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Data-Driven Learning

How to Transmit Skills to Robots

Chapter 2, Book
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Motivation

How can we learn optimal controllers to perform a task from data? 
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• Use data-driven approaches to learn optimal controllers

• How do we gather data for learning? 

?
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Learning from demonstration

Robot learns by imitating an expert
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Main Methods to Train Robots

Reinforcement Learning

Robot learns on its own, by trial and error

Expert data

Human

Bootstrap the search & reduce search to

feasible set of parameters

HumanSimulation

Optimal control
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Learning from demonstration

Robot learns by imitating an expert
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Main Methods to Train Robots

Reinforcement Learning

Robot learns on its own, by trial and error

Expert data

Human

Human
DIFFICULTIES: Humans and robots bodies 

differ - need proper interfaces;                

Requires a knowledgeable human

Bootstrap the search & reduce search to

feasible set of parameters
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Learning from demonstration

Robot learns by imitating an expert
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Optimal Control                                                                                                 

Solutions found by solving an optimal control problem can be used as expert 

demonstrations.                                                                                                                   

Search for paths that are optimal and feasible.

Generate many solutions (warm start with different initial conditions, exploit non 

convexity of the problem ). 

See matlab exercises today

Learning from Demonstration
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Programming by Demonstration

Learning from Demonstration
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Initial Approaches

• Programming by Demonstration

• Started in the 1980s

• Primarily used teleoperation to 

provide demonstrations to the 

robot 

• Demonstrations consisted of 

position and orientation that robot 

would track

7
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Programming By Demonstration

• Teleoperation

• Manually move robot through motions for task

• Generate Motion Primitives to enable task segmentation

• Symbolic Reasoning

• Generate state-action-state sequences to represent task

• Use  ”if-then” rules to construct symbolic task representation

• Originally these symbolic representations were defined as prior knowledge to the 
system, not learned

8
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More Recent Approaches

• Multitude of Algorithms for Learning from Demonstration (LfD) with multitude of 

applications

• From learning simple trajectories to learning sequences of tasks

• How we gather data from humans revolves around three main themes:

• Teleoperation: user controls the robot through interface

• Kinesthetic Teaching: user physically moves the robot

• Observational learning: robot learns from visual observation of 

demonstration
9
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Teleoperation – as a mean to teach robots
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• Users control robots using some interface to perform task

• Demonstrations are used in LfD algorithm

• The quality of learning and performance is sensitive to: 

• Interface design

• Teacher experience

11

Learning from Demonstration: Tele-operation
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Graphical user interface/Tablet

Can communicate the desired motion by mimicking the motion on the tablet, or desired target 

+ User-friendly, cheap, easily integrable to existing set-up

- Limited in what can be transferred (displacement in a plane, reduced field of motion)

12

teaser

Dexterous Telemanipulation With a Multi-Touch Interface. Toh et al.

http://graphics.cs.cmu.edu/?p=223

A Knowledge-Driven Shared Autonomy Human-Robot Interface for Tablet Computers. 

Birkenkampf et al. 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7041352

Learning from Demonstration: Tele-operation

http://graphics.cs.cmu.edu/projects/multitouch/ICHR12_Video.mp4
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Joysticks: control the robot’s end-effector through a 3DOFs or 6DOFs joystick

13

Losey, Dylan P., et al. "Controlling assistive robots with learned latent actions." 2020 IEEE 

International Conference on Robotics and Automation (ICRA). IEEE, 2020.

Video Source: https://iliad.stanford.edu/research/interactions

Learning from Demonstration: Tele-operation

+ Can communicate the desired motion in 

3D or event 6D, easily amenable to control 

6DOFs robot arm in position and 

orientation  

+ User-friendly, cheap, easily integrable 

for a vast range of applications

- Requires often the use of the two hands

- Limited in what can be transferred 

(displacement and speed, not forces)
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+ Can communicate the desired motion in 

3D or event 6D, easily amenable to control 

robots that differ from humans (here 

drones) - control in position and 

orientation  

- Sensitive to experience of teacher

14

A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang, Inverted 

autonomous helicopter flight via reinforcement learning, in: International Symposium on 

Experimental Robotics, 2004

Learning from Demonstration: Tele-operation

Joysticks: control the robot’s end-effector through a 3DOFs or 6DOFs joystick
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Exoskeletons

15

Capio Upper Body Exoskeleton for Teleoperation by the DFKI GmbH Robotics Innovation Center.

https://robotik.dfki-bremen.de/en/research/projects/capio.html

Learning from Demonstration: Tele-operation

+ Conveys directly the dynamics of the 

motion (embodied transmission)

+ Allows to control all joints as well as 

movement in Cartesian space         

- Heavy, cumbersome

- Does not fit all sizes and strengths

- Does not convey nor render forces at 

contact
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+ Enables to perform tasks when remote

