Learning and adaptive control for robots —P=L

PART Il
COUPLING AND MODULATING CONTROLLERS

Chapter 9
Obstacle Avoidance with Dynamical Systems
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Assumptions & Desiderata

Assume that we have, for starters, a nominal DS of the form: x = f (x)

& >'<*=f(x*)=o

Modulate to enable real-time obstacle avoidance from one or multiple moving obstacles.

© Billard, Mirrazavi, Figueroa 1
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Recall: Main Properties for the Modulation

The modulated dynamics is given by:

x=M (x)f(x), M(x)eR™, xeR".

Constrain M(x) such that it preserves the following properties:

— Stability of the original attractor:
= 3 a compact region B(x,x") around x* where M (x) =1,¥x e B(x,x").

If f (x) = Ax, sufficient to have that M (x) f (x) <0, Vx e B(x, x*)

— Uniqueness of the attractor: = M (x)#0, ¥x=x. M must be full rank.

© Billard, Mirrazavi, Figueroa
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Obstacle avoidance with DS

S eSS

. = I'(x) :isoline surrounding obstacle

Starts with an initial dynamical system stable at an attractor:
x=f(x)
Add a modulation around the obstacle:

X=M (I'(x)) f(x)

Guarantees that the robot will never penetrate the obstacle.
Guarantees that the robot will reach the goal.

© Aude Billard
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Nominal Dynamical System

General formulation X=f(x) & X =f (x*):O

.
e

Initial dynamics with single attractor

S\WZ=

i




Obstacle Avoidance Modulation Matrix

Modulation is given by:  x=M (x) f (x)

M (%)= E(X)D(X)E(X)"

Decomposition into normal n(X) & tangents e; (%)

© Billard, Mirrazavi, Figueroa

Legend
% € RY Robot’s relative state (¥ = x — x°)
E(X) Decomposition matrix
D (%) Eigenvalue matrix
n(x) Normal to obstacle
e;(¥)  Tangent to obstacle

I'(x) Distance Function

Boundary region
rx) =1

Free space
rx) =1 ;



D ()~() — diag [,11 ()z)____,zd (y()] Stretching/compression to

guide flow
Conditions
» Compression in normal direction ~ 4;(X) < 1, 4(2):1_%
» Stretching in tangential direction A (X) = 1, A (>~<)=1+%
i=1.d-1
> No effect faraway i =1..d -1 p(lfi)n_l,oo A(®) =1

Legend
% € RY Robot’s relative state (¥ = x — x°)
E (%) Decomposition matrix
D (%) Eigenvalue matrix
n(x) Normal to obstacle
e;(¥)  Tangent to obstacle

I'(x) Distance Function
A(X) Eigenvalues

Boundary region
rx) =1

Free space

© Billard, Mirrazavi, Figueroa | [1] Khansari-Zadeh, S. M., & Billard, A. (2012). A dynamical system approach to realtime obstacle avoidance. Autonomous Robots, 32(4), 433-454.

F(f)217



Learning and adaptive control for robots

=PrL

© Billard, Mirrazavi, Figueroa

Properties:
The attractor remains a stable point of the system.
The flow is ensured to never penetrate the obstacle.

See book for proofs.

Modulated dynamics
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3D Deflection - Representation

Distance to the obstacle:
I'(x): RY SR

© Billard, Mirrazavi, Figueroa 9
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Modulation applies also to flows without attractors and to higher dimensions

N eSS

i

.

X,
Nominal DS: X =sin(x) Modulated DS: x = M (x)sin(x)
X, X,

3D flow
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Extension to multiple obstacles

For each obstacle, define:
x' : center of each obstacle

I (x _X ) - distance function

M, (x—x'): Modulation function

See today s and next week's exercises on how to compute distance functions depending on shape of obstacle.

