Learning and adaptive control for robots “PFL

Learning Control Laws

Linear Parameter Varying Dynamical Systems
(LPVDS)
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SEDS on Highly Non-Linear Trajectories
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SEDS on Highly Non-Linear Trajectories

K
& ="f(x) =) (@) (Arz + by)
k=1

> Inaccurate
Reproduction of highly
non-linear motions

:“-5\ ) Why?
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SEDS on Highly Non-Linear Trajectories

K
& ="f(x) =) (@) (Arz + by)
k=1

2
Highly Non-linear
trajectories violate
stability condition
oV !

V(z) = >~ f(@) <0

If V is too conservative.
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SEDS on Highly Non-Linear Trajectories

b= (@) = 3 (@) (Apw + by)

k=1 ’ \
State dependent Linear Time-Invariant (LTI) DS

parameter vector — :
Stability of LTI can be shown if 3 a
generic Lyapunov Function:

V(x):(x—x*)TP(x—x*), P=P",P>0

Theorem:
The nonlinear DS above is Globally Asymptotically Stable at x™
if 3 P=P",P-0,withV (x)=(x-x")"P(x-x"}, such that:

(A) P+PA*=Q", Q“=(Q")
b¥ = —A*X"

vk =1,...K

See Theorem 3.3 (Book)
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Learning Non-linear DS with GMM’s and P-QLF

Goal: Learn the parameters of a non-linear DS with P-QLF

Parameterized Quadratic Lyapunov Function (P-OLF)
V(ix) = (x — a:*)TP(;c —x™)

Lyapunov Function V(z) = (z — 2*)T P(z — z*)
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P’s effect is of a reshaping of the Lyapunov function
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P’s effect is of a reshaping of the Lyapunov function
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P-QLF Stability Condition

Parameterized Quadratic Lyapunov Function (P-OLF)
V(ix) = (x — a':*)TP(.’L' — ")
P=P' -0

How to ensure V (x)is always negative?

: oV
Vix) = 8_a:f(w) <0— ATP+PA <0
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Optimization of P-QLF — 15t formulation

Objective function: Maximum likelihood or Mean-square error

Constraints:
b = — AKX

K\' K
(A) P+PA“<0

<

Joint estimation of P and A makes the problem non-convex
Depends on good initial guess for P.

vk

I
-
=

Idea: decouple the problem in two-steps:

1) Estimate the Ak matrices with standard GMM
2) Estimate P in order to enforce the stability constraints

| N. Figueroa and A. Billard. . A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning. CoRL. Oct 2018. °)
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Learning Non-linear DS with GMM’s and P-QLF

(Proposed Approach) We decouple the density estimation from the DS parameters

f(@) =) (@) (Arz + by)
k=1

Step 1: Learn the GMM density
solely on position variables 2.5

K
p(|0y) = 3>y meN (x|, BF)
0, = {7k, “’ka Ek}i{zl
_ mp(xlk)
) = bl
Ap=35:(25) "

b = p§ — Apy

p(x)~ N(xu2)

2D projection of a
normal distribution
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Learning Non-linear DS with GMM’s and P-QLF

(Proposed AI\{pproach) We decouple the density estimation from the DS parameters
f(@) =) (@) (Arz + by)
k=1
Step 2: Estimate DS parameters via non-convex Semi-Definite Programming
M
. . i . i 2
mind (0, )=min > ] (x') x|

- MSE Loss 1.5
O, ={A.b ), IEES

1

Stability Constraints o
(Ak)TP ‘|‘ PAk < 0 ’? 115
—_ * 10
b, = —Ax °l" Ensure Stability with P-QLF 5
P=P7 >0 V@) = (@ —2") P —2)
v k — 1’ o ’K -4.5 - -3.5 -3 -2.5 -2 -1.5

L1
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Learning Non-linear DS with GMM’s and P-QLF

(Caveat) Since the density estimation is decoupled, DS reproduction accuracy
relies on whether the mixture of Gaussians fits well the dynamics of the data.

Aligns well with direction of curvature

12
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Learning Non-linear DS with GMM’s and P-QLF

(Caveat) Since the density estimation is decoupled, DS reproduction accuracy
relies on whether the mixture of Gaussians fits well the dynamics of the data.

Not always the case, especially as nonlinearity of dataset increases

- Need to devise a new procedure to train GMM that = _

Is informed by the fact that data are samples of a DS. i



Learning and adaptive control for robots
Learning Non-linear DS with GMM’s and P-QLF

The user can trace the trajectories to learn a desired
navigation behavior around the traffic cones.

Example: Navigating Around Obstacles
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Fit with traditional GMM training

Use classic EM estimation to fit the Gauss Use Bayesian Information Criterion
functions (BIC) to determine optimal number of
Gauss functions.

