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Learning Control Laws

Linear Parameter Varying Dynamical Systems 

(LPVDS)
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SEDS on Highly Non-Linear Trajectories

Demonstrations

Vector field 

Reproductions
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SEDS on Highly Non-Linear Trajectories

Demonstrations

Vector field 

Reproductions

Why?

✓ Convergence ensured

➢ Inaccurate 

Reproduction of highly 

non-linear motions

Target
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SEDS on Highly Non-Linear Trajectories

Highly Non-linear 
trajectories violate 
stability condition

If V is too conservative.

SEDS Lyapunov Function
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SEDS on Highly Non-Linear Trajectories

Linear Time-Invariant (LTI) DSState dependent 

parameter vector
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Stability of LTI can be shown if  a 

generic Lyapunov Function:
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The nonlinear DS above is Globally Asymptotically Stable at x
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See Theorem 3.3 (Book)
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Learning Non-linear DS with GMM’s and P-QLF
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Goal:  Learn the parameters of a non-linear DS with P-QLF

Quadratic Lyapunov Function (QLF) Parameterized Quadratic Lyapunov Function (P-QLF)

P’s effect is of a reshaping of the Lyapunov function
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Learning and adaptive control for robots

P’s effect is of a reshaping of the Lyapunov function
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Learning and adaptive control for robots

P-QLF Stability Condition

How to ensure          is always negative?
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Learning and adaptive control for robots

Optimization of P-QLF – 1st formulation

Joint estimation of P and A makes the problem non-convex

Depends on good initial guess for P.

Idea: decouple the problem in two-steps:

1)  Estimate the Ak matrices with standard GMM

2)  Estimate P in order to enforce the stability constraints

Objective function: Maximum likelihood or Mean-square error
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N. Figueroa and A. Billard. .  A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning.  CoRL. Oct 2018.
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Step 1: Learn the GMM density 

solely on position variables
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Learning and adaptive control for robots

Learning Non-linear DS with GMM’s and P-QLF

(Proposed Approach) We decouple the density estimation from the DS parameters

2D projection of a 

normal distribution

( ) ( )~ ; ,p x N x  
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Step 2: Estimate DS parameters via non-convex Semi-Definite Programming
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Learning and adaptive control for robots

Learning Non-linear DS with GMM’s and P-QLF

Stability Constraints

MSE Loss

Ensure Stability with P-QLF

(Proposed Approach) We decouple the density estimation from the DS parameters
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Learning and adaptive control for robots

Learning Non-linear DS with GMM’s and P-QLF

(Caveat) Since the density estimation is decoupled, DS reproduction accuracy 

relies on whether the mixture of Gaussians fits well the dynamics of the data.

Aligns well with direction of curvature
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Learning and adaptive control for robots

Learning Non-linear DS with GMM’s and P-QLF

(Caveat) Since the density estimation is decoupled, DS reproduction accuracy 

relies on whether the mixture of Gaussians fits well the dynamics of the data.

→ Need to devise a new procedure to train GMM that 

is informed by the fact that data are samples of a DS.

Not always the case, especially as nonlinearity of dataset increases
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Learning and adaptive control for robots

Example: Navigating Around Obstacles

Learning Non-linear DS with GMM’s and P-QLF
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Learning and adaptive control for robots

Fit with traditional GMM training

Use classic EM estimation to fit the Gauss 

functions

Use Bayesian Information Criterion 

(BIC) to determine optimal number of 

Gauss functions.

Repeat with different initial conditions 

and compare the fits.
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Learning and adaptive control for robots

Result from traditional GMM fit

NOT PHYSICALLY CONSISTENT!

This clustering violates the assumption 

that each Gaussian represents a linear 

DS!