© Billard, Mirrazavi, Figueroa 11
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Extension to multiple obstacles

For each obstacle, define: Final modulation - product of obstacles' modulations:

X' : center of each obstacle nb obstacles

F‘(x—x‘):distancefunction X = H Mi(x—xi)f(x)

=1

M. (x - X' ): Modulation function

Modulate each set of eigenvalues
i i\ _ _Wi(x_xi)
ﬂl(X—X)—l Fi(x_xi)
| | W%x—ﬂ)
Ay (x=x")=1+— L d=2.D
F%x—%)
nb obstacles (Fk (X — Xk ) —1)

. balances relative effect of each obstacle

© Billard, Mirrazavi, Figueroa 12
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Extension to multiple obstacles

Final modulation - product of obstacles' modulations:

nb obstacles

1] Mi(x—x‘)f(x)

222%?

SH
=
——

13
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Modulation applies also to flows without attractors

Nominal DS - x = f (x) )
nonlinear DS with limit cycle Modulated DS: x =] [ M, (X— X' )f (x).
i=1

X =X,
{xz — _x, +0.9, (1—(x1 )2)

© Billard, Mirrazavi, Figueroa 14
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Safety Factor

When the obstacle is fragile or dangerous, it may be necessary to define a safety margin around
the obstacle. Such margin can be obtained through a scaling of the state variable.

M (i X] = E(EXJA(EXJ E(l Xj scaling: 7 >1.
7 m m n

© Billard, Mirrazavi, Figueroa 15
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Reactivity

The magnitude of the modulation created by the obstacle can be tuned by modifying the eigenvalues of
the dynamic modulation matrix through a reactivity factor. The larger the reactivity, the larger the
amplitude of the deflection, and consequently the earlier the robot responds to the presence of an obstacle.

-

ﬂl(f():l— . 1

3 , reactivity factor: p > 0.

p=1.0

16
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Convexifying objects

The modulation presented in the previous slides requires that the object be convex. One can build a
convex hull around non-convex obstacles, see Benallegue et al. for a fast method.

Benallegue, M., Escande, A., Miossec, S., & Kheddar, A. (2009). Fast C1 proximity queries using support mapping of sphere-torus-patches bounding volumes.
In Proc. IEEE int. conf. on robotics and automation (pp. 483-488).

© Billard, Mirrazavi, Figueroa 18
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Robotics demonstration: live obstacle avoidance of convex obstacle

© Billard, Mirrazavi, Figueroa [1] Khansari-Zadeh, S. M., & Billard, A. (2012). A dynamical system approach to realtime obstacle avoidance. Autonomous Robots, 32(4), 433-454.
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Formal Guarantees

M(x) guarantees that a flow starting outside the obstacle will never penetrate the obstacle.

vx(t,), T'(X)=1, with dynamics x=M (%) f (x), (%X(t))=1, t=>t.

M(x) guarantees that the attractor remains a stable point, if the attractor is outside the obstacle.

If X", T'(X")=1, with dynamics x= f (x")=0, M (X")f(x")=0.

The attractor is, however, no longer the unique fixed point of the system!

© Billard, Mirrazavi, Figueroa 20
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Spurious Fixed Points

The attractor is no longer the unique fixed point of the system.

Uniqueness of the attractor: = M (X) f (x)#0, Vx#X.
)=E(®D(RER)"  E(X)=[n(x) &(%) &(X),,]
A(X)=diag| 4, (X)....A (X) |

Vanishes at All positives | As long as f(x) has a tangential component, it will not vanish.
obstacle’s

boundary

X

M (

T )
|t ()

Fixed points: All points x such that n(x) =+1, I'(x) =1, become fixed points.

The dynamics vanishes for points on the obstacle’s boundary and for which the boundary's normal is colinear to f .

© Billard, Mirrazavi, Figueroa 21



Learning and adaptive control for robots —P=L

Spurious Fixed Points

Circular obstacle with convergence Cylindrical obstacle modulating a linear DS
for all but one trajectory. resulting in one spurious attractor.