Reference Trajectories

BIC Score for GMM fit
T
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Repeat with different initial conditions
and compare the fits.
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Result from traditional GMM fit

Use classic EM estimation to fit the Gauss
functions

Best fit G \I\I with E\I based BI( \Indol Selection

4 GMM-b TE! \th P-QLF
. URA

.| NOT ACC N
2

0r
0
2 \

.b

|

0 2 4 6 8 1

NOT PHYSICALLY CONSISTENT!

10

DO NOT FOLLOW ORDERING COMING FROM VELOCITY FLOW
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Best fit GMM with EM-based BIC Mo

4

2

=PrL

Physically-Consistent GMM

IDEA: ALIGN GAUSS FUNCTION WITH VELOCITY FLOW

election Physically-Consistent Non-

|

2

Define a new metric to group points when they are:

a) Close to one another
b) Velocities pointing in the same direction

17
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Physically-Consistent GMM

Introduce a new metric

. v ) x/ . . A
Ag(x‘,xf,il,jcf)=(l—|— o) x )exp(—l||x‘—xf||‘).

EEA )
Directionality Locality
>0 ( >=>(0

X
Use this metric to assign datapoints to a Gauss function.
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Bayesian Nonparametric Mixture Model

= Bayesian: Bayesian treatment of GMM training

—> No need to fix number of Gauss functions.

—> It learns both the GMM parameters and the number of these parameters required for
an optimal fit of the data.

= Non-parametric: Does NOT mean methods with “no parameters”, rather models
whose complexity (# of states, # Gaussians) is inferred from the data.
= Number of parameters grows with sample size.
= Infinite-dimensional parameter space!

19
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Recall: GMM Clustering Assignment

(see Machine Learning | course on clustering with GMM)

K
Likelihood of the mixture of K Gaussians: L(@ = {nk,yk,zk}:_l ; x) = Z T, - p(x
_ -

Probability associated to || Center of
each Gauss function Gauss function

Length and orientation
of distribution

The number of clusters K is a hyperparameter,
sometimes difficult to determine.

— Bayesian treatment of GMM

20


https://tube.switch.ch/videos/8a1c574f
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Bayesian Nonparametric Mixture Model

1: Set priors on model parameters

Normal-inverse-Wishart distribution

K See supplement on moodle on conjugate Bayesian
_ k k analysis of the Gaussian distribution
® = {ﬂk 2 } /

1

Dirichlet Prior
The number of Gauss function is unknown and infinite,

=K >

The Dirichlet Process is used as a non-parametric prior on the mixing coefficients 7.
It removes the need to specify K.

2: Use Bayesian inference to estimate the parameters.

See Book's Annexes B.3.2-3.3 for details

21
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E-M Traditional GMM Bayesian Nonparametric
Mixture Model

Set the number of clusters K Number of clusters could be infinite and is drawn
from a distribution.

Soft Assignment:

r*: responsibility of cluster k for point x blandjassigment, weigenote:

ok z. =k as the assignment of point x' to cluster k
. mp(xusol)

= — — =
;”k p(x M550, ) Determine automatically number of clusters
and cluster assignment, through maximum likelihood.

Determine automatically cluster assignment,

through maximum likelihood Draw cluster assignment according to how close

datapoints are under new metric:

Draw cluster assignment according to
norm-2 distance.

S HT %/ S
Aij(xl,xf,x‘,xf)=(l+HxiHijH exp(—l||x‘—xf||2).

Directionality Locality

22
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Examples: Physically-Consistent GMM

Best fit GMM with

Reference trajectories

4 EM-based BIC model selection
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Examples: Physically-Consistent GMM

Physically-consistent
Reference trajectories non-parametric mixture model

=PrL

24
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Examples: Physically-Consistent GMM

Physically-consistent
non-parametric mixture model

Reference trajectories

25
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LPV-DS final optimization
Once the GMM parameters have been estimated with PC-GMM, we are left with
satisfying the set of constraints for stability.

This leads to a non-convex but solvable optimization (see Section 3.4.3 of the book
for details).

min J(®y) subject to
O '

o) {(Ak)T+Ak<0,bk=—Akx* Vk=1,...,K p-OLF
(02){(Ak)TP+PAk-<0, b*=0 Vk=1,...,K; P=PT >0 ‘{/

(03){(Ak)TP+PAk-<Qk, O = (0T <0, b= —d*x* Vk=1,... K.

26
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LPV-DS final optimization

Physically-consistent PC-GMM PDF Lyapunov function derivative ¥ (&)
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Result on previous example
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N. Figueroa and A. Billard. . A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning. CoRL. Oct 2018.
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Learning Physically-Consistent Gaussian Mixture Model

18 ”

N. Figueroa and A. Billard. . A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning. CoRL. Oct 2018. 29
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Summary LPV-DS

LPV-DS was offered as an alternative to SEDS to enable learning of more
complex, and nonlinear DS from demonstrations.

SEDS LPV - DS
Fix by hand number of Learns automatically number of
Gaussians Gaussians
Conservative stability Less conservative stability
constraints constraints
-=> Cannot learn highly non- - Can embed large non-
linear trajectories linearities

© Billard, Mirrazavi, Figueroa 30
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