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Lecture 11

Impedance Control with Dynamical Systems – Passive DS

Force Control with Dynamical Systems
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Today’s Lecture

How to perform force control with dynamical systems?
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Recap of previous lecture:

Why compliant control?

▪ Compliant control is crucial to enable robots to interact safely with their environment and with humans.

How to program robots to become compliant?

▪ Control the robot through impedance control.

---------------------------------------------------------------------------------------------------------------------------------------

Today’s lecture: 

How to combine impedance control with dynamical systems?

▪ Impedance control wrapped around dynamical system motion planner

▪ Definition of passivity and design control parameters to ensure system remains passive

▪ Shape the control to generate desired force?
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DS control makes the system infinitely compliant! 

Target
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( )The trajectory planner given by:  is infinitely compliant by definition.x f x=
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DS control makes the system infinitely compliant! 
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goal
goal

start

start

Failed 
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Desired 
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Recovered path  
Figueroa, N. and Billard, A., 2022. Locally 

active globally stable dynamical systems: 

Theory, learning, and experiments. The 

International Journal of Robotics Research, 

41(3), pp.312-347.
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Robot’s Dynamics, Assumptions and Requirements
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Dynamics equation of the robot

( ) ( ) ( )
Inertia C soriolis Gravity t External ForcC p eon rol In ut

,            c eM x x C x x x g x  + + = +

Design a control law for generating control torques c.

For the system to remain stable under external disturbances, we need

to show that it remains passive. (see next slides and Annexes A.6)

Control torques c must be modulated to ensure that the system remains passive.
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Stability of the System through Passivity Analysis
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Recall: To study stability of  f(x), we used Lyapunov stability. Lyapunov stability uses a measure of the energy 

of the system and verifies that it decreases over time and eventually vanishes at the attractor. 

( ), ,     : inputpx x u uf =

We must verify that the energy injected by the input u does not destabilize the system. 

→ We must verify that the system is closed-loop passive..

( )

To determine the evolution of the energy of the system, we define a variable:

,  my h x y= 

Passivity extends Lyapunov stability to study stability of systems subjected to an external input u. 
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Passivity: Definition
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For strict “<”, the system is “dissipative”.
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Passivity: Definition
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To analyze passivity, we must find a storage function. The storage function keeps track of violation of passivity. If the 

system violates passivity constraints, we can try to modify the control input in such a way that passivity is restored.
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Goals for the design of the control torques
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Goals for the control system:

• The robot should move according to a desired dynamics, set by

• The system should remain passive. 

Dynamics equation of the robot

( ) ( ) ( )
Inertia C soriolis Gravity t External ForcC p eon rol In ut

,            c eM x x C x x x g x  + + = +

Design a control law for generating control torques c

( ).x f x=
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Format of Control Torques
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( ) ( )
Gravity Damping
compensation

Feedback term:

c g x D x x = −

Gravity compensation mode available on standard robots

Dynamics equation of the robot

( ) ( ) ( )
Inertia C soriolis Gravity t External ForcC p eon rol In ut

,            c eM x x C x x x g x  + + = +

Control torques c must be modulated to ensure that the system remains passive.

→ Modulate D(x).
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Dynamics equation of the robot

( ) ( ) ( )
Inertia C soriolis Gravity t External ForcC p eon rol In ut

,            c eM x x C x x x g x  + + = +

Passivity analysis

Constraints on Control Torques for Passivity
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( ) ( )
Gravity Damping
compensation

Feedback term:

c g x D x x = −

We verify that the system remains passive under external disturbances .e

We verify that : T

eW x ( )
1

2

TW x M x x=

We set: 
eu

y x

=


=

:  kinetic energyW

What is the first constraint we must set for D(x)?

( ) 0,   D x x

We define the storage function as .W
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Passivity Verification I

12

( ) ( )
1

2

T TW x M x x x M x x= +

( ) ( ) ( )Replacing using , c eM x x C x x x g x  + + = +

( ) ( )( ) ( )
1

2 ,
2

T T T

eW x M x C x x x x D x x x = − − +

( ) ( )and  c g x D x x = −

( ) since 0D x

T

e x

( )
1

2

TW x M x x=

The system is passive.

 0

                   



We verify that : T

eW x

( ) ( )2 ,

kew-symmetri

M x C x x

S c

−

0

                             
=
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( ) ( )
Gravity Damping
compensation

Feedback term:

c g x D x x = −

Traditional Tracking Feedback Control Loop

Tracking Feedback Control Loop

13

The system must follow a desired dynamics ( )x f x=( ) ( ) ( )( )
Gravity
compensati n

Trackin
o

g term

Feedback term:

c g x x x f xD = −−

( ) ( ) ( )d d

cg x D x x K x x − − − − =

( ) ( )( )( ) cg xD xx f x − − =

Tracking in position given by the DS

State-dependent impedance modulation

If f(x) is Lyapunov stable, the control should dissipate 

energy solely in directions perpendicular to f(x). 
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Shaping the Impedance
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( ) ( )( )( ) cg xD xx f x − − =

We set f(x) to be aligned with an eigenvector of D(x)

( )

( ) ( ) ( ) ( )

"Eigencomposition" of 

T

D x

D x Q x x Q x= 

( ) ( ) ( ) ( )
( )

( )
( ) ( )11 2 1 2 ,   ,    0. 

