Learning and adaptive control for robots “PFL

Learning Control Laws

Stable Estimator of Dynamical Systems (SEDS)
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Global Asymptotic Stability of

Autonomous Dynamical System (DS)

Lyapunov’s Theorem for Global Asymptotic Stability

Lyapunov Function V(z)

Theorem: A DS is globally asymptotically stable at z* € RY :
if there exists a Lyapunov candidate function V(x):R" - R" ‘
that is radially unbounded; i.e. V(x) — oo as ||z|| = oo, ¢! |
and satisfies the following conditions: | £(2) °

() Vi(z7)

0, II) V(z) >0VxecRY\z=2z* s
(II1) V(z*) =0

,(IV)V($)<OV$ERN\:B:;'B* 2 B

(=)

8£/ %\ — s I

V(z) = —fF(x) <0 \\?/ Il
() = Z—f(@)

Io -2 -2 1
V should be non-increasing along all trajectories of f(x) Lyapunov Function ~ Energy-like Function
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Global Asymptotic Stability of

Autonomous Dynamical System (DS)

Lyapunov’s Theorem for Global Asymptotic Stability

Lyapunov Function V(z)

Theorem: A DS is globally asymptotically stable at z* € RY
if there exists a Lyapunov candidate function V(x):R" - R"
that is radially unbounded; i.e. V(x) — oo as ||z|| = oo, ¢!
and satisfies the following conditions:

(I) V(z¥)
(II1) V(x*)

0, II) V(z) >0VxecRY\z=2z*
0, IV) V(z)<0VaxeRY\ax=2a"

l

7/
&
e

: 1'%
Vi) = —1>F(x) <0
(2) = >—f() |
V should be non-increasing along all trajectories of f(x) Level Sets of Lyapunov Function
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Stability of a Linear Autonomous Dynamical System (DS)

Stable Linear DS & = Az + b Quadratic Lyapunov Function (OLF)
| N V(z)=(z—z") (z —z)

Lyapunov Function V(z) = (z — 2*)¥ (z — z*) Lyapunov Function Derivative V (z)

B ) : B1%
How to ensure V(z) is always negative? [« V()= o —f(z) <0

— AT+ A <0 Enforce the eigenvalues to be negative!
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Stability of non-linear DS

What if f(x) is non-linear?

» Not easy to assess whether the system is stable.
= Traditionally, the following has been done:
o local linearization;

o numerical estimation of stability;
o analytical solution in special cases.
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Stable Estimator of Dynamical Systems (SEDS)

Khansari-Zadeh, S.M. and Billard, A., 2011. Learning stable nonlinear dynamical systems with gaussian mixture models.
IEEE Transactions on Robotics, 27(5), pp.943-957.

Mohi Khansari

© Billard, Mirrazavi, Figueroa 6



Learning and adaptive control for robots “PFL

Stable Estimator of Dynamical Systems (SEDS)

How to model this non-linear dynamical system?
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SEDS starting point

DATA: set of M reference trajectories

{x,X}={{x.% }} = \ N

T, : Length of each trajectory

o o000 o
oo -
«** .

pe "o\_‘\r
/" t—— .
b4 o

zg °

Start with sampled trajectories from a nonlinear DS
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SEDS model

Model the data with a probabilistic model: p(x, x; ®) —_—
® : Model's parameters

— T S—— —
MBI/ A% o —
— o

P(X,%0) = m - p(%x 1, T"), with p(%,x 4,3 )=N(g,2"), 0<m <1

k=1

K ; ; ] .
®= {zk uk, Z"}k_l: priors, means and covariance matrices of the K Gauss functions
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SEDS model

Generate an estimate of the DS: x= f (x;©):=E { p(X]| x;@)}

, “+" Nonlinearity comes from
Ay .k Yok
~ 0 S ﬂ-k'p(xnux’zx)

7 (X) =+
Z”l P(X; 14y, Z})

K linear DS
)'(:i]/k (X) Zl)((x (Zl)((x)_lx+(,u)l: _Zl:'(x (le(x)_lluj(() :ZK:yk (X)(Akx+bk)
k=1 - ~ - N ) k=1
AK bk
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SEDS as a mixture of linear DS

K linear DS

K
X=> 7 (x)(Akx+bk)
k=1
Nonlinearity comes from e f,(X)=Ax+h,
7 p (% 2 '
MO )
> 7 P(%; 41, Z5)
k=1

1st eigenvector of each A* matrix

Mixing functidn gives direction of velocity of DS locall

i(x) :RY - R
0<m(x) <1
K

Z’yk(m) =
k=1
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Conditions for SEDS stability

Model is parameterized only by the A* matrices and b* vectors.
S

D

ranteed throug

h 2 conditions:
= — A*X"- Stability at attractor

(A )T <0 WKk - Energy decreases

(Proof: see book)

f(x)=0

Need to guarantee stability at the attractor x". )
= —— AN
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Parametrization of SEDS

