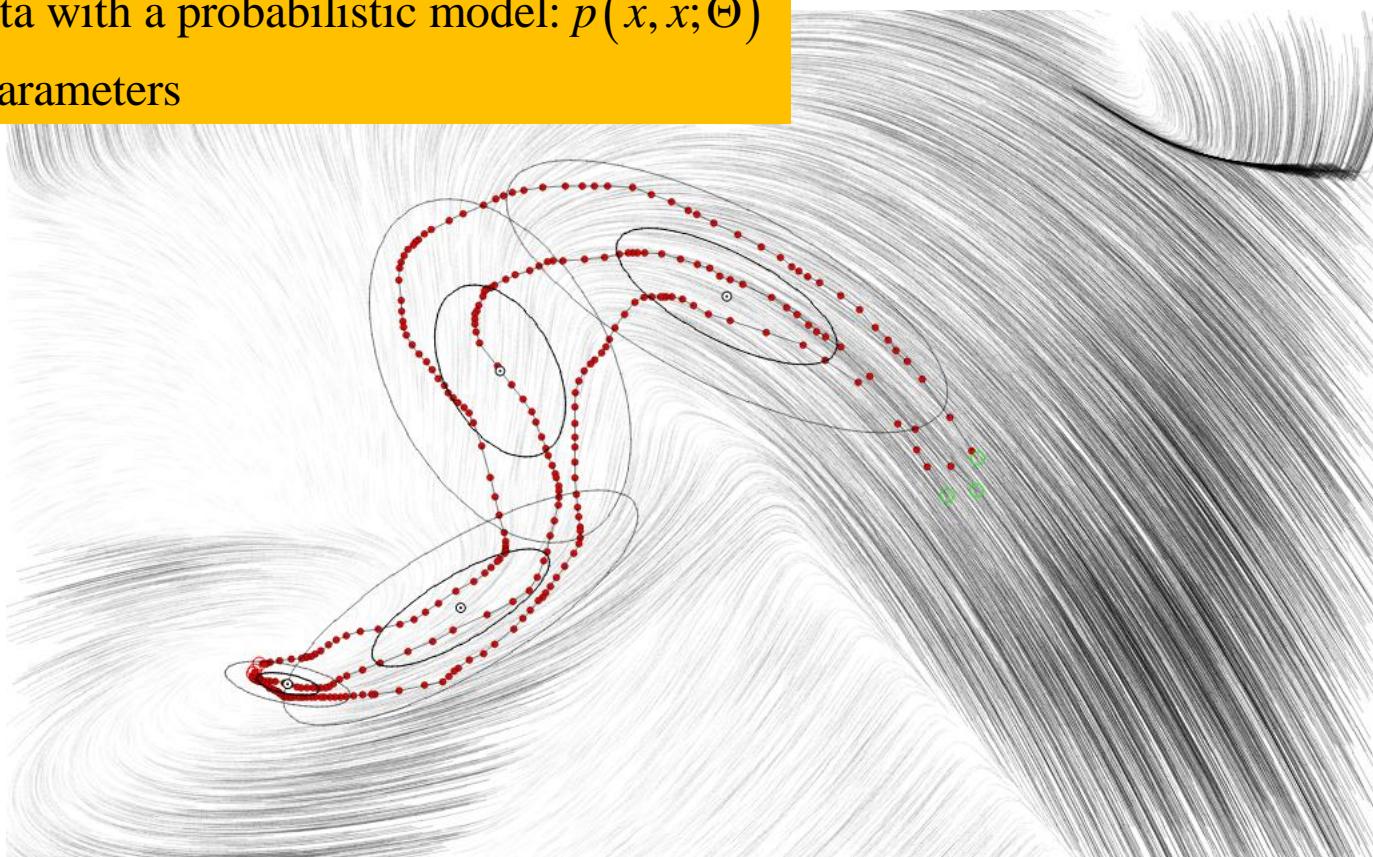


Start with sampled trajectories from a nonlinear DS

SEDS model

Model the data with a probabilistic model: $p(\dot{x}, x; \Theta)$

Θ : Model's parameters

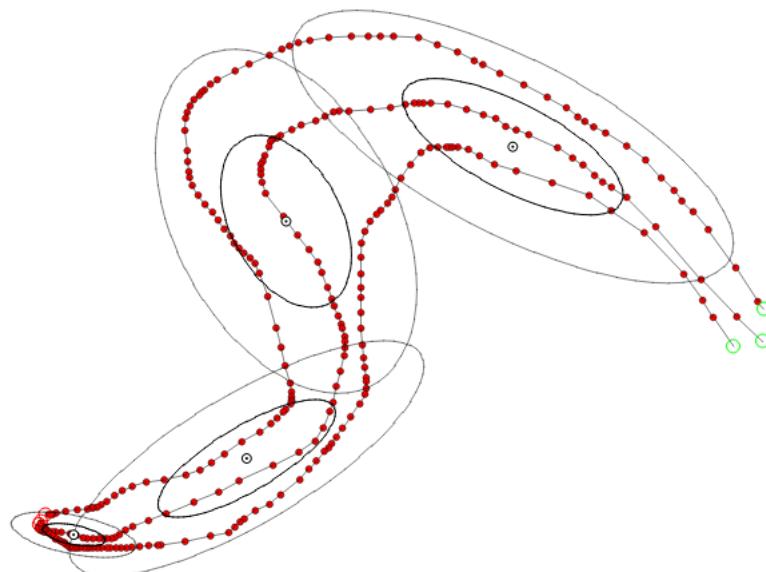


$$p(\dot{x}, x; \Theta) = \sum_{k=1}^K \pi_k \cdot p(\dot{x}, x; \mu^k, \Sigma^k), \quad \text{with } p(\dot{x}, x; \mu^k, \Sigma^k) = N(\mu^k, \Sigma^k), \quad 0 < \pi_k \leq 1$$

$\Theta = \{\pi_k, \mu^k, \Sigma^k\}_{k=1}^K$: priors, means and covariance matrices of the K Gauss functions

SEDS model

Generate an estimate of the DS: $\dot{x} = f(x; \Theta) := E\{p(\dot{x} | x; \Theta)\}$



Nonlinearity comes from

$$\gamma_k(x) = \frac{\pi_k \cdot p(x; \mu_x^k, \Sigma_x^k)}{\sum_{l=1}^K \pi_l \cdot p(x; \mu_x^l, \Sigma_x^l)}$$

Gaussian Mixture Regression:

$$\dot{x} = \sum_{k=1}^K \gamma_k(x) \left(\underbrace{\sum_{\dot{x}x}^k \left(\sum_{xx}^k \right)^{-1} x}_{A^k} + \underbrace{\left(\mu_{\dot{x}}^k - \sum_{\dot{x}x}^k \left(\sum_{xx}^k \right)^{-1} \mu_x^k \right)}_{b^k} \right) = \sum_{k=1}^K \gamma_k(x) \left(\textcolor{red}{A^k x + b^k} \right)$$