T
Q e

f x
ex e x e x x xx

x
e

f
== =  

( )
( )

( )

1

2

The eigenvalues will set the impedance

      0

   0       

x
x

x





 
 =  

  

( )f x
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Shaping the Impedance
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( )
( )

( )

1

2

The eigenvalues will set the impedance

       0

   0       

x
x

x





 
 =  

  

( )1e x

( )2  large - stiffx

( )2  small - compliantx

( )f x

( )2e x

( )1  largex

( )1Set  to be very stiff for accurate tracking.x

( )2Modulate  to comply with orthogonal disturbances.x

( ) ( )( )( ) cg xD xx f x − − =
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Passivity Analysis 

16

( ) ( )( )( ) cg xD xx f x − − =

( ) ( )
( )

( )
( )1 1 1 is the first eigenvector of :  with associate ei .genvalue 

f
cx f

x
e x x st

f x
x D  = = = =

( ) ( )1    ( ) cDg x xf x x  + − =

( )

( )

 is a Lyapunov stable function

with an associated Lyapunov function V .f

x f x

x

=

( )

( ) ( )

V  is a potential function and we can write:f

f

x

f x V x= −
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Passivity Verification II
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We verify that : T

eW x

( ) ( ) ( )1

1

2

T T

fW x M x x x M x x V x= + +

( ) ( ) ( )Replacing with , c eM x x C x x x g x  + + = +

( ) ( )( ) ( ) ( ) ( )1 1

1
2 ,

2

T T T

f eW x M x C x x x x D x x x f x V x x  = − − + + +

kew-symmetricS

( )since 0D x

T

e x

( ) ( )1and ( ) .cg x f x D x x + − =

( ) ( )1

Potential
Kinetic Energy Energy of ( )

1
We set the storage function: 

2

T

f

f x

W x M x x V x= +

( ) ( ),    
T

f fV x V x x= 

( ) ( )

      0 

ff x V x

=

= −
0

                             

=

?

The system is passive.

 0

                   


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Non-conservative DS – Energy Tank
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( )  is not conservative.x f x=

( ) ( )

Conservative part follows:

c cf x V x= −

( ) ( ) ( )

Decompose  into conservative and non-conservative terms:

c r

f

f x f x f x= +

( )
Same as before

The energy injection must now be actively controlled as we are left with an uncontrolled term:

     ...    
T

r xW f x= +

( ) ( ) ( )
Energy 
Tank

1

Potential
Kinetic Energy Energy of 

conservative flow
( )

Introduce a new variable  to "store" energy dissipate

   

d:

1
, ,

2
 

c

T

c

f x

W sx x x M x x V x

s

s= + + Set a tank limit beyond which we do not

allow the system to absorb energy anymore.

 s

( )When 0,  the system dissipates energy.
T

rf x x 

Idea: use this "lost" energy to allow the control torque to become non-passive.
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Non-conservative DS – Energy Tank
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( ) ( ) ( ) 1

Define dynamics of  to reflect changes in the robot's state variable 

,s

T

s x

s x D x x zs z s = −

( )

Variable to account for energy injection at each time step:

T

rz f x x=

( )

( )

:

, :

s

s z





→

 →

Must be designed to control flow of energy, so

as to not exceed a maximum set by the user: .s

( )
Same as before

The energy injection must now be actively controlled as we are left with an uncontrolled term:

     ...    
T

r xW f x= +

( ) ( ) ( )
Energy 
Tank

1

Potential
Kinetic Energy Energy of 

conservative flow
( )

Introduce a new variable  to "store" energy dissipate

   

d:

1
, ,

2
 

c

T

c

f x

W sx x x M x x V x

s

s= + +
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Non-conservative DS – Energy Tank
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( ) ( ) ( ) 1

Define dynamics of  to reflect changes in the robot's state variable 

,s

T

s x

s x D x x zs z s = −

( )Control torque can add to virtual storage 0  only if .z s s 

( )Extraction of energy from storage 0  possible only if 0.z s 

Adds to virtual storage as long as .s s

( ) ( ) ( ) ( )1 1

Non passive term
activated a

Set the control torques to allow energy injection only when tank is not full:                                                                   

( ,) Rc Rc g x zx s ff x D x x  = + − +

( ),
s long s

0
a

.

R z s  The system is passive, see exercise session.

( )

Variable to account for energy injection at each time step:

T

rz f x x=
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Closed-Loop Control with DS

You need an autonomous DS:

DS can be:

• Linear DS

• Nonlinear DS via LPV-DS or SEDS (Lecture 3)

• Modulated DS (Lecture 6) 

   that can be conservative or non-conservative
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c

DS-based constant replanning of trajectory based on position feedback.

Impedance control based on velocity tracking. 

Damping structure constantly aligns 

with desired direction of motion
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Impedance Modulation on LPV-DS

Desired Behavior is determined by choice of damping eigenvalues.  
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Robot Control: Traditional Time-Dependent Planner in place of DS
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24

Passive-DS for Robot Control
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Passive-DS for Robot Control
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❑ Introduced a means to combine impedance control with DS control.

– The DS acts as a trajectory generator.

– Impedance control generates torques to track the output of the DS.

❑ Introduced the notion of passivity to characterize the energy of a system subjected to 

disturbances, such as external forces

❑ Showed that when the nominal DS is conservative (Lyapunov stable), the system is passive.

❑When the DS is not conservative, one must introduce the notion of a tank to track the energy injected 

into the system and use this to modulate the controller (see exercises).

❑ The impedance gains (damping matrix eigenvalues) modulate the response of the 

system when subjected to external disturbances (external forces). 

❑ Impedance is directional – aligned with the flow of the DS.

❑ High impedance in the direction of the DS will force the system to track accurately the DS.

❑ Low impedance in orthogonal directions allows to dissipate energy.

Summary

26
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