Learning and adaptive control for robots

Data-Driven Learning
How to Transmit Skills to Robots
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Vlotivation

How can we learn optimal controllers to perform a task from data?

» Use data-driven approaches to learn optimal controllers
* How do we gather data for learning? .
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Learning and adaptive control for robots

Main Methods to Train Robots

Reinforcement Learning

Robot learns on its own, by trial and error

|

_earning from demonstration

Robot learns by imitating an expert

4

feasible set of parameters

Bootstrap the search & reduce search to

Expert data

"4

Human

N\

Simulation

Human
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Main Methods to Train Robots

Reinforcement Learning _earning from demonstration

Robot learns by imitating an expert

4

Expert data

"4

Robot learns on its own, by trial and error

|

Bootstrap the search & reduce search to
feasible set of parameters

Human

Human

DIFFICULTIES: Humans and robots bodies
differ - need proper interfaces;

Requires a knowledgeable human

© Aude Billard
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earning from Demonstration

earning from demonstration

Robot learns by imitating an expert

Optimal Control

Solutions found by solving an optimal control problem can be used as expert
demonstrations.

Search for paths that are optimal and feasible.

Generate many solutions (warm start with different initial conditions, exploit non
convexity of the problem ).

© Aude Billard
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Programming by Demonstration

Learning from Demonstration

© Aude Billard
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Initial Approaches

. Programming by Demonstration

- -

;ti

| j f " IPA
. Started in the 1980s \ | Ffaunh{@
. Primarily used teleoperation to
provide demonstrations to the
robot

. Demonstrations consisted of

position and orientation that robot
would track
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Programming By Demonstration

Teleoperation
Manually move robot through motions for task
Generate Motion Primitives to enable task segmentation
Symbolic Reasoning
(Generate state-action-state sequences to represent task
Use "if-then” rules to construct symbolic task representation

Originally these symbolic representations were defined as prior knowledge to the
system, not learned

© Aude Billard
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More Recent Approaches

. Multitude of Algorithms for Learning from Demonstration (LfD) with multitude of
applications

. From learning simple trajectories to learning sequences of tasks

- How we gather data from humans revolves around three main themes:
. Teleoperation: user controls the robot through interface
. Kinesthetic Teaching: user physically moves the robot

- Observational learning: robot learns from visual observation of
demonstration

© Aude Billard 9
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Teleoperation — as a mean to teach robots
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Learning from Demonstration: Tele-operation

Users control robots using some interface to perform task

Demonstrations are used in LfD algorithm

The quality of learning and performance is sensitive to:
Interface design

Teacher experience

© Aude Billard 11
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Learning from Demonstration: Tele-operation

Graphical user interface/Tablet
Can communicate the desired motion by mimicking the motion on the tablet, or desired target
+ User-friendly, cheap, easily integrable to existing set-up
- Limited in what can be transferred (displacement in a plane, reduced field of motion)

A Knowledge-Driven Shared Autonomy Human-Robot Interface for Tablet Computers.
Birkenkampf et al. 12
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7041352

Dexterous Telemanipulation With a Multi-Touch Interface. Toh et al.
© Aude Billard http://graphics.cs.cmu.edu/?p=223


http://graphics.cs.cmu.edu/projects/multitouch/ICHR12_Video.mp4

Learning and adaptive control for robots

Learning from Demonstration: Tele-operation
Joysticks: control the robot’s end-effector through a 3DOFs or 6DOFs joystick

+ Can communicate the desired motion In
3D or event 6D, easily amenable to control
oDOFs robot arm in position and
orientation

+ User-friendly, cheap, easily integrable
for a vast range of applications

- Requires often the use of the two hands

- Limited in what can be transferred
(displacement and speed, not forces)

Video Source: https://iliad.stanford.edu/research/interactions

Losey, Dylan P., et al. "Controlling assistive robots with learned latent actions." 2020 |IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2020.
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Learning from Demonstration: Tele-operation
Joysticks: control the robot’s end-effector through a 3DOFs or 6DOFs joystick

3D or event 6D, easily amenable to control
robots that differ from humans (here
drones) - control in position and
orientation

- Sensitive to experience of teacher

A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang, Inverted
© Aude Billard autonomous helicopter flight via reinforcement learning, in: International Symposium on 14
Experimental Robotics, 2004
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Learning from Demonstration: Tele-operation
Exoskeletons

+ Conveys directly the dynamics of the
motion (embodied transmission)

+ Allows to control all joints as well as
movement in Cartesian space

-
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-
-
-
- -_—
, ! |

:
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- Heavy, cumbersome

- Does not fit all sizes and strengths

- Does not convey nor render forces at
contact

L4

i ¢
. -‘.