K linear DS

SEDS as a mixture of linear DS

K linear DS

$$\dot{x} = \sum_{k=1}^K \gamma_k(x) (A^k x + b^k)$$

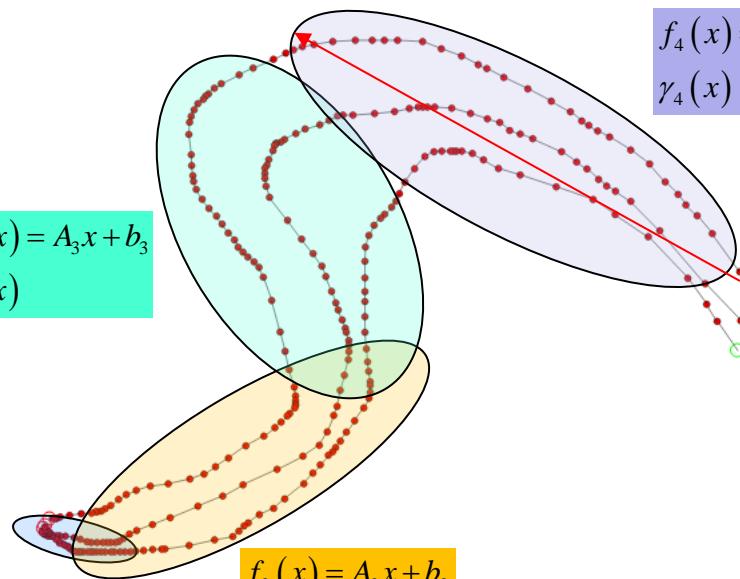
Nonlinearity comes from

$$\gamma_k(x) = \frac{\pi_k \cdot p(x; \mu_x^k, \Sigma_x^k)}{\sum_{k=1}^K \pi_k \cdot p(x; \mu_x^k, \Sigma_x^k)}$$

Mixing function

$$\begin{aligned} \gamma_k(x) : \mathbb{R}^N &\rightarrow \mathbb{R} \\ 0 < \gamma_k(x) < 1 \\ \sum_{k=1}^K \gamma_k(x) &= 1 \end{aligned}$$

$$\begin{aligned} f_1(x) &= A_1 x + b_1 \\ \gamma_1(x) & \end{aligned}$$

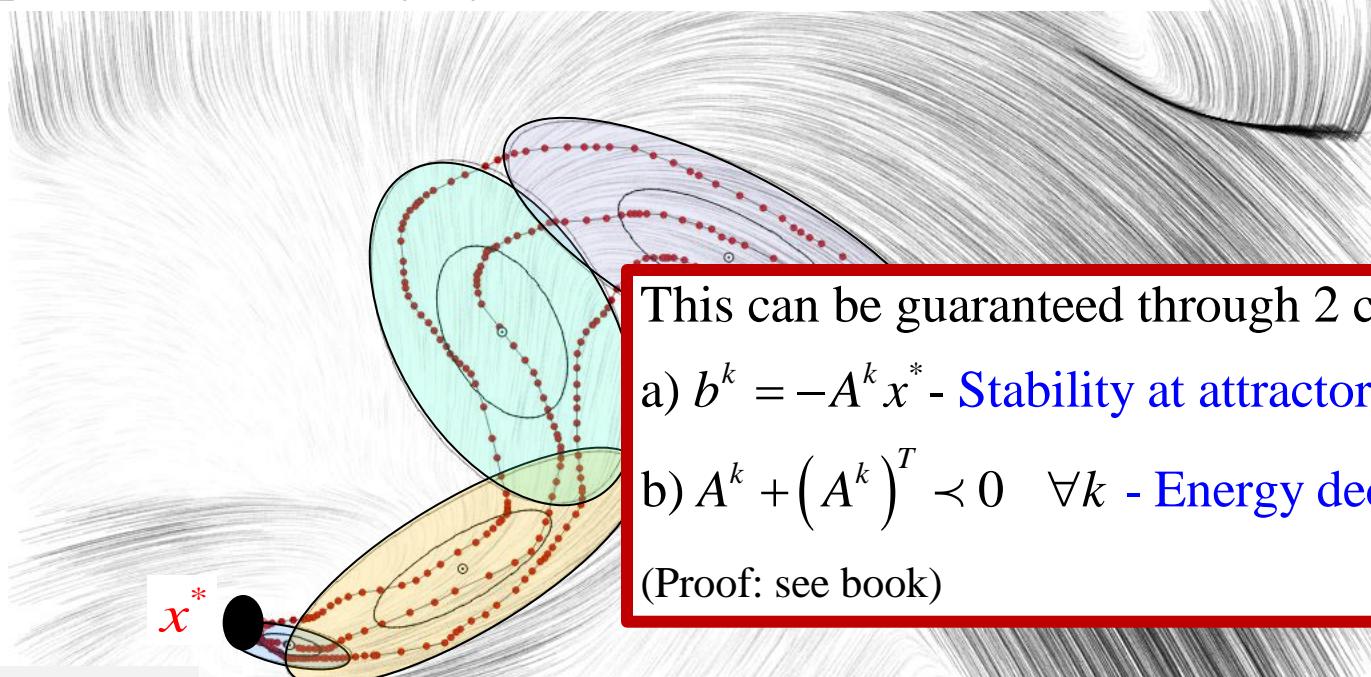


$$\begin{aligned} f_4(x) &= A_4 x + b_4 \\ \gamma_4(x) & \end{aligned}$$

1st eigenvector of each A^k matrix
gives direction of velocity of DS locally

Conditions for SEDS stability

Model is parameterized only by the A^k matrices and b^k vectors.



This can be guaranteed through 2 conditions:

a) $b^k = -A^k x^*$ - **Stability at attractor**

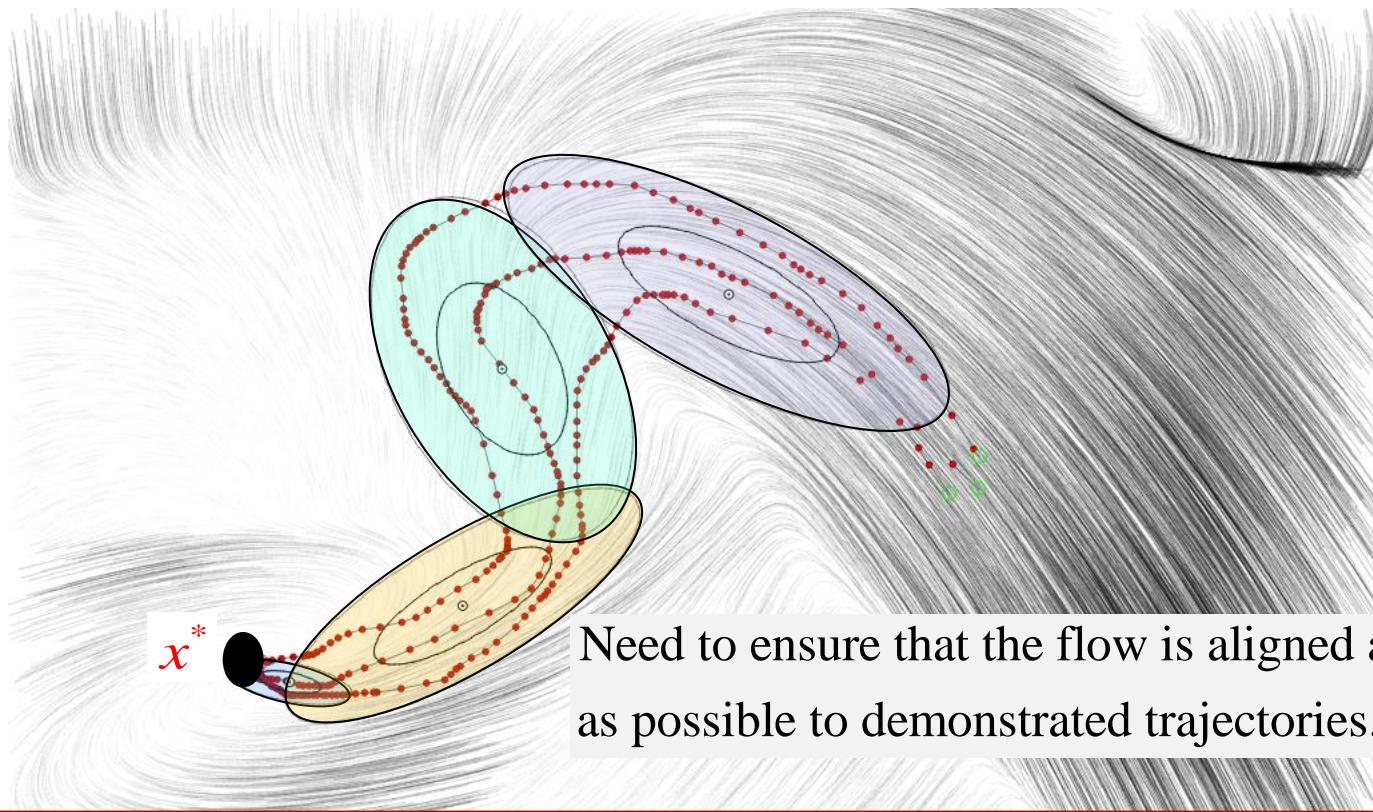
b) $A^k + (A^k)^T \prec 0 \quad \forall k$ - **Energy decreases**

