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PART II

COUPLING AND MODULATING CONTROLLERS

Chapter 9

Obstacle Avoidance with Dynamical Systems

0
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Assumptions & Desiderata

1

Learning and adaptive control for robots

( )Assume that we have, for starters, a nominal DS of the form: x f x=

( )* *&   0x f x= =

Modulate to enable  obstacle avoidareal-tim .e one or multipc le movin e from  obstan clesg

Learning and adaptive control for robots
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Constrain M(x) such that it preserves the following properties:

The modulated dynamics is given by:

Recall: Main Properties for the Modulation

2

Learning and adaptive control for robots

( ) ( )x f xM x= ( ),   ,  .d d dM x x 

( ) ( ) ( )

( ) ( )

( )

* *

*

 Stability of the original attractor: 

     a compact region ,  around *  where , , .

           , ,

 Uniqueness of the attractor: 0,

If , sufficient to have that ( ) ( ) 0

M x I

f x Ax

B x x x x B x x

x B x x

M

x

x

M x f

−

   

 

− 

=



=

* .    must be full rank.x x M 
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Obstacle avoidance with DS

Starts with an initial dynamical system stable at an attractor:

Add a modulation around the obstacle:

( )x f x=

( )( ) ( )x xM x f= 

( )  : isoline surrounding obstaclex

Guarantees that the robot will never penetrate the obstacle.

Guarantees that the robot will reach the goal.
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Initial dynamics with single attractor

Nominal Dynamical System

General formulation

𝑓 𝑥 𝑥

4

( )x f x= ( )* *&   0x f x= =

*x
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( ) ( ) ( ) ( )1 1    .....   dE x n x e x e x−
 =  

𝑥𝑜

Decomposition into normal 𝑛 ෤𝑥  & tangents 𝑒𝑖 ෤𝑥  

Legend

෤𝑥 ∈ ℝ𝑑  Robot’s relative state ( ෤𝑥 = 𝑥 − 𝑥𝑜)

𝐸 ෤𝑥  Decomposition matrix

𝐷 ෤𝑥  Eigenvalue matrix

𝑛 ෤𝑥   Normal to obstacle

𝑒𝑖 ෤𝑥  Tangent to obstacle

Γ ෤𝑥  Distance Function

𝑒 ෤𝑥

𝑓 𝑥

Free space

𝛤 ෤𝑥 ≥ 1 

Boundary region

𝛤 ෤𝑥 = 1 

𝑥

6

Modulation is given by:                                             

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( ) ( )x f xM x=

Obstacle Avoidance Modulation Matrix 
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𝑥𝑜

Legend

෤𝑥 ∈ ℝ𝑑  Robot’s relative state ( ෤𝑥 = 𝑥 − 𝑥𝑜)

𝐸 ෤𝑥  Decomposition matrix

𝐷 ෤𝑥  Eigenvalue matrix

𝑛 ෤𝑥   Normal to obstacle

𝑒𝑖 ෤𝑥  Tangent to obstacle

Γ ෤𝑥  Distance Function

𝜆( ෤𝑥) Eigenvalues

𝑛 ෤𝑥
𝑒 ෤𝑥

𝑓 𝑥

Free space

𝛤 ෤𝑥 ≥ 1 

Boundary region

𝛤 ෤𝑥 = 1 

Conditions 

➢ Compression in normal direction  

➢ Stretching in tangential direction

𝑖 = 1 … 𝑑 − 1

➢ No effect far away 𝑖 = 1 … 𝑑 − 1

 

Stretching/compression to 

guide flow

𝑥

7

𝜆𝑖 ෤𝑥 ≥ 1,

𝜆1 ෤𝑥 ≤ 1,          

lim
𝛤( ෤𝑥)→∞

𝜆𝑖 ෤𝑥 = 1

[1] Khansari-Zadeh, S. M., & Billard, A. (2012). A dynamical system approach to realtime obstacle avoidance. Autonomous Robots, 32(4), 433-454.

( ) ( ) ( ) ( )1 1    .....   dE x n x e x e x−=   

( ) ( ) ( )1 .... dD x diag x x =   

Modulation is given by:                                             

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( ) ( )x f xM x=

( )
( )

( )
( )

1

1
1

1
1i

x
x

x
x






= − 


 = +
 
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Modulated dynamics

8

Properties:

The attractor remains a stable point of the system.