22
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X Robot’s relative state (¥ = x — x°)
Limitation of orthonormal basis B(F)  EEmEesiinn mrii
. n(x) Nor obstacle
for the deflection 6 Agent to obstacle

Modulation is given by: x=M (X) f (x)

M (%) =E(X)D(X)E(%)"

E(X)=[n(%) &(X) ... &(X),, ]

23
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Legend
Robot’s relative state (¥ = x — x°)
Limitation of orthonormal basis E(®¥)  Decomposition matrix
. n(x) Normal to obstacle
for the deflection e;(¥)  Tangent to obstacle

Modulation is given by: x=M (X) f (x)
M (X)=E(%)D(X)E(%)"
E(X)=[n(%) &(X) ... &(X),, ]

Idea: Relax the constraint of an orthonormal basis.
It is sufficient for the vector to be linearly independent for E to be invertible.

Lukas Huber, Aude Billard, and Jean-Jacques Slotine. IEEE Robotics and Automation Letters 4.2 (2019): 1462-1469.

© Billard, Mirrazavi, Figueroa
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Non-orthonormal basis for the deflection

Modulation is given by: x=M (X) f (x)

Let r be an arbitrary vector that is linearly independent of all ei.

Define a reference point x" inside the obstacle
as new center of the modulation and set:

_ X—X" X
A I T

The new decomposition matrix E (X) is not
orthogonal anymore, but is full rank.

© Billard, Mirrazavi, Figueroa

Legend

% € RY Robot’s relative state (& = x — x°)
E(X) Decomposition matrix
r(X) Reference direction

If X" is inside the obstacle, r(x) is [~

linearly independent of all tangents e
to the surface.

25



Legend
% € RY Robot’s relative state (& = x — x°)

Non-orthonormal basis for the deflection E(X) _ Decomposition matrix

r(X) Reference direction

Learning and adaptive control for robots

Modulation is given by: x=M (X) f (x)

=M (x)f(x)

M ( ) E (>~<) D ()?) E ()’Z)_l Augmets in dlrectlor: _—

c(0)=[r(1) &®) o &R, oS
\ /

,, Wy Ml §

%(X)=1—m /

The flow is deflected away from the spurious fixed point.

© Billard, Mirrazavi, Figueroa This is a saddle point, as any small disturbance would send the flow away from the point. 26
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Effect of Choice of Reference Direction

Still only one single trajectory to a single saddle point.

The choice of reference direction influences
the way the dynamics avoids the obstacle.

AR

i

We will see that this reference point can allow us to avoid concave

obstacles and preserve convergence to the original attractor, see 2" part.

© Billard, Mirrazavi, Figueroa 27
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SUMMARY — 15t Part

« The DS modulation approach has been extended to enable obstacle avoidance in closed form.
—> This ensures fast and highly reactive obstacle avoidance

* It preserves guarantee of asymptotic convergence to the goal.
—> This ensures that the robot returns to its path once the obstacle has been avoided without the need for
re-planning the trajectory.

* The approach is parameterized by two hyperparameters that determine the safety margin and
the reactivity.
—> These are intuitive parameters that can be easily fixed by hand knowing the geometry of the obstacle.

Limitations
* The obstacle’s boundary must be convex.
 Spurious attractors may arise on the obstacle’s boundary.

© Billard, Mirrazavi, Figueroa 28
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DS-based Obstacle Avoidance of Concave Objects

Extends the modulation to enable obstacle avoidance for a class of concave obstacles

Offers convergence guarantees using Contraction Theory.

Reduces the number of spurious attractors to a unique trajectory, easily avoidable.

Invert the model to enclose the robot into a fixed volume, from which the robot cannot escape.

= Lukas Huber, Aude Billard, and Jean-Jacques Slotine. "Avoidance of Convex and Concave Obstacles With Convergence Ensured
Through Contraction.” IEEE Robotics and Automation Letters 4.2 (2019): 1462-1469.

= Lukas Huber, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces: Application
to Moving in Crowds. IEEE Transactions on Robotics, 2022.

© Billard, Mirrazavi, Figueroa 29
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Stability Guarantees

A DS is Lyapunov stable at x* if V (x)=

Viz(t)) —

X violates the Lyapunov constraint, even for P-QLF.