(Proof: see book)

$$f(x) = 0$$

Need to guarantee stability at the attractor x^* .

Parametrization of SEDS



Two possible objective functions:

- a) Maximum likelihood \rightarrow fits at best the entire density
- b) Mean-square error \rightarrow fits at best the state space trajectories and velocities

Optimization of SEDS

Maximum likelihood

$$\min_{\Theta_{GMR}} J(\Theta_{GMR}) = -\frac{1}{M} \sum_{m=1}^M \sum_{t=0}^{T_m} \log p(x^{t,m}, \dot{x}^{t,m} \mid \Theta_{GMR})$$

Mean-square error

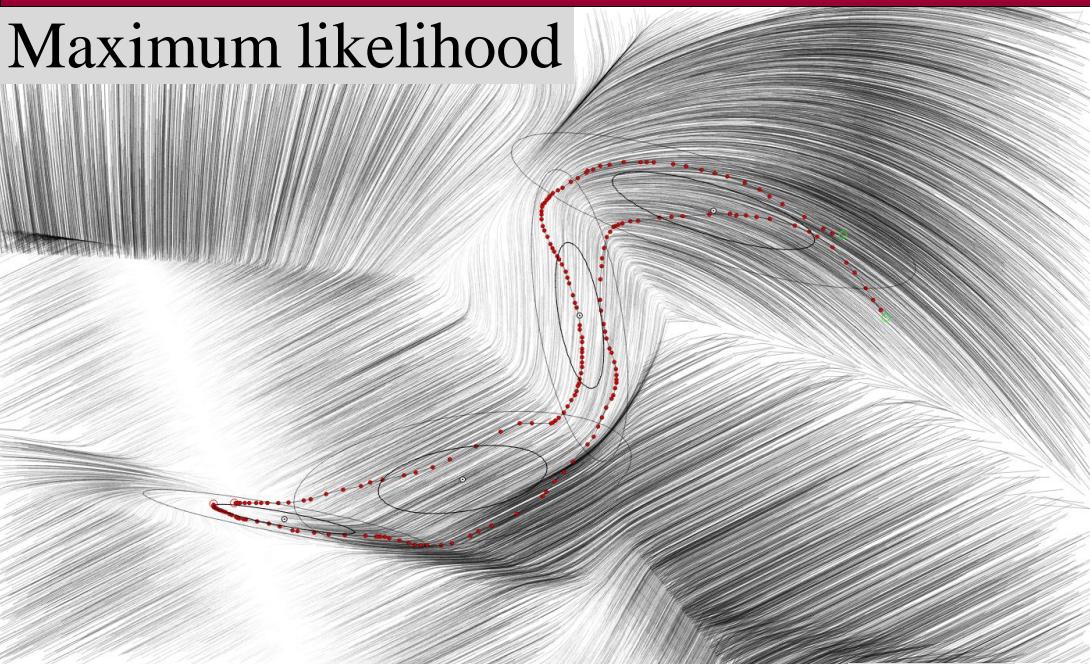
$$\min_{\Theta_{GMR}} J(\Theta_{GMR}) = -\frac{1}{2M} \sum_{m=1}^M \sum_{t=0}^{T_m} \|f(x^{t,m}) - \dot{x}^{t,m}\|$$

Set of constraints

$$\left\{ \begin{array}{l} \text{(a)} b^k = -A^k x^* \\ \text{(b)} A^k + (A^k)^T \prec 0 \\ \text{(c)} \Sigma^k > 0 \quad \forall k = 1, \dots, K \\ \text{(d)} 0 < \pi_k \leq 1 \\ \text{(e)} \sum_{k=1}^K \pi_k = 1, \end{array} \right. \quad \Sigma^k = \begin{bmatrix} \Sigma_{xx}^k & \Sigma_{x\dot{x}}^k \\ \Sigma_{\dot{x}x}^k & \Sigma_{\dot{x}\dot{x}}^k \end{bmatrix}$$

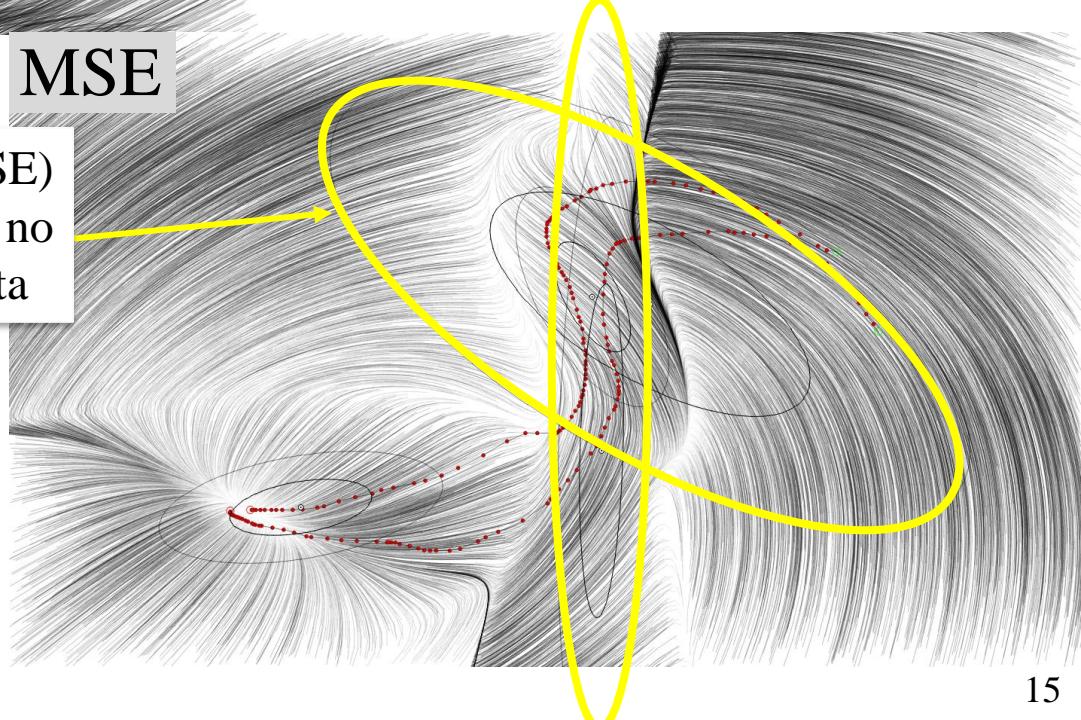
Non-convex optimization

Maximum likelihood



MSE

When trained with mean-square error (MSE) as objective function, the Gauss functions no longer need to fit the distribution of the data