The flow is ensured to never penetrate the obstacle.

See book for proofs.  
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( ) ( ) ( ) ( )1 1 1
      

d
E x n x e x e x

−
 =  

3D Deflection - Representation

9

Distance to the obstacle:

ox

( )rn x ( ) 1x 

( ) 1x =

( ) 1x 

( ) : Nx →

( ) ( ) ( ) ( )
1
.M x E x D x E x

−
=

( ) ( ) ( )1 .... dD x diag x x =   
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Modulation applies also to flows without attractors and to higher dimensions

10

( )Nominal DS: sinx x=

1x
1x

2x2x

( ) ( )Modulated DS: sinx M x x=

1x
2x 1x

2x

3D flow

3x
3x



Learning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              

Extension to multiple obstacles

11

( )

( )

For each obstacle, define:

:  center of each obstacle

:  distance function

: Modulation function

i

i i

i

i

x

x x

M x x

 −

−

2x

1x

2x

( )1 1x x −

( )2 2x x −

See today’s and next week’s exercises on how to compute distance functions depending on shape of obstacle.
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Extension to multiple obstacles

12

( )

( )

For each obstacle, define:

:  center of each obstacle

:  distance function

: Modulation function

i

i i

i

i

x

x x

M x x

 −

−

( )
( )
( )

( )
( )
( )

1

1

Modulate each set of eige

1

,   2..

n

.

values

i

i

i

i

i i

i

i i

i

i

d i
D

w

w

x x
x x

x x d
x x

x x

x x





− = −
 −

− = + =


−

−

−

( )
( )( )

( )( ) ( )( )

 obstacles

1,

1
:  balances relative effect of each obstacle

1 1

k k
nb

i i

k k i i
k i k

x x
w x x

x x x x= 

 − −
− =

 − − +  − −


( ) ( )
 obstacles

1

Final modulation - product of obstacles' modulations:

nb
i

i

i

x M x x f x
=

= −
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Extension to multiple obstacles

13

1x1x

2x
2x

( ) ( )
 obstacles

1

Final modulation - product of obstacles' modulations:

nb
i

i

i

x M x x f x
=

= −
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Modulation applies also to flows without attractors

14

( )

( )( )
1 2

2

2 1 2 1

Nominal DS - 

nonlinear DS with limit cycle

0.9 1

x f x

x x

x x x x

=

=



= − + −

1x1x

2x2x

( ) ( )
2

1

.Modulated DS: i

i

i

x M x x f x
=

= −
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Safety Factor

15

1x

2x

• When the obstacle is fragile or dangerous, it may be necessary to define a safety margin around 

the obstacle. Such margin can be obtained through a scaling of the state variable.

1 1 1 1
,    scaling: 1.M x E x x E x 

   

       
=         

       

1x

2x

1x

2x

1.0 = 1.3 = 1.6 =
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Reactivity

16

• The magnitude of the modulation created by the obstacle can be tuned by modifying the eigenvalues of 

the dynamic modulation matrix through a reactivity factor. The larger the reactivity, the larger the 

amplitude of the deflection, and consequently the earlier the robot responds to the presence of an obstacle.

( )
( )

( )
( )

1 1

1

1
1

,    reactivity factor: 0.
1

1d

x

x

x

x












= −




 = +




1x

2x

1.0 =

1x

2x

1x

2x

2.0 = 5.0 =
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Convexifying objects

18

The modulation presented in the previous slides requires that the object be convex. One can build a 

convex hull around non-convex obstacles, see Benallegue et al. for a fast method.

Benallegue, M., Escande, A., Miossec, S., & Kheddar, A. (2009). Fast C1 proximity queries using support mapping of sphere-torus-patches bounding volumes. 

In Proc. IEEE int. conf. on robotics and automation (pp. 483–488).
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Robotics demonstration: live obstacle avoidance of convex obstacle

[1] Khansari-Zadeh, S. M., & Billard, A. (2012). A dynamical system approach to realtime obstacle avoidance. Autonomous Robots, 32(4), 433-454. 19
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Formal Guarantees

20

M(x) guarantees that the attractor remains a stable point, if the attractor is outside the obstacle. 

