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Learning Control Laws

Stable Estimator of Dynamical Systems (SEDS)
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Global Asymptotic Stability of 
Autonomous Dynamical System (DS)

Lyapunov Function ~ Energy-like Function

Theorem: A DS is globally asymptotically stable at                  

if  there exists a Lyapunov candidate function 

that is radially unbounded; i.e.                                           ,  

and satisfies the following conditions:

Lyapunov’s Theorem for Global Asymptotic Stability
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V should be non-increasing along all trajectories of           
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( ) : N NV x →
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Global Asymptotic Stability of 
Autonomous Dynamical System (DS)
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V should be non-increasing along all trajectories of           

Learning and adaptive control for robots

Level Sets of Lyapunov Function

Obtuse Angle

Theorem: A DS is globally asymptotically stable at                  

if  there exists a Lyapunov candidate function 

that is radially unbounded; i.e.                                           ,  

and satisfies the following conditions:

Lyapunov’s Theorem for Global Asymptotic Stability

( ) : N NV x →
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Stability of a Linear Autonomous Dynamical System (DS)

Quadratic Lyapunov Function (QLF)

How to ensure          is always negative?

Enforce the eigenvalues to be negative!
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Stability of non-linear DS
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What if f(x) is non-linear?

▪ Not easy to assess whether the system is stable.  

▪ Traditionally, the following has been done:

o local linearization; 

o numerical estimation of stability; 

o analytical solution in special cases.
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Stable Estimator of Dynamical Systems (SEDS)
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Khansari-Zadeh, S.M. and Billard, A., 2011. Learning stable nonlinear dynamical systems with gaussian mixture models. 

IEEE Transactions on Robotics, 27(5), pp.943-957.

Mohi Khansari
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Stable Estimator of Dynamical Systems (SEDS)
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How to model this non-linear dynamical system?
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SEDS starting point
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Start with sampled trajectories from a nonlinear DS
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SEDS model
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( )Model the data with a probabilistic model: , ;  

: Model's parameters
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SEDS model
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( ) ( ) Generate an estimate of the DS: ; : | ;x f x E p x x=  = 
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Nonlinearity comes from
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Gaussian Mixture Regression: 
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SEDS as a mixture of linear DS
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Mixing function
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Conditions for SEDS stability
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Model is parameterized only by the  matrices and  vectors.k kA b

( ) 0f x =

*x

*Need to guarantee stability at the attractor .x

( )

*

(Proof: see book)

Stability 

This can be guaranteed through 2 conditions:

a) -  
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Parametrization of SEDS
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*x Need to ensure that the flow is aligned as closely

as possible to demonstrated trajectories.

Two possible objective functions:

a) Maximum likelihood  fits at best the entire density

b) Mean-square error  fits at best the state space trajectories and velocities

→

→
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Optimization of SEDS
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Maximum likelihood

Mean-square error

Set of constraints
Non-convex optimization
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Maximum likelihood

MSE

When trained with mean-square error (MSE) 

as objective function, the Gauss functions no 

longer need to fit the distribution of the data
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Hyperparameter and pre-selections for SEDS
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Prior to training SEDS, the user must make several choices that will influence 

the quality of the learned model.

The choices are:

▪ Type of objective function

→ This will affect the placement of the Gauss functions.

▪ Number of Gauss functions

→ This can be automated by using the Bayesian Information Criterion 

(BIC) – BIC finds a balance between improved quality of the fit 

and increase in number of parameters.
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LASA Handwriting Dataset - Benchmark

https://www.epfl.ch/labs/lasa/datasets/
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LASA Handwriting Dataset - Benchmark

Fit with maximum likelihood
Demonstrated trajectories

Reproduction from same initial position

Accurate fit except for regions 

with high  nonlinearities
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LASA Handwriting Dataset - Benchmark

Fit with MSE

Same issue
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LASA Handwriting Dataset - Benchmark

Fit with maximum likelihood

Extreme case – due to a violation of 2nd Lyapunov 

constraint for simple quadratic energy function
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LASA Handwriting Dataset - Benchmark

Fit with MSE

Extreme case – due to a violation of 2nd Lyapunov 

constraint for simple quadratic energy function
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Kinesthetic teaching
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Reproduction
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SEDS Summary
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Learning and adaptive control for robots

▪ Automatically estimate globally asymptotically stable dynamical 

systems from sampled trajectories

▪ Extension of Gaussian Mixture Model 

▪ Uses same objective function (maximum likelihood)

▪ Add new set of constraints to enforce stability

▪ Stability is guaranteed through Lyapunov stability constraints

▪ Assumes a quadratic Lyapunov function

▪ High accuracy for a large number of nonlinear dynamics

▪ Limitations:

▪ Non-convex optimization

▪ Poor accuracy for highly nonlinear dynamics (high curvature)
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Extensions to SEDS
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Approach Stability ensured via

SEDS (Constrained-GMR) [1] QLF (Lyapunov)

Tau-SEDS (SEDS-extension) [2] Complex (Lyapunov) Function + Diffeomorphic 

Transformation

CDSP (SEDS-extension) [3] Partial Contraction Theory

LPV-DS (GMM-based) [4,5] P-QLF (Lyapunov)

Learning and adaptive control for robots

ANPs (NN-based) [6]                                      P-QLF (Lyapunov)
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