B

—

Capio Upper Body Exoskeleton for Teleoperation by the DFKI GmbH Robotics Innovation Center.
https://robotik.dfki-bremen.de/en/research/projects/capio.html
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Learning from Demonstration: Tele-operation
Telepresence

+ Enables to perform tasks when remote

+ Can offer a more efficient and more secure
mean to intervene (in disastrous or dangerous
environments)

- Need to provide good visual rendering of the
scene

- Delays in transmission can be detrimental if task
'S too rapid

Davinci Surgical Robot

- Force not always (well) rendered

© Aude Billard 16
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Learning from Demonstration: Tele-operation
Haptic interfaces

+ Transmit the forces applied by the user

+ Renders the forces perceived by the
robot to the user

- Close-loop system induces delays of
100-400ms depending on distance and
medium used

- Delays may lead to Incorrect response
and instable behavior

LASA Lab / EPF in collaboration with JRL / Tsukubal

© Aude Billard 17
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Learning from Demonstration: Tele-operation
Haptice Devices & Teleoperation

New finger-based haptic devices leverage on sense of
touch mounted on robots’ fingers to perceive contact
and render these through hand exoskeleton

T offer higher resolution

+ Closer to human touch

Covers only fingertips, but sense of touch is all
along fingers, palm, top of the hand

Suﬂ:'ers frOm d”ﬂ:S, Ca|lbratIOn Caﬂ be an ISSUG HaptX haptic glove integrated with Shadow Robot hand

Footage from Adam Savage’s Tested + ShadowRobot Company and Syntouch
https://www.youtube.com/watch?v=rEoq/DMgaEc&t=24s

© Aude Billard
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Learning from Demonstration: Kinesthetic Teaching

=P-L

——

» [eacher physically moves
robot

+ Direct control motion of robot

Can transmit forces

+ Can percelive forces at contact

N
-

LASA Lab / EPFL

© Aude Billard X3
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Learning from Demonstration: Kinesthetic Teaching

- Cumbersome

- Limited in the number of joints
/ limbs one can move at once

LASA Lab / EPFL

Video Source: https://www.youtube.com/watch?v=xIK6U52T|RM
Learning by Demonstration, Bimanual Coordinated Task, LASA

© Aude Billard 20
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Observational Learning: Vision Systems

Jse RGB-D camera, automatic reconstruction of
nody motion

+ Enable users to perform task in a

natural manner
+ Can be extended to analysing any videos of
human motion, not necessarily videos of human

teaching a robot

- Can be slow (live analysis of camera image
<50Hz)

- Can be imprecise, especially in face of large
occlusion (forces user to face cameras)

DexPilot: Vision Based Teleoperation of Dexterous Robotic Hand-Arm System
Handa et al. ICRA 2020

© Aude Billard 21
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Observational Learning: Motion Capture System

Markers attached to body parts are tracked

by infra-red cameras at high resolution

+ Conveys directly the dynamics of the

motion (embodied transmission)

+ Allows to control all joints including hand

movements

- Requires a set-up with several high
resolution cameras

- Suits does not fit all sizes and strengths
- Does not convey nor render forces at

contact

© Aude Billard
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Observational Learning: Motion Capture System

v 4

: -
N | - -
Sn

Video Source: https://youtu.be/gglLge1Rw2z47?t=77

q—

C. Stanton, A. Bogdanovych, E. Ratanasena: Teleoperation of a humanoid robot using full-body motion capture,
example movements, and machine learning. In proceedings of Australasian Conference on Robotics and
Automation (ACRA 2012), Wellington, New Zealand, 3-5 December 2012.

© Aude Billard 23
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Observational Learning: Motion Capture System

Video Source: https://youtu.be/LM4rDfW8-TU
HAL Robotics

© Aude Billard 24
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Reinforcement Learning

© Aude Billard
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Reinforcement Learning & Learning from Demonstration

. [each the robot how to do it through demonstrations or let the robot learn on
ts own

Demonstrations bk | ' Reinforcement
° | learning

—

Teacher shows how to do the task Robot learns on its own

© Aude Billard 26
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Reinforcement Learning

Let a robot explore on its own and learn an optimal controller through trial and error

Challenges:

© Aude Billar

d

Large amounts of data

Time and energy to collect experimental
data

Safety during learning

Typically use simulation: sim2real reality /
gap .