Hyperparameter and pre-selections for SEDS

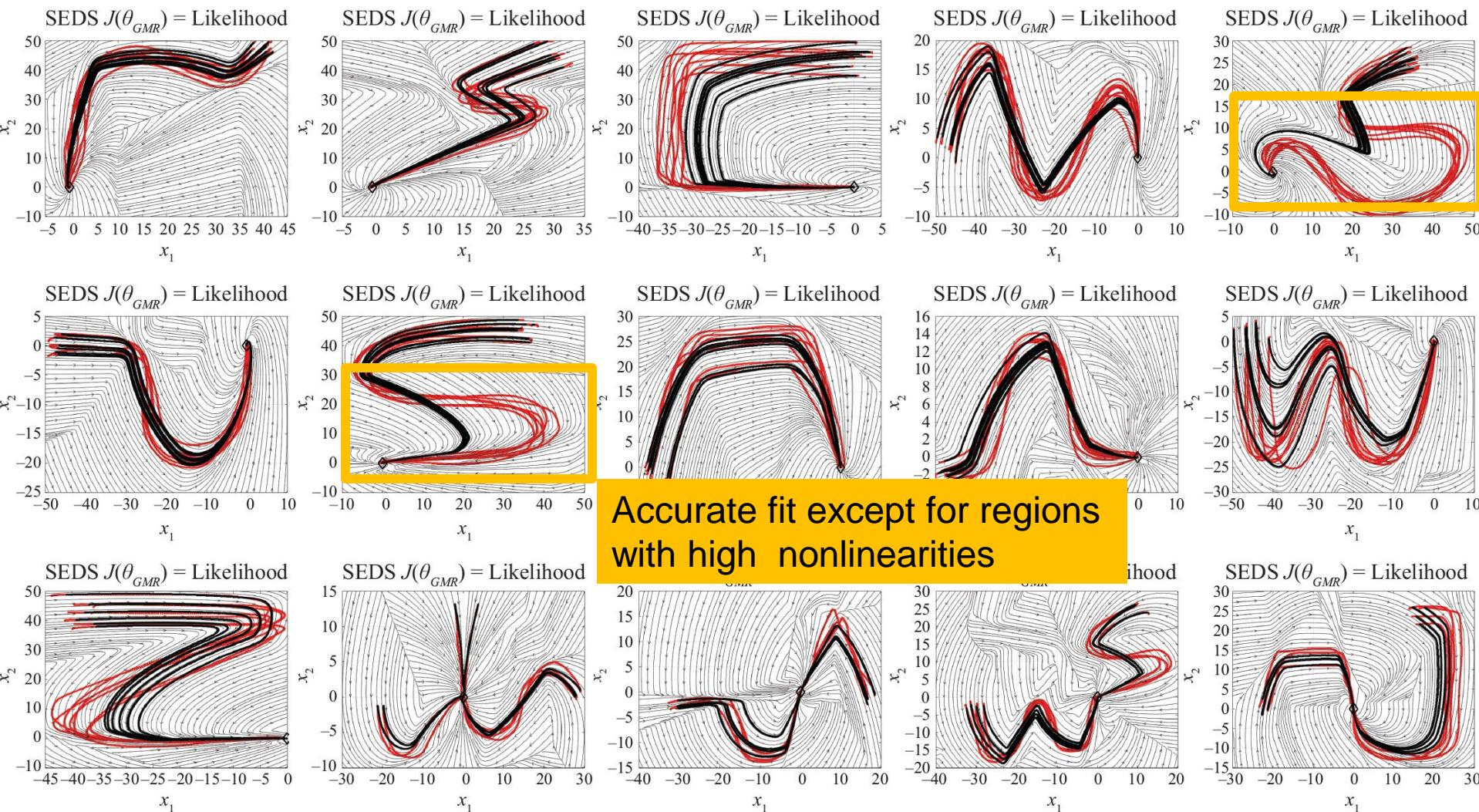
Prior to training SEDS, the user must make several choices that will influence the quality of the learned model.

The choices are:

- Type of objective function
 - This will affect the placement of the Gauss functions.
- Number of Gauss functions
 - This can be automated by using the Bayesian Information Criterion (BIC) – BIC finds a balance between improved quality of the fit and increase in number of parameters.