Need to ensure that the ﬂow is allg‘ned as closely

—— & possible to demonstrated trajectorles

Two possible objective functions:
a) Maximum likelinood — fits at best the entire density
b) Mean-square error — fits at best the state space trajectories and velocities
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Optimization of SEDS

Maximum likelihood
Tm

gliﬂrg\] MR ) ———ZZIog p( " ‘ GMR)

m=1 t=0

Mean-square error

. 1 Y
min J (Ogys ———MZ

Ocmr m=1 t=0

Tm

f(x"")-

Non-convex optimization
Set of constraints

(a)bk Ak*

)4+ (4 <0 T
I (@) Y =0 Vi=1,....,K 2" = sk gk
(d)0<m <1

(€ Y pim=1,

14
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Maxim S

bl UV | “ ‘

When trained with mean-square error (MSE)
as objective function, the Gauss functions no
longer need to fit the distribution of the data
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Hyperparameter and pre-selections for SEDS

Prior to training SEDS, the user must make several choices that will influence
the quality of the learned model.

The choices are:
= Type of objective function
—> This will affect the placement of the Gauss functions.

» Number of Gauss functions
—> This can be automated by using the Bayesian Information Criterion
(BIC) — BIC finds a balance between improved quality of the fit
and increase in number of parameters.
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LASA Handwriting Dataset - Benchmark
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LASA Handwriting Dataset - Benchmark

SEDS J(0,,,) = Likelihood SEDS J(6,,.) SEDS J(0,,,) = Likelihood
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LASA Handwriting Dataset - Benchmark

SEDS J(6,,,) = MSE SEDS J(6,,,) = MSE SEDS J(6,,,)
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LASA Handwriting Dataset - Benchmark
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LASA Handwriting Dataset - Benchmark

SEDS J(0

GMR) -

y-msg constraint for simple quadratic energy function
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Kinesthetic teaching

B (PH

http://lasa.epfl chi
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Demonstrations

Reproductions

Velocity profile of reproductions
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Reproductions

© Billard, Mirrazavi, Figueroa

Velocity profile of reproductions
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Reproduction

S P

http://1asa.epfl chf
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G\

http://lasa.epfl ch/

Applying Disturbance During Reproduction
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(a) Trajectory of reproductions

* Target
150+ Saucer: Adapted Trajectory
‘s 100+ ——— Saucer: Original Trajectory
E 50, Cup: Adapted Trajectory
o 04" ——— Cup: Original Trajectory

N Chanige in the targef .
el ,pols'i‘t_ion at t :2 L 200

—-600

x;(mm) 50070 x,(mm)

(b) Velocity profile for the saucer task (¢) Velocity profile for the cup task

150

X,(mm/s) X,(mm/s)
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m
v
"1
—

Robustness to Perturbations
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SEDS Summary

= Automatically estimate globally asymptotically stable dynamical
systems from sampled trajectories

= Extension of Gaussian Mixture Model
= Uses same objective function (maximum likelihood)
= Add new set of constraints to enforce stability

= Stability is guaranteed through Lyapunov stability constraints
= Assumes a quadratic Lyapunov function

» High accuracy for a large number of nonlinear dynamics
» Limitations:

= Non-convex optimization
= Poor accuracy for highly nonlinear dynamics (high curvature)
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Extensions to SEDS

Approach Stability ensured via

SEDS (Constrained-GMR) [1] OLF (Lvapunov)

Tau-SEDS (SEDS-extension) [2] Complex (Lyapunov) Function + Diffeomorphic
Transformation

CDSP (SEDS-extension) [3] Partial Contraction Theory

LPV-DS (GMM-based) [4,5] P-QLF (Lyapunov)

ANPs (NN-based) [6] P-QLF (Lyapunov)

[1] S. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with Gaussian mixture models.

|IEEE Transactions on, 27(5):943-957, Oct 2011.

[2] K. Neumann and A. Billard. Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems. 2015
[3] H. Ravichandar, I. Salehi and A. Dani. Learning partially contracting dynamical systems from demonstrations.

In Proc. of the 1%t Conference on Robot Learning (CoRL). Nov. 2017.

[4] Figueroa N., and Billard, A. A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning. In Proc. of the 2"d Conference on
Robot Learning. Oct 2018.

[5] Figueroa, Nadia, and Aude Billard. "Locally active globally stable dynamical systems: Theory, learning, and experiments." The International Journal of Robotics
Research 41.3 (2022): 312-347.

[6] Totsila, Dionis, et al. "Sensorimotor Learning with Stability Guarantees via Autonomous Neural Dynamic Policies." IEEE Robotics and Automation Letters (2025).
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