M(x) guarantees that a flow starting outside the obstacle will never penetrate the obstacle. 

( ) ( ) ( ) ( ) ( )( )0 ,   1,  with dynamics ,   1,   .x t x x M x f x x t t t   =   

( ) ( ) ( ) ( )* * * * *If ,   1,  with dynamics 0,   0.x x x f x M x f x  = = =

The attractor is, however, no longer the unique fixed point of the system!
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Spurious Fixed Points

21

The attractor is no longer the unique fixed point of the system.

( ) ( ) *Uniqueness of the attractor: 0,  .M x f x x x   

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( )
( )

( )
( )Fixed points: All points  such that 1,  1,  become fixed points.

T f x
x n x x

f x
=   =

( ) ( ) ( )1 .... dx diag x x  =   

All positives
Vanishes at 

obstacle’s 

boundary

As long as f(x) has a tangential component, it will not vanish.

The dynamics vanishes for points on the obstacle’s boundary and for which the boundary’s normal is colinear to f .

( ) ( ) ( ) ( )1 1 1
      

d
E x n x e x e x

−
 =  
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Circular obstacle with convergence 

for all but one trajectory.

Cylindrical obstacle modulating a linear DS 

resulting in one spurious attractor.

( )f x ( )f x

Spurious Fixed Points



Learning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              

Legend
෤𝑥  Robot’s relative state ( ෤𝑥 = 𝑥 − 𝑥𝑜)

𝐸 ෤𝑥  Decomposition matrix

𝑛 ෤𝑥   Normal to obstacle

𝑒𝑖 ෤𝑥  Tangent to obstacle

Modulation is given by:                                             

𝑓 𝑥 𝑥

23

Limitation of orthonormal basis 

for the deflection

ሶ𝑥

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( ) ( ) ( ) ( )1 1 1
    .....   

d
E x n x e x e x

−
 =  

( ) ( )x M x f x=
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Limitation of orthonormal basis 

for the deflection

ሶ𝑥

𝑥

Multiple paths now converge to the spurious attractor.

Idea: Relax the constraint of an orthonormal basis. 

It is sufficient for the vector to be linearly independent for E to be invertible. 

Modulation is given by:                                             

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( ) ( ) ( ) ( )1 1 1
    .....   

d
E x n x e x e x

−
 =  

( ) ( )x M x f x=

Legend
෤𝑥  Robot’s relative state ( ෤𝑥 = 𝑥 − 𝑥𝑜)

𝐸 ෤𝑥  Decomposition matrix

𝑛 ෤𝑥   Normal to obstacle

𝑒𝑖 ෤𝑥  Tangent to obstacle

Lukas Huber, Aude Billard, and Jean-Jacques Slotine. IEEE Robotics and Automation Letters 4.2 (2019): 1462-1469.



Learning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              

( ) ( ) ( ) ( )1 1 1
    .....   

d
E x e x e xr x

−
 =  

Legend

෤𝑥 ∈ ℝ𝑑 Robot’s relative state ( ෤𝑥 = 𝑥 − 𝑥𝑜)

𝐸 ෤𝑥  Decomposition matrix

𝑟 ෤𝑥   Reference direction

𝑥

25

Non-orthonormal basis for the deflection

( )r x

Modulation is given by:                                             

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( ) ( )x M x f x=

( )

Define a reference point inside the obstacle

as new center of the modulation and set:

.

 

 

r

r

rx

x x x
r x

xx x

−
= =

−

Let r be an arbitrary vector that is linearly independent of all ei.
rx

( )If is inside the obstacle,  is

linearly independent of all tangents 

to the surface.

  r

e

x r x
The new decomposition matrix 𝐸 ෤𝑥   is not 

orthogonal anymore, but is full rank.
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( ) ( ) ( ) ( )1 1 1
    .....   

d
E x e x e xr x

−
 =  

The flow is deflected away from the spurious fixed point. 