© Billard, Mirrazavi, Figueroa 30
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Stability Guarantees

Idea: Use contraction theory to prove stability in the region where Lyapunov stability no longer applies.

Flow follows again the original dynamics

Stable through Contraction theory

We need a metric to guarantee that the system contracts and
that the flow will eventually go back to the original DS.

© Billard, Mirrazavi, Figueroa 3 1
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Contraction: Stability of infinitesimals

Stability between finitely apart trajectories

o, virtual displacement between two
Infinitesimally close trajectories

Define V (x,6,)=8; P(x)d

X

=0
P (x) - Contraction Metric

V (x,6,): Differential Control Lyapunov Function

Stability Condition: V (x,5,)=-2aV (x,5,), a >0

If the above condition is satisfied, all the trajectories converge to one single trajectory

incrementally and exponentially, regardless of the initial conditions.

© Billard, Mirrazavi, Figueroa 32
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Contraction: Stability of infinitesimals

o, virtual displacement between two
Infinitesimally close trajectories

Define V (x,6,)=8, P(x)d, 3
=0 S

P (x) - Contraction Metric

_ _ _ P(x): contracting
V (x,6,): Differential Control Lyapunov Function

© Billard, Mirrazavi, Figueroa 33
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Contraction: Stability of infinitesimals

o, virtual displacement between two
Infinitesimally close trajectories

P(x)>0 x="f(x)= o, %(x)&

P(x):=0(x)" 0(x) J,
STP(x)5, =6160(x) 6(x)8,

5, =0(x)d,

= 5P (X)5, =55,

V (x,6,)=6; P(x)&, and stability Condition: V (x, 3, )=-2aV (X, J,)

X,
=V (x,6,)=-2ad, P(x)5,=-2a5,",

B(x)+P(x) afa(xx) " “a(xx) P () < —2aP(x)

© Billard, Mirrazavi, Figueroa
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New Metric
Define a new frame of reference:
H(X)_{r(x)} 5, =0(x)0J,
a(x) M(x)f ()

Tangent & X
o S
Define a state-dependent metric under which the system contracts:
) r*(x) r(x)e (x)cos(«)
r(x)e(x)oos(a@) (X))

B(x)+P(x) afa(xx) " “@S‘) P () < —2aP(x)

© Billard, Mirrazavi, Figueroa 35
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Temporal Evolution of the Metric

Angle becomes larger,
value of the cos decreases

© Billard, Mirrazavi, Figueroa 36
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Temporal Evolution of the Metric

SE— | The flow starts moving again
Quasi anti-cplinear towards the attractor and
follows Lyapunov constraint.

-y
-~
L

Metric becomes minimal at the edge of the concavity.

P(x)+P(x) - + P(x)<—2aP(x) 7

© Billard, Mirrazavi, Figueroa 37
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Convergence under Contraction Theory
Isoline of the system under the new metric

Modulated flow moves across isolines

in such a way that it decreases the metric — — |
Contracting flow
d

= f (x)T P(x)f(x)<0
P(x)+P(x)

______

of (x) of (x)T

_|_
OX OX

»
I
\
\
\
\
\
\
\
\
\
\
\
\

P(x)<—2aP(x)

Contracting regioﬂ

© Billard, Mirrazavi, Figueroa

Lyapunov stable

The space is split into a region that is stable through

contraction theory and the rest that is Lyapunov stable.

38
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Convergence under Contraction Theory

—----

To prove convergence, we need to prove 2 more things:

i
\
\
\
\ .
\ M
oo o S
1: the system stays away from obstacle for finite time \ \\ N
X
2: the system never reaches the obstacle's boundary, »®
isoline at which the determinant of the metric is zero
(see full proof in Huber et al 2019 + annexes of book) Contracting regi Oﬂ Lyapunov stable
© Billard, Mirrazavi, Figueroa

The space is split into a region that is stable through
contraction theory and the rest that is Lyapunov stable

39
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Which concave obstacles?

Can one avoid any concave obstacle with such an approach?