+ Can offer a more efficient and more secure 

mean to intervene (in disastrous or dangerous 

environments)

- Need to provide good visual rendering of the 

scene

- Delays in transmission can be detrimental if task 

is too rapid

- Force not always (well) rendered

16

Davinci Surgical Robot

Learning from Demonstration: Tele-operation

Telepresence
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+ Transmit the forces applied by the user

+ Renders the forces perceived by the 

robot to the user

- Close-loop system induces delays of 

100-400ms depending on distance and 

medium used

- Delays may lead to incorrect response

and instable behavior

17

Learning from Demonstration: Tele-operation

Haptic interfaces

LASA Lab / EPF in collaboration with JRL / TsukubaL
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New finger-based haptic devices leverage on sense of 

touch mounted on robots’ fingers to perceive contact 

and render these through hand exoskeleton

+ offer higher resolution

+ Closer to human touch

- Covers only fingertips, but sense of touch is all 

along fingers, palm, top of the hand

- Suffers from drifts, calibration can be an issue

18

HaptX haptic glove integrated with Shadow Robot hand

Footage from Adam Savage’s Tested + ShadowRobot Company and Syntouch

https://www.youtube.com/watch?v=rEoq7DMgaEc&t=24s

Learning from Demonstration: Tele-operation

Haptice Devices & Teleoperation
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Learning from Demonstration: Kinesthetic Teaching

• Teacher physically moves 

robot 

+  Direct control motion of robot

+ Can transmit forces

+ Can perceive forces at contact

LASA Lab / EPFL
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Video Source: https://www.youtube.com/watch?v=xIK6U52TjRM

Learning by Demonstration, Bimanual Coordinated Task, LASA 

20

- Cumbersome

- Limited in the number of joints 

/ limbs one can move at once

Learning from Demonstration: Kinesthetic Teaching

LASA Lab / EPFL

https://www.youtube.com/watch?v=xIK6U52TjRM
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Observational Learning: Vision Systems

21

DexPilot: Vision Based Teleoperation of Dexterous Robotic Hand-Arm System

Handa et al. ICRA 2020

Use RGB-D camera, automatic reconstruction of 

body motion

+ Enable users to perform task in a 

natural manner

+ Can be extended to analysing any videos of 

human motion, not necessarily videos of human 

teaching a robot

- Can be slow (live analysis of camera image 

<50Hz)

- Can be imprecise, especially in face of large 

occlusion (forces user to face cameras)
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Markers attached to body parts are tracked 

by infra-red cameras at high resolution

+ Conveys directly the dynamics of the 

motion (embodied transmission)

+ Allows to control all joints including hand 

movements        

- Requires a set-up with several high 

resolution cameras

- Suits does not fit all sizes and strengths

- Does not convey nor render forces at 

contact

LASA Lab / EPFL

Observational Learning: Motion Capture System
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Observational Learning: Motion Capture System

23

Video Source: https://youtu.be/ggLge1Rw2z4?t=77

C. Stanton, A. Bogdanovych, E. Ratanasena: Teleoperation of a humanoid robot using full-body motion capture, 

example movements, and machine learning. In proceedings of Australasian Conference on Robotics and 

Automation (ACRA 2012), Wellington, New Zealand, 3-5 December 2012. 
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Observational Learning: Motion Capture System

24

Video Source: https://youtu.be/LM4rDfW8-TU

HAL Robotics
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Reinforcement Learning
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• Teach the robot how to do it through demonstrations or let the robot learn on 

its own

26

Reinforcement Learning & Learning from Demonstration
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Challenges:

• Large amounts of data

• Time and energy to collect experimental 
data

• Safety during learning

• Typically use simulation: sim2real  reality 
gap

• Defining reward function

27

Google Robotics Arm Farm

Let a robot explore on its own and learn an optimal controller through trial and error

Reinforcement Learning

14 robotic arms, 800,000 grasp attempts
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Challenges:

• Large amounts of data

• Time and energy to collect 
experimental data (even in 
simulation)

• Requires very accurate simulation of 
the physics of the world

28

OpenAI

Learning in simulation first

Reinforcement Learning

6144 CPU cores and 8 GPUs to train our policy, collecting about one hundred years of experience in 50
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Kober and Peters, 2008

Let a robot explore on its own and learn an optimal controller through trial and error

Reinforcement Learning & Learning from Demonstration
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Learning from demonstration

Robot learns by imitating an expert

30

Reinforcement Learning

Robot learns on its own, by trial and error

Inverse reinforcement learning

No need to design the reward

Uses human demonstration to guide the search for the reward and 

the optimal control policy
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• Gather demonstrations from an expert

• Infer goal/reward function of the environment from the demonstrations 

31

Image Source: https://iliad.stanford.edu/research/humans

IRL example : Learning to drive a car
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Batzianoulis, I., Iwane, F., Wei, S., Correia, C.G.P.R., Chavarriaga, R., Millán, J.D.R. and Billard, A., 2021. Customizing skills for assistive robotic 

manipulators, an inverse reinforcement learning approach with error-related potentials. Nature Communications biology, 4(1), pp.1-14.