Legend

෤𝑥 ∈ ℝ𝑑 Robot’s relative state ( ෤𝑥 = 𝑥 − 𝑥𝑜)

𝐸 ෤𝑥  Decomposition matrix

𝑟 ෤𝑥   Reference direction

𝑓 𝑥

𝑥

26

Non-orthonormal basis for the deflection

( )r x

Modulation is given by:                                             

( ) ( ) ( ) ( )
1

M x E x D x E x
−

=

( ) ( )x M x f x=

rx

( )1e x

( )

( ) ( ) ( )1

Reduces along 

T

r x

x r x f x

( ) ( ) ( )

1

2 1

Augments in direction 

T

e

x e x f x

( )
( )

( )
( )

1

2

1
1

1
1

x
x

x
x






= − 


 = +
 

It remains only a single infinitesimally small trajectory converging to the spurious fixed point. 

( ) ( )x M x f x=

This is a saddle point, as any small disturbance would send the flow away from the point.
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The choice of reference direction influences 

the way the dynamics avoids the obstacle.  

𝑥

27

Effect of Choice of Reference Direction

ሶ𝑥

( )r x

𝑥𝑟

( )
r

r

x x x
r x

xx x

−
= =

−

Still only one single trajectory to a single saddle point.

We will see that this reference point can allow us to avoid concave 

obstacles and preserve convergence to the original attractor, see 2nd part.
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SUMMARY – 1st Part

28

Learning and adaptive control for robots

• The DS modulation approach has been extended to enable obstacle avoidance in closed form.

        → This ensures fast and highly reactive obstacle avoidance

• It preserves guarantee of asymptotic convergence to the goal.

        → This ensures that the robot returns to its path once the obstacle has been avoided without the need for 

             re-planning the trajectory.

• The approach is parameterized by two hyperparameters that determine the safety margin and 

         the reactivity.

         → These are intuitive parameters that can be easily fixed by hand knowing the geometry of the obstacle.

Limitations

• The obstacle’s boundary must be convex.

• Spurious attractors may arise on the obstacle’s boundary.

Learning and adaptive control for robots
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DS-based Obstacle Avoidance of Concave Objects

 

29

Learning and adaptive control for robots

▪ Lukas Huber, Aude Billard, and Jean-Jacques Slotine. "Avoidance of Convex and Concave Obstacles With Convergence Ensured 

Through Contraction." IEEE Robotics and Automation Letters 4.2 (2019): 1462-1469.

▪ Lukas Huber, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces: Application 

to Moving in Crowds. IEEE Transactions on Robotics, 2022. 

▪ Extends the modulation to enable obstacle avoidance for a class of concave obstacles

▪ Offers convergence guarantees using Contraction Theory.

▪ Reduces the number of spurious attractors to a unique trajectory, easily avoidable.

▪ Invert the model to enclose the robot into a fixed volume, from which the robot cannot escape.

Learning and adaptive control for robots
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Stability Guarantees

( )
( )

( ) *A DS is Lyapunov stable at * 0 ,      
V x

V x fx if x x x
x


=   



 violates the Lyapunov constraint, even for P-QLF.x
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Stability Guarantees

Idea: Use contraction theory to prove stability in the region where Lyapunov stability no longer applies.

Flow follows again the original dynamics
Stable through Contraction theory

We need a metric to guarantee that the system contracts and 

that the flow will eventually go back to the original DS.
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Contraction: Stability of infinitesimals

x*

Stability between finitely apart trajectories

 between two 

 trajectories

virtual displacement 

infinitesimally close

x

x

( ) ( )

( )

( )

0

Define , =

: Contraction Metric

, : Differential Control Lyapunov Function

T

x x x

x

V x

P x

V

P x

x

  



( ) ( )Stability Condition: , =-2 , ,  0x xV x V x    

If the above condition is satisfied, all the trajectories converge to one single trajectory 
incrementally and exponentially, regardless of the initial conditions.
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Contraction: Stability of infinitesimals

x*

 between two 

 trajectories

virtual displacement 

infinitesimally close

x

x

( ) ( )

( )

( )

0

Define , =

: Contraction Metric

, : Differential Control Lyapunov Function

T

x x x

x

V x

P x

V

P x

x

  


( ) contracting:  P x
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Contraction: Stability of infinitesimals

x*

 between two 

 trajectories

virtual displacement 

infinitesimally close

x

x

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

0

:

:

T

TT T

x x x x

z x

T T

x x z z

P x

P x x x

P x x x

x

P x

 

     

  

   

=

=

=

 =

z

( ) ( ) x x

f
x f x x

x
 


=  =



( ) ( ) ( ) ( )

( ) ( )

, =  and stability Condition: , =-2 ,

, =-2 =-2

T

x x x z x

T T

z x x z z

V x P x V x V x

V x P x

     

    

( ) ( )
( ) ( )

( ) ( )2

T
f x f x

P x P x P x P x
x x


 

+ +  −
 
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New Metric

x*

𝑥

rx

( )r x

( )1e x

𝑀(𝑥)𝑓 𝑥

( )
( )

( )1

fD eefi ene a new frame of re r nce: 

r x
x

e x


 
=  

  

( )x

𝑓 𝑥

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

1

2

1 1

Define a  metric under which the system contracts:

                        

 cos   

 state-de

 

t

      

penden

cos

 

T
r x r x e x

P x x x
r x e x e x

 


 
 = =
 
 

( ):z xx  =

Tangent 

to surface

( ) ( )
( ) ( )

( ) ( )2

T
f x f x

P x P x P x P x
x x


 

+ +  −
 



Learning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

1

2

1 1

Define a  metric under which the system contracts:
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Temporal Evolution of the Metric

x*
rx

( )r x

( )1e x ( )x𝑥 

Angle becomes larger,

value of the cos decreases
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Define a  metric under which the system contracts:
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Temporal Evolution of the Metric

x*
rx

( )r x

Quasi anti-colinear

Metric becomes minimal at the edge of the concavity.

( )1e x

1

      

→−

012345

( )Flow decreases V x

𝑥 

6

7

The flow starts moving again 

towards the attractor and 

follows Lyapunov constraint.

( ) ( )
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( ) ( )2

T
f x f x

P x P x P x P x
x x


 

+ +  −
 
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Convergence under Contraction Theory

x*

Modulated flow moves across isolines 

in such a way that it decreases the metric

Isoline of the system under the new metric

( ) ( ) ( )

Contracting flow

0
Td

f x P x f x
dt



The space is split into a region that is stable through 

contraction theory and the rest that is Lyapunov stable.

Contracting region Lyapunov stable

( ) ( )
( ) ( )

( ) ( )2

T
f x f x

P x P x P x P x
x x


 

+ +  −
 
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Convergence under Contraction Theory

x*

To prove convergence, we need to prove 2 more things:

1: the system stays away from obstacle for finite time

2: the system never reaches the obstacle's boundary, 

    isoline at which the determinant of the metric is zero

(see full proof in Huber et al 2019 + annexes of book)

The space is split into a region that is stable through 

contraction theory and the rest that is Lyapunov stable.

Contracting region Lyapunov stable
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Which concave obstacles?

Can one avoid any concave obstacle with such an approach?

No: the system no longer contracts if the curvature is too large.

( )1e x

( )r x

( )x
( )   starts growingx

rx
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Star-Shaped Concave Obstacles

 star-shO apedne can avoid any  concave obstacle.

 a point inside the obstacle, from which one can draw a line

that reaches any point on the obstacle's surface without crossing

the surface.


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For star-shaped concave obstacles, the reference point 

must be located in the region with overlap

42

Reference Point in Star-Shaped Concave Obstacles

𝑥𝑟
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Avoiding Multiple Obstacles

Weighted modulation across the two obstacles – weight the orientation and magnitude of deflection

𝑥1
𝑜

ሶ𝑥1

𝜑 1
𝜑 2

ሶ𝑥2

ሶ ҧ𝑥

𝑓 𝑥



Learning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              44

Multiple Obstacles with No Common Points
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Multiple Obstacles with Common Point
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Summary of Avoidance Properties per Type of Obstacles

(a) Convex obstacles (b) Star-shaped obstacles

(c) Intersecting convex obstacles 

with common region
(d) Intersecting obstacles without 

common region

Spurious fixed points
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Making a Non Star-Shaped Obstacle Star-Shaped
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Avoiding Moving Obstacles