No: the system no longer contracts if the curvature is too large.

a(X) starts growing

© Billard, Mirrazavi, Figueroa 40
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Star-Shaped Concave Obstacles

One can avoid any star-shaped concave obstacle.

3 a point inside the obstacle, from which one can draw a line
that reaches any point on the obstacle's surface without crossing
the surface.

© Billard, Mirrazavi, Figueroa 41
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Reference Point in Star-Shaped Concave Obstacles

For star-shaped concave obstacles, the reference point
must be located in the region with overlap

42
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Avoiding Multiple Obstacles

Weighted modulation across the two obstacles — weight the orientation and magnitude of deflection

\\\\\\

© Billard, Mirrazavi, Figueroa 43
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Multiple Obstacles with No Common Points
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Multiple Obstacles with Common Point
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Summary of Avoidance Properties per Type of Obstacles

/ /

i
\\K

(a) Convex obstacles (b) Star-shaped obstacles

W «/ (777,
\ } %

\

\
(€) Intersecting convex obstacles (d) Intersecting obstacles without

with common region common region
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Making a Non Star-Shaped Obstacle Star-Shaped
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Avoiding Moving Obstacles

Adapt Local Modulation to Speed of the Obstacle

>’<=I\/|(x)(f(x)—>§°)+f>’<°

Speed of obstacle

Translation Rotation

© Billard, Mirrazavi, Figueroa 48
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Avoiding Moving Obstacles

.| 0.68s

Two persons can be interpreted as ellipses, while a
hypothetical-point robot is trying to avoid them.

Modulation is applied partially in moving frame to avoid penetration of boundary,
o Billard, Mirrazavi, Figueroa but also keeping attractor position close to the original one. 49
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Live Obstacle Avoidance with a Simulated Wheelchair

——

\’_\\\‘_\’—;\’N\ L e

Humans are represented by spheres and have a safety

a5

margin to account for the wheelchair's geometry.

This work was conducted partly under a grant from the EU commission through the Crowdbot project.

© Billard, Mirrazavi, Figueroa 50
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Live Obstacle Avoidance in a simulated and Real Crowd

The experimental evaluation is done on the standing
wheelchair QOLO [4]. The wheelchair behaves as an
autnomous agent in the crowd-simulator developped by [5].

QOLO [4] Crowd-simulator [5]

[4] Granados, Diego Felipe Paez, Hideki Kadone, and Kenji Suzuki. "Unpowered Lower-Body Exoskeleton with Torso Lifting Mechanism
for Supporting Sit-to-Stand Transitions.” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
[5] F. Grzeskowiak, M. Babel, J. Bruneau, and J. Pettre , “Toward virtual reality-based evaluation of robot navigation among people,” in
IEEE VR 2020-27th IEEE Conf. on Virtual Reality and 3D User Interfaces, 2020, pp. 1-9.

© Billard, Mirrazavi, Figueroa 5 1
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Live Obstacle Avoidance in a simulated and Real Crowd

A qualitative proof of concept was performed " L] u %
with the QOLO on a small marketplace in the = | e e
center of Lausanne, Switzerland.

Huber, Lukas, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces:
Application to Moving in Crowds. IEEE Transactions on Robotics, 2022.

© Billard, Mirrazavi, Figueroa



Learning and adaptive control for robots —P=L

Live Obstacle Avoidance in Task Space

Experiment #1
A three dimensional pick-and-place task
in a static enviroment. The desired

velocity is evaluated at each time step in
real time.

Huber, Lukas, Aude Billard, and Jean-Jacques Slotine. "Avoidance of convex and concave obstacles with convergence ensured through contraction.”