Defining reward function Google Robotics Arm Farm

4 robotic arms, 800,000 grasp attempt: 7
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Reinforcement Learning

L earning in simulation first

Challenges:
Large amounts of data

Time and energy to collect
experimental data (even in
simulation)

Requires very accurate simulation of
the physics of the world

OpenAl

44 CPU cores and 8 GPUs to train our policy, collecting about one hundred years o
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Reinforcement Learning & Learning from Demonstration

Let a robot explore on its own and learn an optimal controller through trial and error

Human@e‘m'ons AtIONEfOl
Iml ation LCeaEning

lhk‘

Kober and Peters, 2008
© Aude Billard 29
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Reinforcement Learning _earning from demonstration

Robot learns on its own, by trial and error gRobot learns by Imitating an expert

© Aude Billard 30
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IRL example : Learning to drive a car

. Gather demonstrations from an expert

. Infer goal/reward function of the environment from the demonstrations

w, for Road Boundary

wy for Staying within Lanes
ws for Keeping Speed
w, for Heading

ws for Collision Avoidance

Image Source: https://iliad.stanford.edu/research/humans

© Aude Billard
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IRL example : Inferring User’s Preference

robot arm

user (subject)

Batzianoulis, I., Iwane, F., Wei, S., Correia, C.G.P.R., Chavarriaga, R., Millan, J.D.R. and Billard, A., 2021. Customizing skills for assistive robotic

© Aude Billard manipulators, an inverse reinforcement learning approach with error-related potentials. Nature Communications biology, 4(1), pp.1-14.
ude blllar
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How do we gather data for learning?

Method to generate Online mode Need model of robot Trainer Number of
the data or world training
examples
Learning from YES NO Anyone <20
human
demonstrations
Optimal control NO YES Skilled >100
programmer
RL (live) NO YES (model-based RL) Anyone >100
NO (model-free RL) (reward)
RL (simulation) YES YES Skilled >1,000

programmer

© Aude Billard 33
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Collecting Data for Training Robots: Other challenges

© Aude Billard 34
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Problem 1: Correspondence Problem

Even when the robot looks more like the human, its body does not have
the same range and dynamics of motion.

© Aude Billard 35



Learning and adaptive control for robots

Problem 1: Correspondence Problem

Robots do not perceive things like we do.
Sonars, Infrared sensors, lasers are common on robots and easier to
process than information from cameras.

© Aude Billard 36
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Problem 1: Correspondence Problem

. Teachers need to train themselves before training the robots.

© Aude Billard 37
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Problem 2: Learning is Data-Sensitive
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Problem 2: Learning is Data-Sensitive

. Data Is environment-dependent

Model Learned at EPFL

© Aude Billard 39
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Problem 3: Variability in Task Detfinition

. Question: What does it mean to
perform a task?

. Multiple ways to accomplish a task:

. multiple motions

© Aude Billard 40
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Problem 3: Variability in Task Detfinition

. Question: What does it mean to
perform a task?

. Multiple ways to accomplish a task:

. multiple motions

. multiple tools

© Aude Billard 41
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Problem 4: Generalizing Control Law — Beyond the Demonstrations

nfer that the task is composed of sequence of actions; each action is relative to the object
the robot must manipulate; but a priori — look at several predefined frames of reference

- - I
— =S

| '-’k ecording demonstration via
- kiq—:sthﬁetic teaching

© Aude Billard 42
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Learning from Demonstration: Using dynamical systems

© Aude Billard 43
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Goal

. Learn Motion Representations from Task Demonstrations

Movement towards an attractor Periodic movement (screwing motion) Movement towards a new attractor

llllllllllllll

Image source: https://www.epfl.ch/labs/lasa/sahr/research/

© Aude Billard 44
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Learning from Demonstration: Examples

* How to use DS-based control to learn a hitting task
* How to extend with compliant control to improve task performance

© Aude Billard 45
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Modelling Hitting Task using Dynamical Systems-Based Control

. Collect Demonstrations of hitting
a golf ball using kinesthetic
teaching

. (Collect the recorded robot states
and velocity at each time step

- We could generate a dynamical
system representing this motion:

x = f(x)

© Aude Billard
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Control using Dynamical Systems-Based Control - Recap

_"__"- ';:- 4‘ - A . "./ i/ S _‘:/ ) ! ¥ i ’
*
oal, x*,

Rédtjireé tﬁe léys‘tem to be asymptoticaliy taleat
lim f (x*) _o andonly at the goal:

© Aude Billard 47




Learning and adaptive control for robots —P=

Control using Dynamical Systems-Based Control - Recap

Requires the system to be asymptotically stable at the goal, x*,
lim f (x*) _po andonly atthe goal:

© Aude Billard 48
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DS-based control of hitting tasks

GGenerate a dynamical system
representing this motion: x = f(x)

Guarantee that the system
asymptotically reaches and

stabilizes at attractor: {L}im}x = X",

where x™*: Ball Location

© Aude Billard

Ball e Starting points Hitting trajectories

0.3 4% | \
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DS-based control of hitting tasks

x = f(x) with a fixed-point attractor
f(x*) -+ 0 Ball e Starting points

Hitting trajectories

Desired velocity at attractor x™ # 0

© Aude Billard 50
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DS-based control of hitting tasks

Modulate the initial stable DS

Ball e Starting points Hitting trajectories

Dynamical system
representing this motion:

x=g(x), gx*) #0

- fx) =x=M(x) * E(x)