Adapt Local Modulation to Speed of the Obstacle

( ) ( )( )o ox M x f x x x= − +

Speed of obstacle

Translation Rotation
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Avoiding Moving Obstacles

Modulation is applied partially in moving frame to avoid penetration of boundary, 

but also keeping attractor position close to the original one.
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Live Obstacle Avoidance with a Simulated Wheelchair
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Live Obstacle Avoidance in a simulated and Real Crowd
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Live Obstacle Avoidance in a simulated and Real Crowd

Huber, Lukas, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces: 

Application to Moving in Crowds. IEEE Transactions on Robotics, 2022. 
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Live Obstacle Avoidance in Task Space

Huber, Lukas, Aude Billard, and Jean-Jacques Slotine. "Avoidance of convex and concave obstacles with convergence ensured through contraction." 

IEEE Robotics and Automation Letters 4.2 (2019): 1462-1469.
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Live Obstacle Avoidance in Joint Space

Huber, Lukas, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces: 

Application to Moving in Crowds. IEEE Transactions on Robotics, 2022. 
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Enclosing the dynamics
The obstacle’s boundary can also be used as an enclosing; once inside, the flow cannot escape. This can be 

achieved with a simple inversion of the distance function. The new distance function is 1/ he normal is 

obtained by flipping the current robot state x along the reference direction

Attractorx*

( ) 1

Obstacle's boundary

x =

( ) 1x 

Modulation is given by:

                                             

( )
( )

( )
( )

1

2

1
1

1
1

x
x

x
x






= − 


 = +
 

𝑥

Cancels the flow at the boundary

Redirects the flow along the tangent
( )r x

Reduces the flow along r(x)
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Live Obstacle Avoidance in a simulated and Real Crowd

Huber, Lukas, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces: 

Application to Moving in Crowds. IEEE Transactions on Robotics, 2022. 
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SUMMARY – 2nd Part

• The obstacle modulation approach has been extended to enable obstacle avoidance of star-shaped concave 

obstacles by modifying the basis for a non-orthonormal basis.

• This change of coordinate allowed us to define a new metric in space, under which the system is contracting.

→ Convergence to the attractor can again be ensured globally through contraction theory. 

• The approach can be extended to handle multiple and moving obstacles.

• The approach can also allow inverting obstacle avoidance and ensure the robot does not escape a region.

Limitations

• The approach requires the obstacle to be star-shaped. Any obstacle can be converted into a star-shaped one 

at the cost of loosing free space. 

• The inverted obstacle is also limited to star-shaped volumes. 

• The approach retains one spurious fixed point, but this is a saddle point and only a unique trajectory leads to 

this point. In practice, this can be avoided easily.
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Self-Collision, Joint-Level Obstacle Avoidance

▪ Figueroa Fernandez, Nadia Barbara, Seyed Sina Mirrazavi Salehian, and Aude Billard. "Multi-Arm Self-Collision Avoidance: A Sparse Solution for a Big Data Problem." 

Proceedings of the Third Machine Learning in Planning and Control of Robot Motion (MLPC) Workshop.

▪ Mirrazavi Salehian, Seyed Sina, Nadia Figueroa, and Aude Billard. "A unified framework for coordinated multi-arm motion planning." The International Journal of 

Robotics Research 37.10 (2018): 1205-1232.

▪ Learn the boundaries of arbitrary complex concave obstacles.

o A robot or group of robots’ joint workspace is an example of such complex boundary. 

▪ Develop a method to enable live-obstacle avoidance in this complex boundary. 
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Configuration space versus task space

 
 

min max

Usually, =7 and  =3 or = 6.  

Configuration space: C: ;

Workspace: W: ; ,  s.t.  ( ) :   :  forward kinematics

q

x

q x x

N

i i i

N

N N N

q q q q

x q x h q h

  

  =

o The feasible space of motion of the joints is called the configuration space.  

o The feasible space of motion of the robot’s end-effector in Cartesian space is called the workspace.  

Configuration q

End-effector's position x

1q

2q

3q

4q

Workspace



Learning and adaptive control for robotsLearning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              60

Learning a Model of the Configuration space

The configuration space, or C-space, of the robot system 

is the space of all possible configurations of the system.