_ o IEEE Robotics and Automation Letters 4.2 (2019): 1462-14609.
© Billard, Mirrazavi, Figueroa 53
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Live Obstacle Avoidance in Joint Space

{f——— .,f/'}'
| 7 L

| f &
® i I NSO ‘
Y (\7 \,"\
e “‘. ‘ + ‘l" “'\
t @ / - 1 |
= T . “\ l\ ".“ “‘\
The method is evaluated along the robot arm to ensure
collision avoidance. The effect is weighted based on the

danger-field (distance field).
© Billard, Mirrazavi, Figueroa

Huber, Lukas, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces:
Application to Moving in Crowds. IEEE Transactions on Robotics, 2022.
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Enclosina the dvnamics
The obstacle’s boundary can also be used as an enclosing; once inside, the flow cannot escape. This can be
achieved with a simple inversion of the distance function. The new distance function is 1/I". The normal is
obtained by flipping the current robot state x along the reference direction

Modulation is given by: 5 EnClosmg phstagle Obstacle's boundary

I'(x)=1
: Cancels the flow at the boundary
(%) =1 —— St LT ///
INOIN | Reduces the flow zﬂirir(\{)\ / m—
2, (R) =14 —— Ly 7 = /-/ ;
1_1()() Or f N 0
1 g

a
A\

S5y 3o 3 4 5

© Billard, Mirrazavi, Figueroa 55
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Live Obstacle Avoidance in a simulated and Real Crowd

W 2X

Dung the implemntotion on the real robot, the
'environment is known in advance. The dynamical
system is evaluated in real-time.

Huber, Lukas, Jean-Jacques Slotine, and Aude Billard. "Avoiding Dense and Dynamic Obstacles in Enclosed Spaces:
Application to Moving in Crowds. IEEE Transactions on Robotics, 2022. 56

© Billard, Mirrazavi, Figueroa
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SUMMARY — 2"d Part

« The obstacle modulation approach has been extended to enable obstacle avoidance of star-shaped concave
obstacles by modifying the basis for a non-orthonormal basis.

« This change of coordinate allowed us to define a new metric in space, under which the system is contracting.
—> Convergence to the attractor can again be ensured globally through contraction theory.

» The approach can be extended to handle multiple and moving obstacles.

« The approach can also allow inverting obstacle avoidance and ensure the robot does not escape a region.

Limitations

« The approach requires the obstacle to be star-shaped. Any obstacle can be converted into a star-shaped one
at the cost of loosing free space.

» The inverted obstacle is also limited to star-shaped volumes.

» The approach retains one spurious fixed point, but this is a saddle point and only a unique trajectory leads to
this point. In practice, this can be avoided easily.

© Billard, Mirrazavi, Figueroa 57
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Self-Collision, Joint-Level Obstacle Avoidance

= Learn the boundaries of arbitrary complex concave obstacles.
o Arobot or group of robots’ joint workspace 1s an example of such complex boundary.

= Develop a method to enable live-obstacle avoidance in this complex boundary.

= Figueroa Fernandez, Nadia Barbara, Seyed Sina Mirrazavi Salehian, and Aude Billard. "Multi-Arm Self-Collision Avoidance: A Sparse Solution for a Big Data Problem."
Proceedings of the Third Machine Learning in Planning and Control of Robot Motion (MLPC) Workshop.

= Mirrazavi Salehian, Seyed Sina, Nadia Figueroa, and Aude Billard. "A unified framework for coordinated multi-arm motion planning.” The International Journal of
Robotics Research 37.10 (2018): 1205-1232.

© Billard, Mirrazavi, Figueroa 58
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Configuration space versus task space

o The feasible space of motion of the joints is called the configuration space.
o The feasible space of motion of the robot’s end-effector in Cartesian space is called the workspace.

Configuration space: C: {q eR™: g™ <q < qimax}

Workspace: W:{x eR";3q, s.t. x= h(q)}: h: forward kinematics

Usually, N, =7 and N, =3 or N, =6.

© Billard, Mirrazavi, Figueroa 59
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Learning a Model of the Configuration space

The configuration space, or C-space, of the robot system
is the space of all possible configurations of the system.

¥im]

For a robot whose kinematic chain is known, one can sample the space and learn a model of the configuration space, as a distribution of joint
configuration. Above: a model for the 7 DOFs KUKA LWR arm has been learned using Gaussian Mixture Model.