LASA Handwriting Dataset - Benchmark

LASA Handwriting Dataset - Benchmark

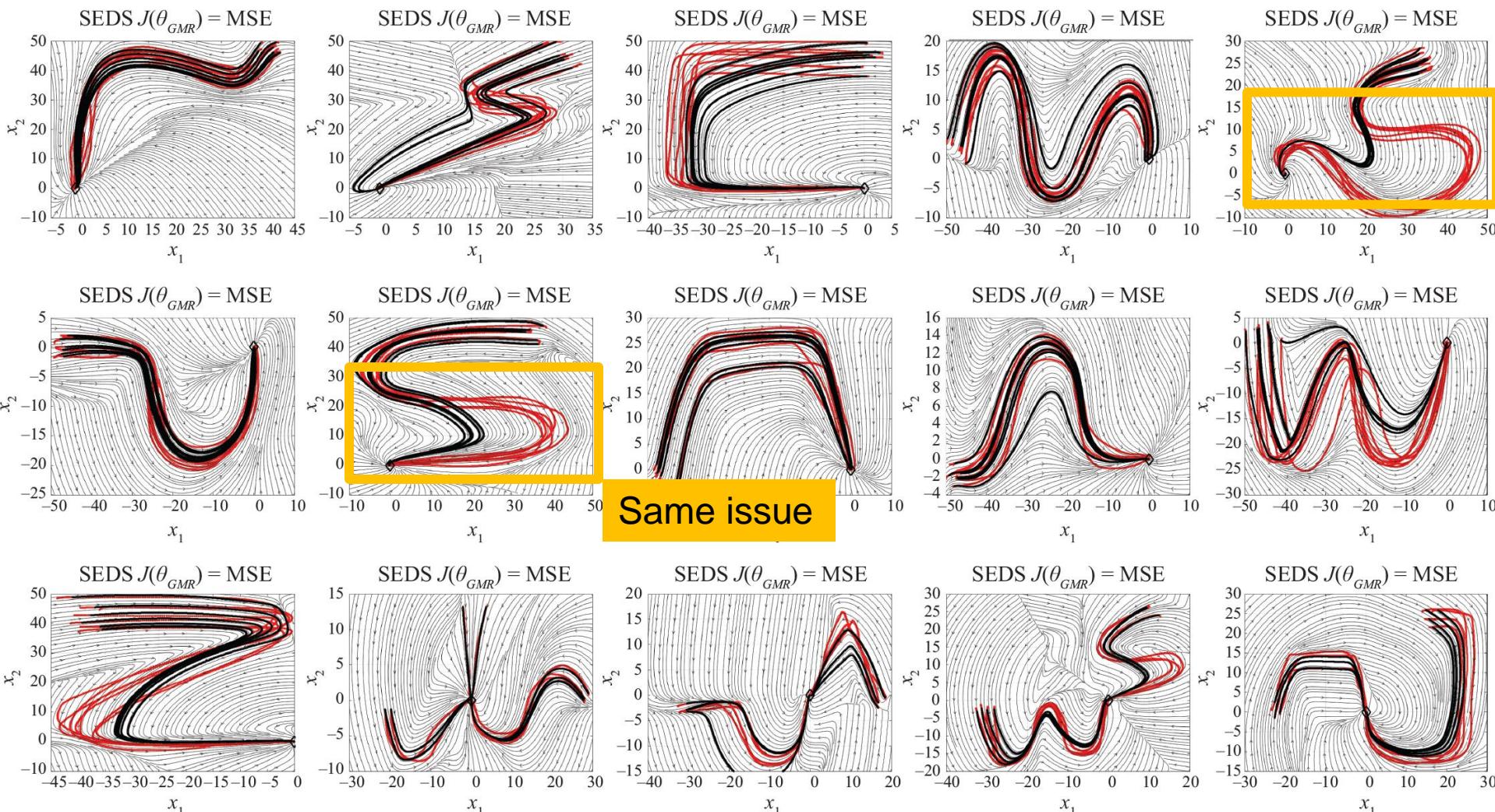


Fit with maximum likelihood

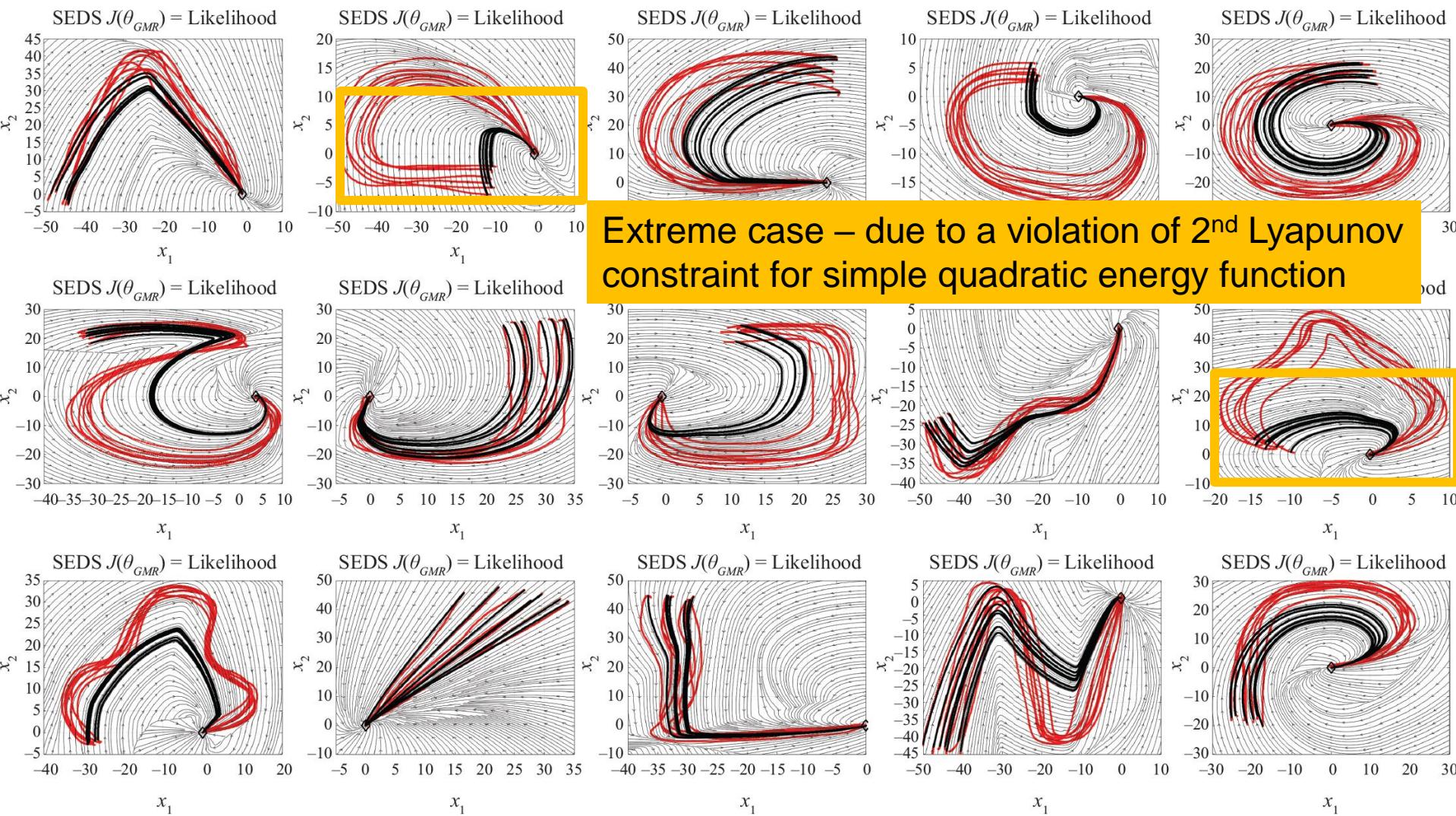
Demonstrated trajectories

Reproduction from same initial position

LASA Handwriting Dataset - Benchmark

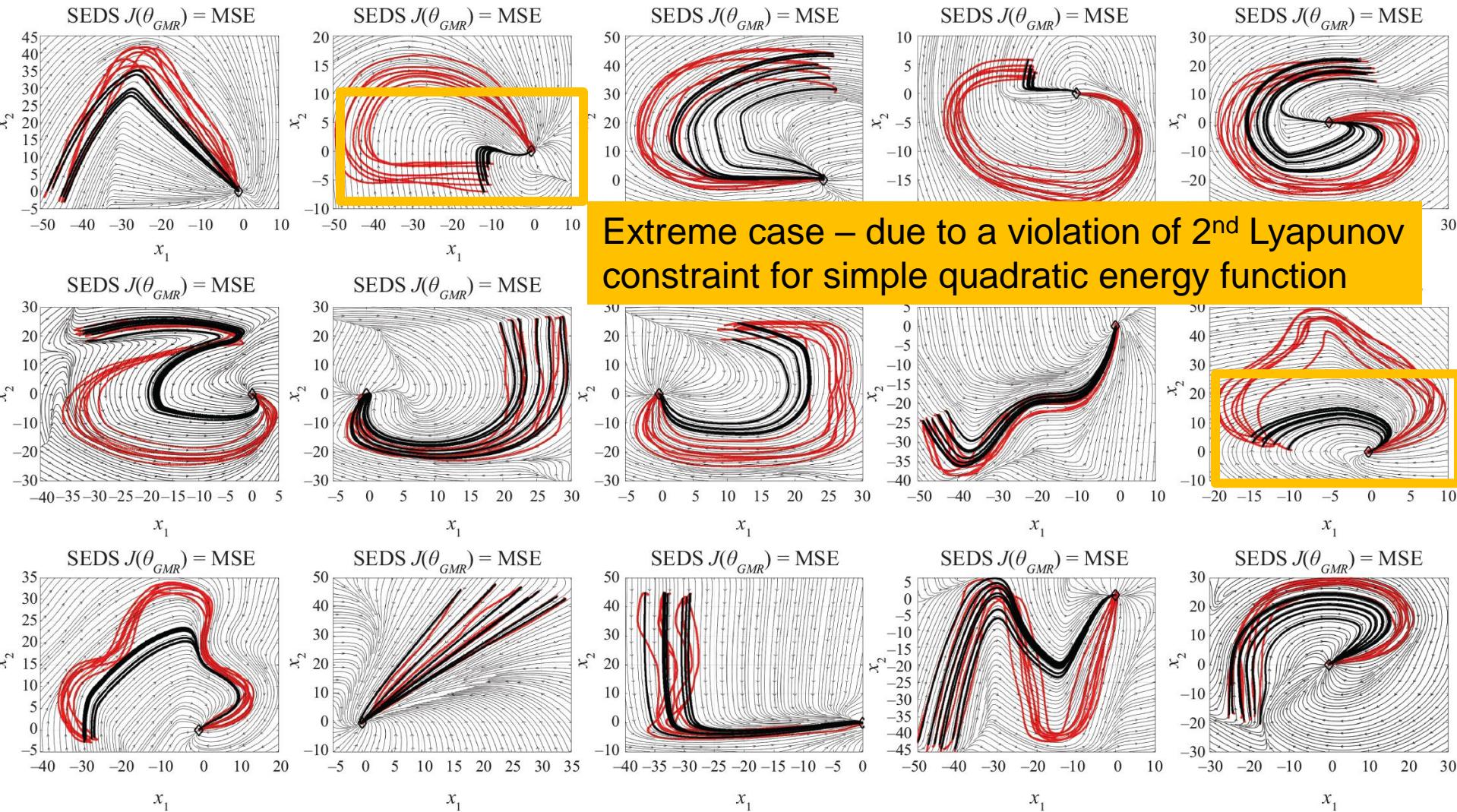


LASA Handwriting Dataset - Benchmark