For a robot whose kinematic chain is known, one can sample the space and learn a model of the configuration space, as a distribution of joint 

configuration. Above: a model for the 7 DOFs KUKA LWR arm has been learned using Gaussian Mixture Model.

Kim , Shukla and Billard, " IEEE Transactions on Robotics 30, no. 5 (2014): 1049-1065.
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Define a measure of distance to the boundary 

across free and collided space

61

Learning a model of free vs collided configuration space

In a bimanual system, the free space is not fixed. 

Free space for each of the arm varies as a function of the motion of the other arm 

Collision!

Mirrazavi, Figueroa and Billard, Int. Journal of Robotics Research, IJRR, 2018
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Learning a model of free vs collided configuration space

For a robot whose kinematics is known, it is possible to sample the space 

And to build a model of the configuration space.

Collision!
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Collided Joint Configurations

Non-Collided Joint 

Configurations

Learning the boundary between free space and collision space 

is modelled as a binary classification problem

Using Support Vector Classification:

1 :   non-collided configurations

-1   :  collided configurations

y

y

= +

=
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( )( )

*

*

At testing, select a query joint configuration  and

apply Support Vector Classificatio decision func

.

n tion

s

 

gn

q

y h q=

64

Collided Joint Configurations
Learned model with SVM

( )x

From learned classification to creating the boundary 

( ) ( )

Offset to get boundary:

1. q h q = +

Use the gradient to deflect the flow
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Formulate as a Quadratic Programming (QP) problem solvable at run time

Objective function:

Constraints:

65

Real-Time Control through Local Optimization

( )

( )

        Inv. Kin. -  joint velocities are feasible and lead to the desired path 

                         given by some nominal system in Cartesian space x x

J q q x

f x

=

=

        Velocities remains within robot's boundsq − − 

 Motion will not penetrate the boundary

 the robots' joints  ijq

0 weight matrixW

The two constraints 

may conflict.

Relax constraint to follow path accurately 



Learning and adaptive control for robotsLearning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              66

Constraints on Motion in Configuration Space

 Motion will not penetrate the boundary

 the robots' joints  ijq

Constraint inactive

Constraint active

Convex quadratic program with inequality constraints

Solvable in real-time, but this sets constraints on learning of .
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With a base offset of 1.3m we get a dataset of 5.4 million points!

2.4 million points for y=-1 (collision)

3 million points for   y=+1 (non-collision)

The proposed QP Solver needs to run at <2ms!

Force the dataset to be balanced!

Constraints on Learning Problem

Number of Support Vectors
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At testing time, computational costs grow linearly with number of Support Vectors.

We should not exceed 4K support vectors.

→ Sparse SVM.

Sparse SVM

We have a budget of <4000 SVs ~ 

Number of Support Vectors

Sparse SVM results in very high (98%) accuracy with less than 2K SVs
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Live Tracking of Moving Targets and Obstacle Avoidance
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• To model obstacles with very complex boundaries, one can use non-linear classification approaches from 

machine learning. 

o One models the problem as a binary classification problem: feasible versus infeasible regions. 

• Support vector classification (SVM) is well suited to learn such boundary, since, by construction of the 

decision function it learns a system of the form:

• The boundary function of SVM is C1 (continuously differentiable) and hence one can compute the gradient 

along state space. 

o This can be used to force the flow to move away from the boundary and formulate this in a QP.

70

SUMMARY – 3rd Part

( )

( )

( )

1    feasible states

1    boundary

1    infeasible states

x

x

x

 

 =

 



Learning and adaptive control for robotsLearning and adaptive control for robotsLearning and adaptive control for robots

© Billard, Mirrazavi, Figueroa              71

SUMMARY – 3rd Part

Limitations

• The approach is no longer a closed-form DS. It relies on the QP solver to find a feasible solution at run time.

• The boundary is only an approximation of the true boundary. 

o Unlike in the case where the obstacle’s boundary was modelled through the convex hull, we cannot 

ensure that the boundary covers perfectly the infeasible state space and hence we can no longer 

guarantee theoretically impenetrability of the obstacle.

o In practice, obstacle avoidance can be guaranteed if the learned model is learned with high accuracy 

and one takes a conservative approach, moving away from a safety margin to the boundary.
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