© Billard, Mirrazavi, Figueroa Kim, Shukla and Billard, " IEEE Transactions on Robotics 30, no. 5 (2014): 1049-1065. 60
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Learning a model of free vs collided configuration space

In a bimanual system, the free space is not fixed.
Free space for each of the arm varies as a function of the motion of the other arm

Define a measure of distance to the boundary
across free and collided space

T(¢¥) : R%:tde 5 R

¢V = ¢, ¢/]" e RO

Collided configurations:  I'(¢¥) < 1

Boundary configurations:

|
~
Sy
© &y
S’
|
—

Free configurations: I(g7) > 1

© Billard, Mirrazavi, Figueroa Mirrazavi, Figueroa and Billard, Int. Journal of Robotics Research, IJRR, 2018 61
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Learning a model of free vs collided configuration space

For a robot whose kinematics is known, it is possible to sample the space
And to build a model of the configuration space.
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Learning the boundary between free space and collision space
IS modelled as a binary classification problem

Using Support Vector Classification:

T . .. y =+1 : non-collided configurations
1 1 i i » o %o, e @ e o e o o o - X 1
Collided Joint ;:onflgu'l.ratlons.‘ sty gt o s ly=-1 1 collided configurations
°e ¢ H e *o% 3 ° ° ©e © ° .'
;.! o® .... e % % © ® .: e 8. . o.. ..o... .. iy
....:....‘.. °%e .. e ..." 'o..o. ° ® ....O . .
=) et T o, Vet ry Non-Collided Joint
2 2 e PO T Bl ¢ Configurations
| o.. .o R '.... ‘. e .o ° o 0.2. :....:.o. o. ° /
— ® P ° , w ) e 8 .. ° ¥ 2% e o
+ oo o % & o.... e 0.. ®oo °..o.o oo ® $%e % o o.' %
% %, .. % ° .:. ) .: 0'..}' o’ o’ : ° o: o':.o ® ® '. .. %o
E eo * g 0° oo ..o e o .o. ° 0o o . .. . s ©
N@T ) ...0:... :. ° . ° o..:. e o o° .:‘.: ':o :.. o® .. %, ° : ... °
N oo o, .o. & .: Lo . .. '.. oy I-.: .: }
... ..o ... e ..o o e o ¢ s ¢ ..’ ; .'.. o ..'o * @
@ .. ...P . % . ..§O.E 2000 . :. :.o":
° : ° ..O ) ® .: .:'. .. ° 0@ ° So : o ... . .:
* o.. % ..' »®® ‘0. \ ‘ N \ * . ° :'= %
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3 3 3 3

qi (Joint 1-Robot 1)
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From learned classification to creating the boundary

At testing, select a query joint configuration ¢~ and Offset to get boundary:
apply Support Vector Classification decision function I'(q)=h(q)+1.

y=son(h(d))-  °

Learned model with SVM

T

q? (Joint 1 - Robot 2)
|
0o

—1/3n 1/3m
qi (Joint 1-Robot 1)

© Billard, Mirrazavi, Figueroa 64



Learning and adaptive control for robots —P=L

Real-Time Control through Local Optimization

Formulate as a Quadratic Programming (QP) problem solvable at run time

Objective function: arg min 4w W > 0 weight matrix
Nzinh:ize ;’Xpenditu;e Relax constraint to follow path accurately
Constraints: /
J(g)g=x Inv. Kin. - joint velocities are feasible and lead to the desired path The two constraints
given by some nominal system in Cartesian space X = f, (x) may conflict.
0~ <q<6 Velocities remains within robot's bounds

—VI7(g"HT¢7 <log(T7(¢g7) — 1) Motion will not penetrate the boundary

V the robots' joints g"

© Billard, Mirrazavi, Figueroa 65



Learning and adaptive control for robots —P=L

Constraints on Motion in Configuration Space

Convex quadratic program with inequality constraints
Solvable in real-time, but this sets constraints on learning of I

—VIi(gHT§7 <log(TV(¢7) — 1) Motion will not penetrate the boundary

V the robots' joints g"
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Constraints on Learning Problem

With a base offset of 1.3m we get a dataset of 5.4 million points!
2.4 million points for y=-1 (collision)

3 million points for y=+1 (non-collision) Force the dataset to be balanced!