Fit with maximum likelihood

LASA Handwriting Dataset - Benchmark



Fit with MSE

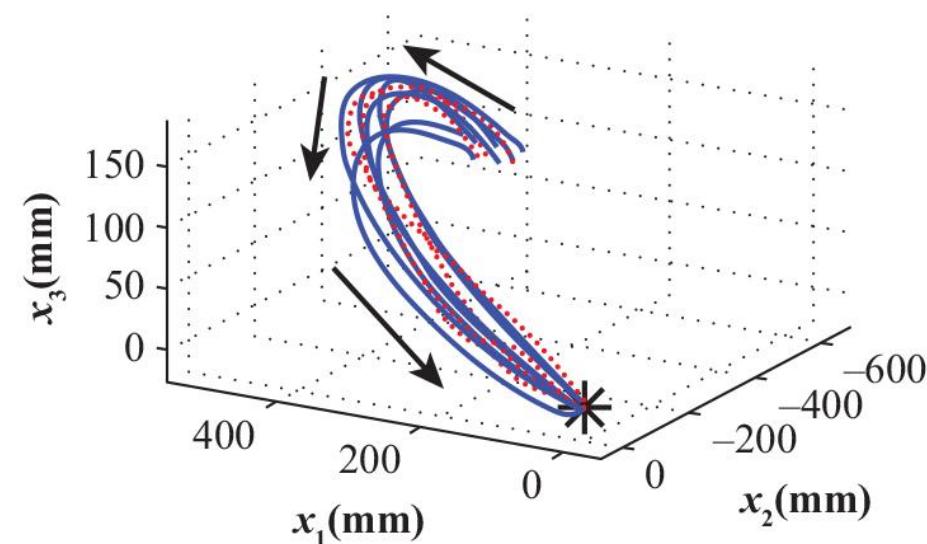
Kinesthetic teaching

Target

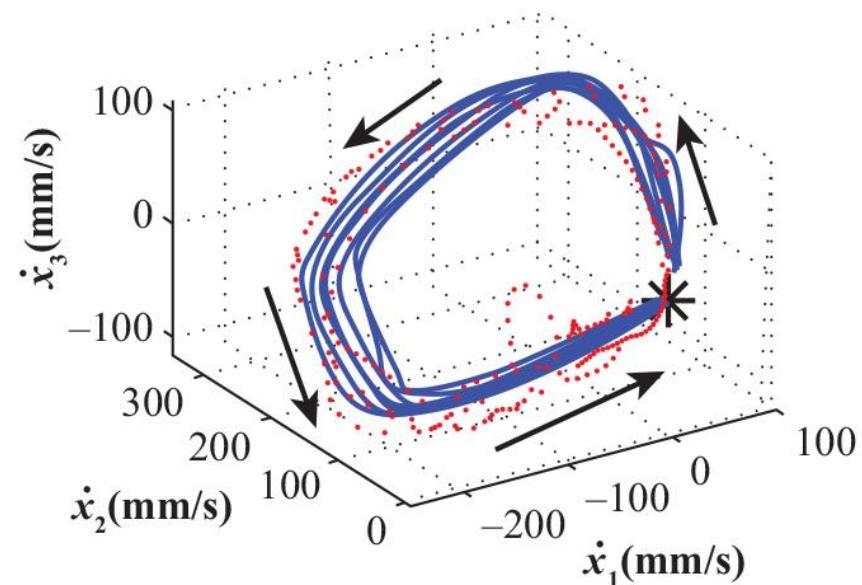
····· Demonstrations

— Reproductions

Trajectory of reproductions

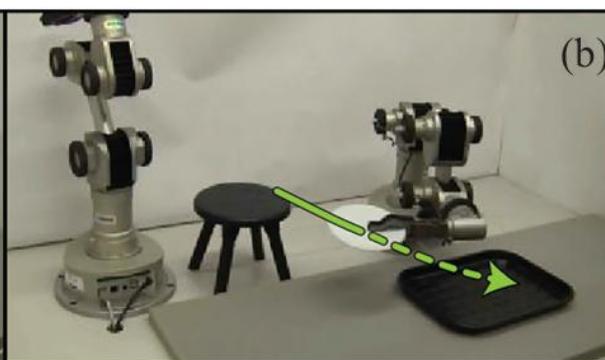


Velocity profile of reproductions

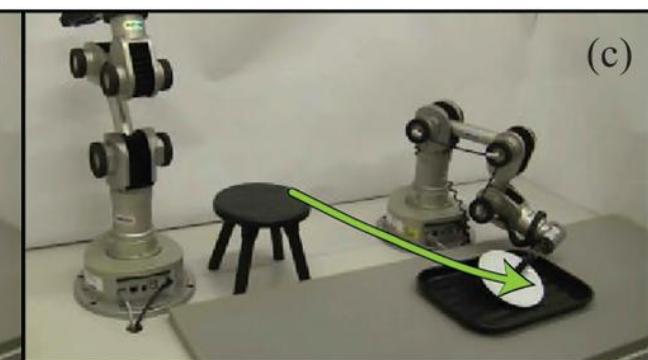


(a)

(b)



(c)