DO NOT FOLLOW ORDERING COMING FROM VELOCITY FLOW

Use classic EM estimation to fit the Gauss 

functions
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Learning and adaptive control for robots

Physically-Consistent GMM

IDEA: ALIGN GAUSS FUNCTION WITH VELOCITY FLOW

Define a new metric to group points when they are:

a) Close to one another

b) Velocities pointing in the same direction
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Introduce a new metric
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Learning and adaptive control for robots

Physically-Consistent GMM

𝐱𝑖

𝐱𝑗

𝐱
·

𝑖
𝐱
·

𝑗

>> 0>> 0 ≈ 0≈ 0

Use this metric to assign datapoints to a Gauss function. 
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Learning and adaptive control for robots

Bayesian Nonparametric Mixture Model

▪ Bayesian: Bayesian treatment of GMM training

→ No need to fix number of Gauss functions.

→ It learns both the GMM parameters and the number of these parameters required for 

an optimal fit of the data.

▪ Non-parametric: Does NOT mean methods with “no parameters”, rather models 

whose complexity (# of states, # Gaussians) is inferred from the data.

▪ Number of parameters grows with sample size.

▪ Infinite-dimensional parameter space!
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Probability associated to 

each Gauss function

20

Learning and adaptive control for robots

Recall: GMM Clustering Assignment

(see Machine Learning I course on clustering with GMM)
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The number of clusters  is a hyperparameter, 

sometimes difficult to determine.

K
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Center of 

Gauss function

Length and orientation 

of distribution

 treatment of GMMBayesian→

2

https://tube.switch.ch/videos/8a1c574f
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Learning and adaptive control for robots

Bayesian Nonparametric Mixture Model

See Book’s Annexes B.3.2-3.3 for details

1: Set priors on model parameters 

2: Use Bayesian inference to estimate the parameters.
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Dirichlet Prior

The number of Gauss function is unknown and infinite, 

K →

Normal-inverse-Wishart distribution

See supplement on moodle on conjugate Bayesian 

analysis of the Gaussian distribution

The Dirichlet Process is used as a  on the mixing coefficients .

It removes the need to specify .

non-parametric prior

K


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( )
( )' '
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Set the number of clusters K

Soft Assignment:

 : responsibility of cluster  for point 
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Determine automatically cluster assignment, 

through maximum likelihood

Draw cl
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uster assignment according to 

norm-2 distance.

Bayesian Nonparametric
Mixture Model

E-M GMM

E-M Traditional GMM

Number of clusters could be infinite and is drawn

from a distribution.

Hard assigment, we denote :

  as the assignment of point  to cluster  

Determine automatically number of clusters 

and cluster a

i

iz k x k=

ssignment, through maximum likelihood.

Draw cluster assignment according to how close

datapoints are under new metric:
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Learning and adaptive control for robots

Examples: Physically-Consistent GMM
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Learning and adaptive control for robots

Examples: Physically-Consistent GMM
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Learning and adaptive control for robots

Examples: Physically-Consistent GMM
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Once the GMM parameters have been estimated with PC-GMM, we are left with 

satisfying the set of constraints for stability. 

This leads to a non-convex but solvable optimization (see Section 3.4.3 of the book 

for details). 
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Learning and adaptive control for robots

LPV-DS final optimization

SEDS Iike

P-QLF
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Learning and adaptive control for robots

LPV-DS final optimization
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Learning and adaptive control for robots

Result on previous example

N. Figueroa and A. Billard. .  A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning.  CoRL. Oct 2018.
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Learning and adaptive control for robots

Learning Physically-Consistent Gaussian Mixture Model

N. Figueroa and A. Billard. .  A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning.  CoRL. Oct 2018.
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LPV-DS was offered as an alternative to SEDS to enable learning of more 

complex, and nonlinear DS from demonstrations.

Summary LPV-DS

30

SEDS LPV - DS

Fix by hand number of 

Gaussians

Conservative stability

constraints

→ Cannot learn highly non-

linear trajectories

Learns automatically number of 

Gaussians

Less conservative stability

constraints

→ Can embed large non-

linearities
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