The proposed QP Solver needs to run at <2ms!

Exact SVM Models

I 5 T T T L . s s B S S S B L B B
.-
o885 - L= 1 a5 | — — - |
o T v 21 -0 I'(¢%), VI'(¢"”) Evaluation ,%
0.98 | 0 Tl . . ..
o 2A%RFPR - T - 4 | —-—-Runtime Limit g -
o --¥ _¥" ’
S 0975 | @ AT L A 35 s
~ 7 " e _aa==T ,/
% 1, m- P - IV gp ,’
G 7’ -
= 0965 - ' 52 P R d 25 -
= 4/ 96.2% TPR - }
:_8 V @ ’,—” ACC 2 el - - B - B — - - B - B — - — = - e e -
S 5 s S j I
S } e -¢ 1FPR I -z
0.955 | ,: ,@ -= TPR | | 15 'I’ r
¥ omcsvs ~¢ Now 1} --"
0ss —| | | | | A i
2 4 6 8 10 12 14 05 - L
TI"cl'lIliIlg Set Slze x104 2000 4000 6000 8000 10000
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Sparse SVM

At testing time, computational costs grow linearly with number of Support Vectors.
We should not exceed 4K support vectors.
—> Sparse SVM.

We have a budget of <4000 SVs ~

Sparse SVM Models learned with k4, = 3000

[T SEER 5 T T T T T T L | L L B L R
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v ERIAEE 2 et g, 5 45 [-o ['(¢"), VI'(¢") Evaluation % |
------- ' . .. ’
% 058 | R R et e S S B O s © 47 |--Runtime Limit L? g
-A4--- ___--- v-oo ’
ﬁ -1 == § 35 | ’
0ors | - 97.4%TPR '35 IR
s | Y- e =N [
S -7 -— ’
= v _a---" o ’
- ‘= 25| -
é e B e R i = }
L|9 ’4'- ACC 4__) 2 il e = B —— - - B - —- - e — i - R e -
B —”' v Il a ¢§
A, 0965 - N -¢ 1-FPR | - 1.5 F - < i
ol -= TPR S _ - —I
S Tr—g~~
0.96 L | i 1 i I i | I I i T T S S S T SN [N S T TN [N A Y ST A S
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Training Set Size x10° 2000 4000 6000 8000 10000

Number of Support Vectors
Sparse SVM results in very high (98%) accuracy with less than 2K SVs
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Live Tracking of Moving Targets and Obstacle Avoidance

© Billard, Mirrazavi, Figueroa 69
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SUMMARY - 3" Part

» To model obstacles with very complex boundaries, one can use non-linear classification approaches from
machine learning.
o One models the problem as a binary classification problem: feasible versus infeasible regions.

 Support vector classification (SVM) is well suited to learn such boundary, since, by construction of the
decision function it learns a system of the form:
I'(x)>1 feasible states
I'(x)=1 boundary
I'(x)<1 infeasible states

« The boundary function of SVM is C1 (continuously differentiable) and hence one can compute the gradient

along state space.
o This can be used to force the flow to move away from the boundary and formulate this in a QP.
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SUMMARY - 3" Part

Limitations

» The approach is no longer a closed-form DS. It relies on the QP solver to find a feasible solution at run time.
« The boundary is only an approximation of the true boundary.

o Unlike in the case where the obstacle’s boundary was modelled through the convex hull, we cannot
ensure that the boundary covers perfectly the infeasible state space and hence we can no longer
guarantee theoretically impenetrability of the obstacle.

o In practice, obstacle avoidance can be guaranteed if the learned model is learned with high accuracy
and one takes a conservative approach, moving away from a safety margin to the boundary.

© Billard, Mirrazavi, Figueroa 71
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