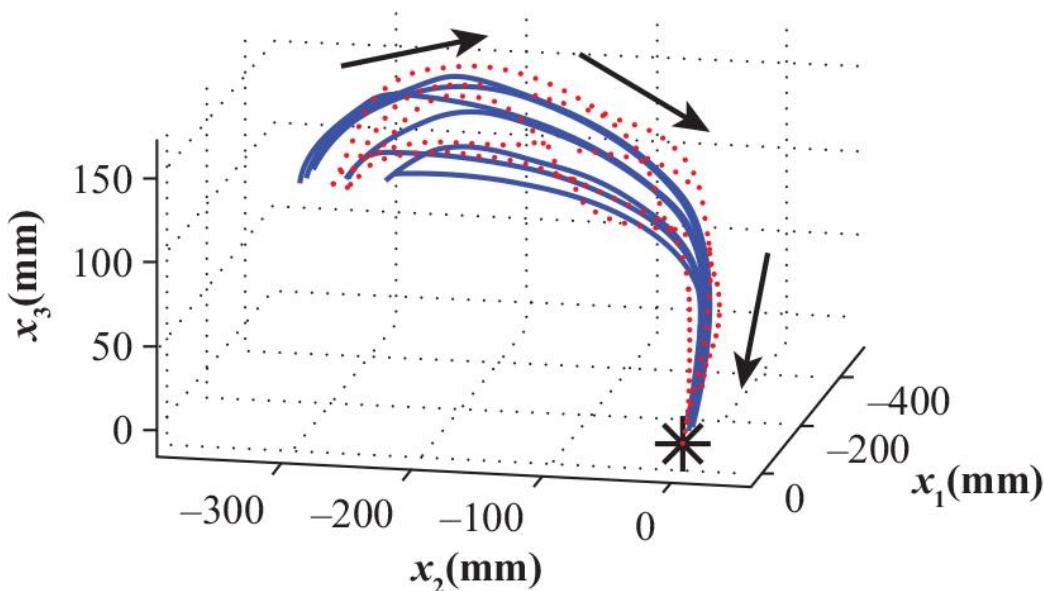


Target

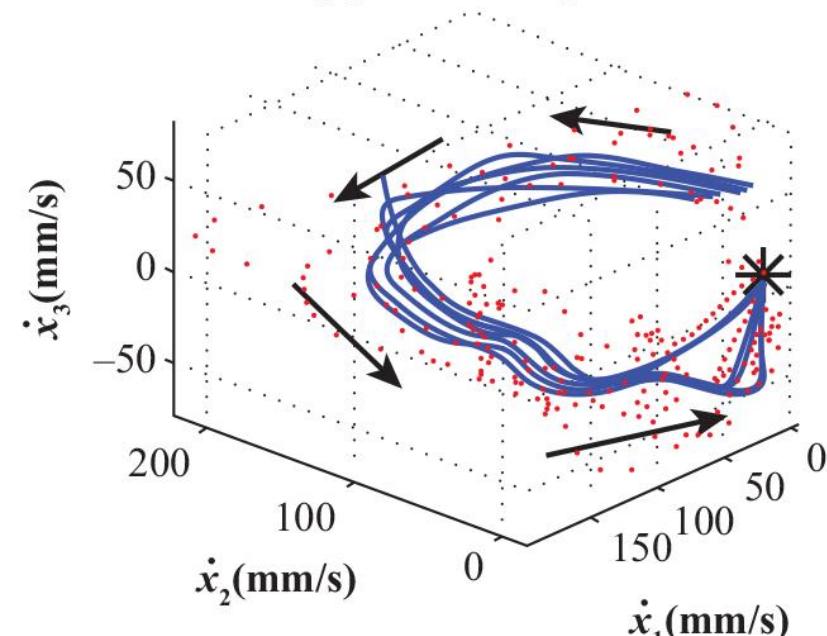
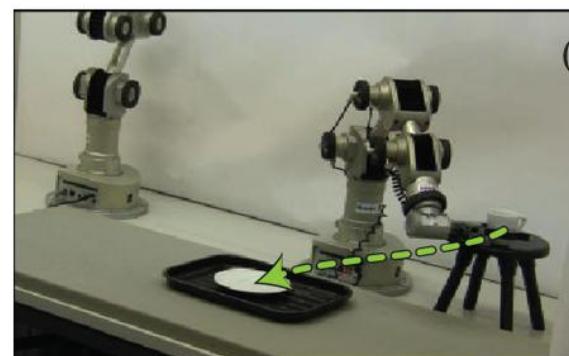
..... Demonstrations

— Reproductions

Trajectory of reproductions

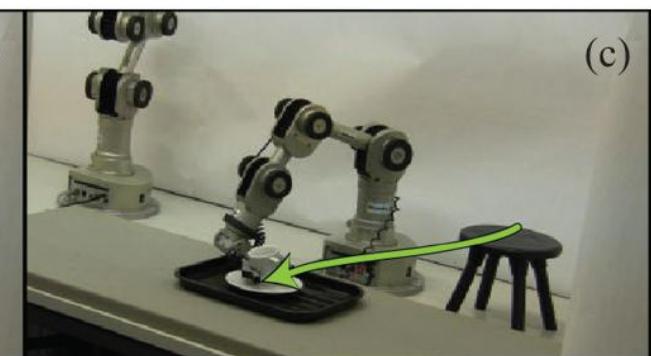


Velocity profile of reproductions



(a)

(b)

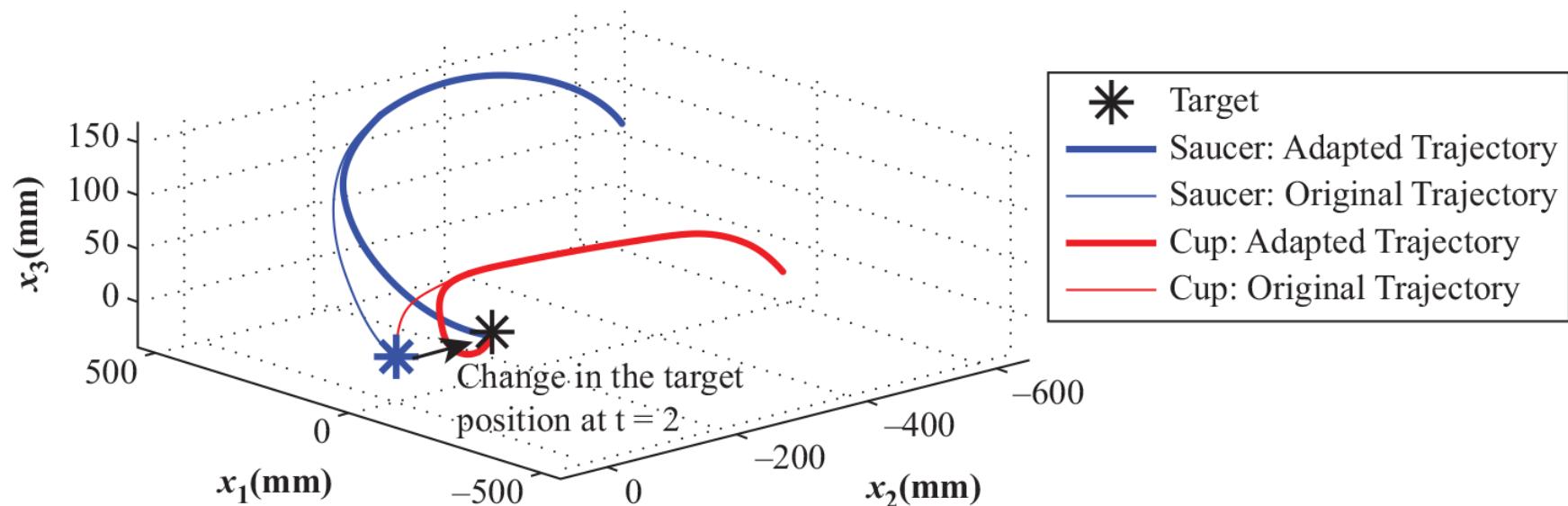


(c)