IRL example : Inferring User’s Preference
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How do we gather data for learning? 

33
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Collecting Data for Training Robots: Other challenges

34
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Even when the robot looks more like the human, its body does not have 

the same range and dynamics of motion.

Problem 1: Correspondence Problem
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Robots do not perceive things like we do.

Sonars, infrared sensors, lasers are common on robots and easier to 

process than information from cameras.

Problem 1: Correspondence Problem
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• Teachers need to train themselves before training the robots. 

37

Problem 1: Correspondence Problem
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• Teaching a task will differ depending on the kinematics and dynamics of the robot; 

the same motion in Carthesian space will lead to different trajectories in joint 

space

38

Franka Panda: 7DOFUR5: 6DOF

Problem 2: Learning is Data-Sensitive
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Problem 2: Learning is Data-Sensitive

• Data is environment-dependent

39

Model Learned at EPFL Model transferred at AIST/JRL
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Problem 3: Variability in Task Definition

• Question: What does it mean to 

perform a task?

• Multiple ways to accomplish a task: 

• multiple motions

40
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• Question: What does it mean to 

perform a task?

• Multiple ways to accomplish a task: 

• multiple motions

• multiple tools

41

Problem 3: Variability in Task Definition
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Infer that the task is composed of sequence of actions; each action is relative to the object

the robot must manipulate; but a priori – look at several predefined frames of reference

42

Problem 4: Generalizing Control Law – Beyond the Demonstrations
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Learning from Demonstration: Using dynamical systems

43
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Goal

44

• Learn Motion Representations from Task Demonstrations

Image source: https://www.epfl.ch/labs/lasa/sahr/research/
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Learning from Demonstration: Examples

45

• How to use DS-based control to learn a hitting task

• How to extend with compliant control to improve task performance
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Modelling Hitting Task using Dynamical Systems-Based Control

• Collect Demonstrations of hitting 

a golf ball using kinesthetic 

teaching

• Collect the recorded robot states 

and velocity at each time step

• We could generate a dynamical 

system representing this motion: 

ሶ𝑥 = 𝑓(𝑥)

46
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x*: 

target

Requires the system to be asymptotically stable at the goal, x*, 

and only at the goal:( )*lim 0
t

f x
→

=
( ) 0,   *f x x x  

Control using Dynamical Systems-Based Control - Recap
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x*: 

target

Requires the system to be asymptotically stable at the goal, x*, 

and only at the goal:( )*lim 0
t

f x
→

=
( ) 0,   *f x x x  

Control using Dynamical Systems-Based Control - Recap
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• Generate a dynamical system 

representing this motion: ሶ𝑥 = 𝑓(𝑥)

• Guarantee that the system

asymptotically reaches and 

stabilizes at attractor: lim
𝑡→∞

𝑥 = 𝑥∗, 

where 𝑥∗: Ball Location

49

DS-based control of hitting tasks
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• ሶ𝑥 = 𝑓 𝑥 with a fixed-point attractor 

𝑓 𝑥∗ ≠ 0

• Desired velocity at attractor ሶ𝑥∗ ≠ 0

50

DS-based control of hitting tasks
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• Modulate the initial stable DS

• Dynamical system 

representing this motion: 

ሶ𝑥 = 𝑔(𝑥), 𝑔 𝑥∗ ≠ 0

• 𝑓 𝑥 = ሶ𝑥 = 𝑀 𝑥 ∗ 𝐸 𝑥

• Target field: 𝐸(𝑥)

• Strength Factor: 𝑀 𝑥

51

DS-based control of hitting tasks
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• Dynamical system representing 

this: ሶ𝑥 = 𝑔(𝑥), 𝑔 𝑥∗ ≠ 0

• We only store the unitary vector 

field E x ≔ 𝑔 𝑥 = 1 ∀𝑥

• 𝐸 𝑥 =
𝑔(𝑥)

‖𝑔 𝑥 ‖

• Embeds the orientation at target 

and asymptotic stability

52

DS-based control of hitting tasks
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• We also learn a function 𝑀 𝑥
from the demonstration set

• Embeds the amplitude of the 

velocity when approaching the 

ball during demonstration: 

𝑀 𝑥 = ሶ𝑥

• Can be learned using any ML 

regression technique

53

DS-based control of hitting tasks
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𝑓 𝑥 = 𝑀 𝑥 ∗ 𝐸 𝑥

Velocity at target Orientation at target and asymptotic stability

DS-based control of hitting tasks
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Representation through DSs of trajectories to sink a golf ball.