. Target field: E(x)

. Strength Factor: M (x)

© Aude Billard 51
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DS-based control of hitting tasks

- Dynamical system representing
this: x = g(x), g(x™) # 0

- We only store the unitary vector
field E(x) == ||lg(x)|| = 1 Vx

- g(x)
EG) =150

- Embeds the orientation at target
and asymptotic stability 4

© Aude Billard 52
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DS-based control of hitting tasks

.- We also learn a function M (x)
from the demonstration set

- Embeds the amplitude of the
velocity when approaching the
ball during demonstration:
M(x) = [|x|

. Can be learned using any ML
regression technique

© Aude Billard 53
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DS-based control of hitting tasks

fQx) = M(x) * E(x)

| 1

| |

Veloclty at target Orientation at target and asymptotic stability
[ * Target Streamlines ]
/s
/’ g (x) 2
A (x g (x) )
e f(x)
r; 9
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DS-based control of hitting tasks

‘ Ball @ Starting points Hitting trajectories

0 ) 0.6

03 , -0.4

0.2

y (m)

-0.2

0.1 () x(m)

0

Representation through DSs of trajectories to sink a golf ball.

© Aude Billard 55
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(Generalization

. EXxpressing the dynamics from the relative position of the ball to the sink
allows one to nicely generalize the orientation toward the ball without
further demonstrations

31d Repro.

& Ball e Starting point ond Repro.

15t Repro.

0.1
= 0.05-
N 0 d

Difterent positions
of the hole

© Aude Billard 56
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DS-based control of hitting tasks

- The learned DS can adapt at run time to perturbations, such as pushing
the robot away from its trajectory (left) and moving the hole (right) by
generating a new trajectory that reaches the target correctly

‘ Ball ® Starting point Original motion === Adapted motion to perturbation

The arm’s position

0.06 The arm’s position 0.06
E 303 _ when the ball ~ 0.043 ... when the ball
w0 ~ started moving = 0'0% | ~ started moving
-0.02 -0.02
0.4 0
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Robotic implementation

HtH

© Aude Billard 58
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Teaching Compliant Control

© Aude Billard 59
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Compliant Control

© Aude Billard 60



Learning and adaptive control for robots

Teaching Compliant Control: What happens when stiffness not
considered?

Too stiff: Liquid spills from jerking Too compliant: Liquid spills from glass

How can we teach robot when to increase and decrease compliance?

ude Billar B
© Aude Bl Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Teaching Compliant Control: Adding Compliance

Teaching decrease in stiffness by wiggling the robot

Stiffness decrease

Reference ’_/\/\/\_. Actual
position position

ude Billar ”
© Aude Billard Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Teaching Compliant Control: Adding Stiffness

Teaching increase in stiffness
by exploiting tactile sensing on robot arm

Stiffness increase

Detected
pressure

ude Billar N
© Aude Bl Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Teaching Compliant Control: Final Result

© Aude Billard

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Remaining Challenges and General Considerations

© Aude Billard 65
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Open challenges

Learning human skills through LFD requires the following questions:
.+ What/Who to imitate?
.+ How to imitate?

. When to imitate?

Answering these questions requires us to better address the correspondence problem.

© Aude Billard 66



Learning and adaptive control for robots

The body shapes our movements

Evolution has shaped the body and the control system simultaneously
So as to optimize the animal’s overall motor control system

© Aude Billard 67
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With enough training....

...we can get bodies to do things for which they were not designed for
In the first place, but this requires tedious and long training periods.

© Aude Billard 68
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Which body for our robots?

Should robots have arms and hands that are similar to human hands and arms?

© Aude Billard 69
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How the body shapes the design of tools

Robots should help us in our dally tasks
- manipulate the same objects
- objects are designed for the human hand

Bent to our needs!

© Aude Billard 70
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Different bodies open the door for more

Billard, Aude, and Danica Kragic. "Trends and challenges in robot manipulation.” Science 364.6446 (2019): eaat8414.

© Aude Billard 71
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Current/Future Research Directions: Learn from Human Demonstrations

o How to ease training of robots from humans?
Learn from small datasets: Reduce the number of demonstrations needed
Combine heterogeneous data types: Use multiple interfaces at once

Improve teaching interactions — easier, cheaper and more user-friendly interfaces

o How to teach robots to do complex tasks without showing all the details?
Use Large Language Models to ease transfer of knowledge
Develop tools for automatically convert demonstrations that the robots can understand
Generate In simulation more examples, sufficient number of examples to generalize

Have robots query users for more information where needed (active learning)

© Aude Billard 12
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Summary

© Aude Billard
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How can we learn controllers from data and how do we get the data?

How can we can use demonstrations to learn task controllers?
Different approaches to Learning from Demonstration

How interface design affects data gathering and demonstration quality
Examples of LD

General Considerations & Future Directions

73
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