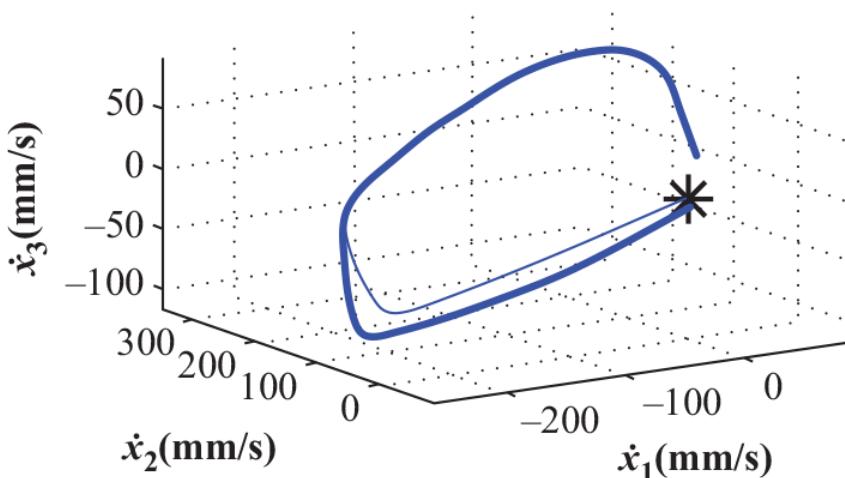
Reproduction

Applying Disturbance During Reproduction

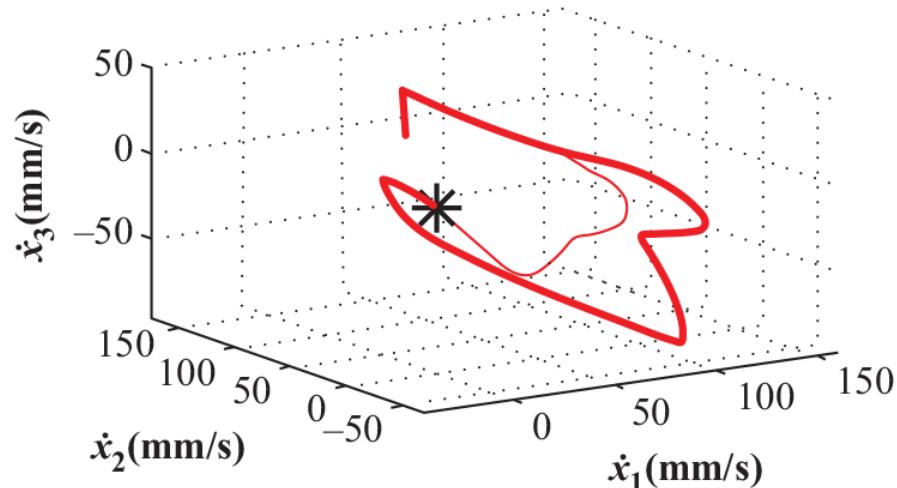
(a) Trajectory of reproductions

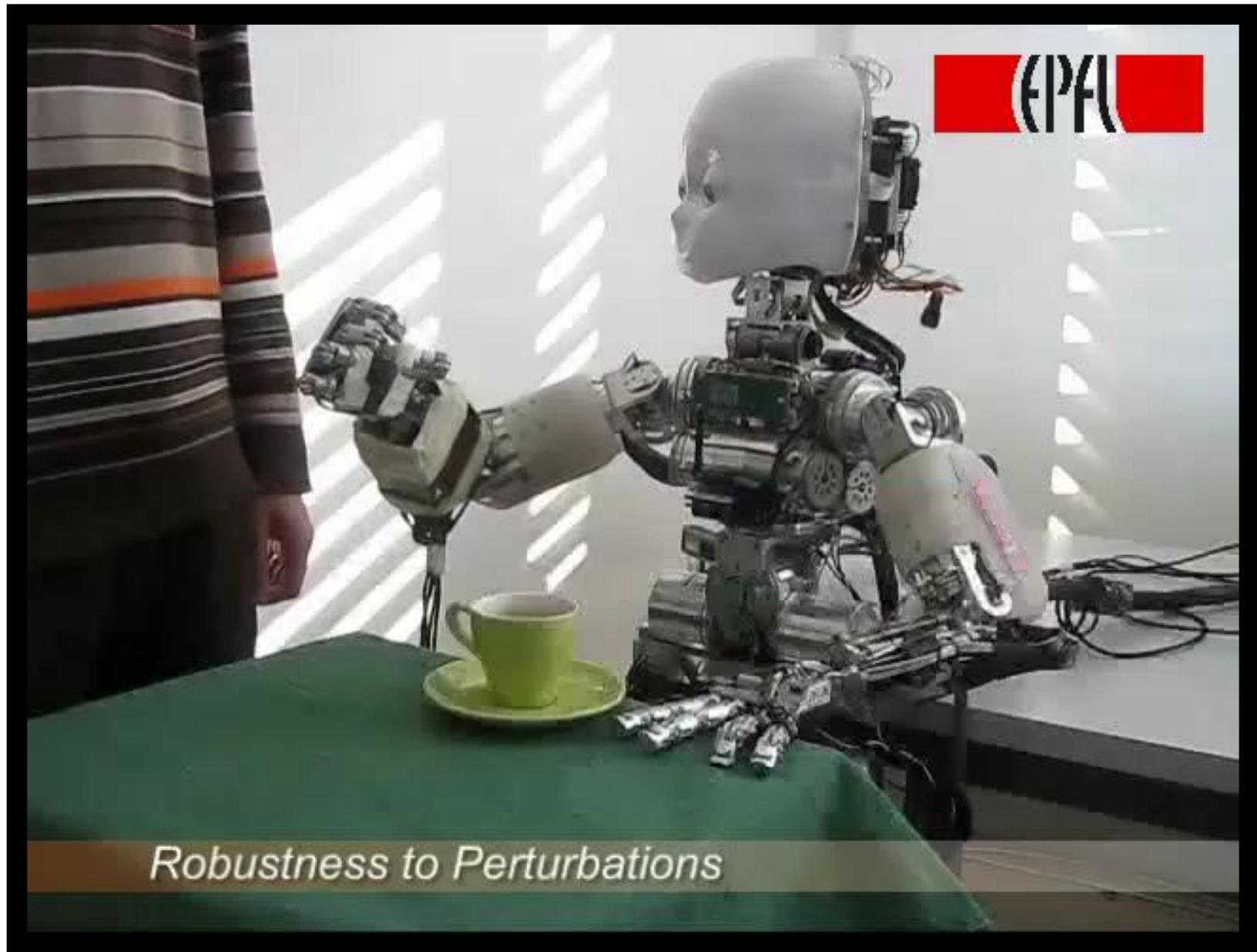


(b) Velocity profile for the saucer task



(c) Velocity profile for the cup task





SEDS Summary

- Automatically estimate *globally asymptotically stable* dynamical systems from sampled trajectories
- Extension of Gaussian Mixture Model
 - Uses same objective function (maximum likelihood)
 - Add new set of constraints to enforce stability
- Stability is guaranteed through Lyapunov stability constraints
 - Assumes a quadratic Lyapunov function
- High accuracy for a large number of nonlinear dynamics
- Limitations:
 - Non-convex optimization
 - Poor accuracy for highly nonlinear dynamics (high curvature)

Extensions to SEDS

Approach

Stability ensured via

SEDS (Constrained-GMR) [1]

QLF (Lyapunov)

Tau-SEDS (SEDS-extension) [2]

Complex (Lyapunov) Function + Diffeomorphic Transformation

CDSP (SEDS-extension) [3]

Partial Contraction Theory

LPV-DS (GMM-based) [4,5]

P-QLF (Lyapunov)

ANPs (NN-based) [6]

P-QLF (Lyapunov)

[1] S. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with Gaussian mixture models. *IEEE Transactions on*, 27(5):943–957, Oct 2011.

[2] K. Neumann and A. Billard. Learning robot motions with stable dynamical systems under diffeomorphic transformations. *Robotics and Autonomous Systems*. 2015

[3] H. Ravichandar, I. Salehi and A. Dani. Learning partially contracting dynamical systems from demonstrations.

In Proc. of the 1st Conference on Robot Learning (CoRL). Nov. 2017.

[4] Figueroa N., and Billard, A. A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning. In Proc. of the 2nd Conference on Robot Learning. Oct 2018.

[5] Figueroa, Nadia, and Aude Billard. "Locally active globally stable dynamical systems: Theory, learning, and experiments." *The International Journal of Robotics Research* 41.3 (2022): 312-347.

[6] Totsila, Dionis, et al. "Sensorimotor Learning with Stability Guarantees via Autonomous Neural Dynamic Policies." *IEEE Robotics and Automation Letters* (2025).