DS-based control of hitting tasks
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• Expressing the dynamics from the relative position of the ball to the sink 

allows one to nicely generalize the orientation toward the ball without 

further demonstrations

56

Generalization
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• The learned DS can adapt at run time to perturbations, such as pushing 

the robot away from its trajectory (left) and moving the hole (right) by 

generating a new trajectory that reaches the target correctly

57

DS-based control of hitting tasks
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Robotic implementation
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Teaching Compliant Control

59
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Compliant Control

60
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Teaching Compliant Control: What happens when stiffness not 

considered? 

61

Too stiff: Liquid spills from jerking

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012

Too compliant: Liquid spills from glass

How can we teach robot when to increase and decrease compliance? 
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Teaching Compliant Control: Adding Compliance

62

Teaching decrease in stiffness by wiggling the robot

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Teaching Compliant Control: Adding Stiffness

63

Teaching increase in stiffness 

by exploiting tactile sensing on robot arm

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Teaching Compliant Control: Final Result

64

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Remaining Challenges and General Considerations

65
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Open challenges

Learning human skills through  LFD requires the following questions: 

• What/Who to imitate?

• How to imitate? 

• When to imitate? 

66

Answering these questions requires us to better address the correspondence problem.  
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The body shapes our movements

67

Answering these questions requires us to first address the correspondence problem.  
Evolution has shaped the body and the control system simultaneously 

so as to optimize the animal’s overall motor control system
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With enough training….

68

Answering these questions requires us to first address the correspondence problem.  
…we can get bodies to do things for which they were not designed for 

in the first place, but this requires tedious and long training periods.
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Which body for our robots?

69

Answering these questions requires us to first address the correspondence problem.  

Should robots have arms and hands that are similar to human hands and arms?
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How the body shapes the design of tools

70

Answering these questions requires us to first address the correspondence problem.  

Robots should help us in our daily tasks

- manipulate the same objects

- objects are designed for the human hand

Bent to our needs!
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Different bodies open the door for more

71

Answering these questions requires us to first address the correspondence problem.  

Billard, Aude, and Danica Kragic. "Trends and challenges in robot manipulation." Science 364.6446 (2019): eaat8414.
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Current/Future Research Directions: Learn from Human Demonstrations

o How to ease training of robots from humans?

• Learn from small datasets: Reduce the number of demonstrations needed

• Combine heterogeneous data types: Use multiple interfaces at once 

• Improve teaching interactions – easier, cheaper and more user-friendly interfaces

o How to teach robots to do complex tasks without showing all the details? 

• Use Large Language Models to ease transfer of knowledge

• Develop tools for automatically convert demonstrations that the robots can understand

• Generate in simulation more examples,  sufficient number of examples to generalize

• Have robots query users for more information where needed (active learning)

72
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Summary

How can we learn controllers from data and how do we get the data? 

73

• How can we can use demonstrations to learn task controllers?

• Different approaches to Learning from Demonstration

• How interface design affects data gathering and demonstration quality

• Examples of LfD

• General Considerations & Future Directions


	Slide 1
	Slide 2: Motivation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Initial Approaches
	Slide 8: Programming By Demonstration
	Slide 9: More Recent Approaches
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Observational Learning: Vision Systems
	Slide 22: Observational Learning: Motion Capture System
	Slide 23: Observational Learning: Motion Capture System
	Slide 24: Observational Learning: Motion Capture System
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: How do we gather data for learning? 
	Slide 34: Collecting Data for Training Robots: Other challenges
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Problem 2: Learning is Data-Sensitive
	Slide 39: Problem 2: Learning is Data-Sensitive
	Slide 40: Problem 3: Variability in Task Definition
	Slide 41: Problem 3: Variability in Task Definition
	Slide 42: Problem 4: Generalizing Control Law – Beyond the Demonstrations
	Slide 43: Learning from Demonstration: Using dynamical systems
	Slide 44: Goal
	Slide 45: Learning from Demonstration: Examples
	Slide 46: Modelling Hitting Task using Dynamical Systems-Based Control
	Slide 47: Control using Dynamical Systems-Based Control - Recap
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Teaching Compliant Control
	Slide 60: Compliant Control
	Slide 61: Teaching Compliant Control: What happens when stiffness not considered? 
	Slide 62: Teaching Compliant Control: Adding Compliance
	Slide 63: Teaching Compliant Control: Adding Stiffness
	Slide 64: Teaching Compliant Control: Final Result
	Slide 65:  Remaining Challenges and General Considerations  
	Slide 66: Open challenges
	Slide 67: The body shapes our movements
	Slide 68: With enough training….
	Slide 69: Which body for our robots?
	Slide 70: How the body shapes the design of tools
	Slide 71: Different bodies open the door for more
	Slide 72: Current/Future Research Directions: Learn from Human Demonstrations
	Slide 73: Summary

