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Dynamical System as an Ordinary Differential Equation (ODE)

A first order time-invariant (autonomous) dynamical system (DS) is
expressed as a differential equation

d

dt
x = f(x), x(0) = x0, f : Rn → Rn

x ∈ Rn State: x = [x1 . . . xn]
⊤

A second order DS

ẍ = f(x, ẋ), x, ẋ ∈ Rn

Represented as two differential equations

d

dt
y = z

d

dt
z = f(y, z)

y, z ∈ Rn States: y = [y1 . . . yn]
⊤, z = [z1 . . . zn]

⊤

Set of all possible y, z is called state space
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Represented as two differential equations

d

dt
y = z

d

dt
z = f(y, z)

y, z ∈ Rn States: y = [y1 . . . yn]
⊤, z = [z1 . . . zn]

⊤

Set of all possible y, z is called state space
3 / 35



Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Representation, Examples
DS as a vector field
Path Integral
Phase Plot

In a control system the internal dynamics of the plant and the control effort
u(t) are distinguished. In this lecture we assume

The solution of a DS is a path to be followed by a robot and that we
can completely track this path with available controls.

Figure 1: Robot moves towards box

The robot is controlled in velocity: d
dt
x = f(x), x ∈ Rn
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Coupled DS

Two DS can be coupled to achieve an objective

For example, to track a flying object, both the robot position and velocity
must be coupled to that of the flying object

Figure 2: Coupled DS of robot and flying object such that they move together
after the interception point
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Representation

Consider two DS: ẋ = g(x), ẏ = f(y)

In previous example the robot end effector x(t), flying object y(t)
Objective was to modify g(x) to g(x, y) so that limt→∞ x(t)− y(t) = 0

Coupled DS:

ż =

(
ẋ
ẏ

)
= h(z) =

(
g(x, y)
f(y)

)

Example of coupled linear DS:

ẋ = x− y ẏ = −y + y0

Representation:

ż =

(
ẋ
ẏ

)
=

(
1 −1
0 −1

)
︸ ︷︷ ︸

A(z)

(
x
y

)
︸︷︷ ︸

z

+

(
0
y0

)
︸ ︷︷ ︸

b

We shall see in exercises how to choose A(z) so that
limt→∞ x(t)− y(t) = 0
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First Order DS

ẋ = a(x)x, a ∈ R → R, x(0) = 0

Linear : a(x) = c, Nonlinear : a(x) = 1− x

Second Order DS (Pendulum in 2D)

y := θ, z = θ̇

ẏ = z, y(0) = y0

ż = −g

l
sin y − k

m
z, z(0) = z0 Figure 3: Second order DS

Different initial conditions of the DS give different solutions

x(t), t ∈ [0,∞] in case of 1st order DS
[y(t) z(t)]⊤, t ∈ [0,∞] in case of a 2nd order DS .
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Trajectory of a DS

Solution to ODE

First order DS: ẋ = cx

c

∫ t

0

dt =

∫ x

x0

dx

x

Therefore,

ln

(
x

x0

)
= ct =⇒ x(t) = ectx(0)

Second Order DS: ẍ = 1

State space representation: (
ẏ
ż

)
=

(
z
1

)

ż = 1 =⇒ z(t) = t+ z(0)

ẏ = t+ z(0) =⇒ y(t) =
1

2
t2 + z(0)t+ y(0)
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Vector field of a DS

Attach the vector [z f(y, z)]⊤ at [y z]⊤ on the state space
Repeat the process at every point in the state space

Figure 4: Vector field of pendulum DS: θ̈ = −g sin θ − θ̇ for θ ∈ [−2π, 2π],

θ̇ ∈ [−6, 6]
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Path Integral

Solution to the ODE of a DS integrated at some x(0) is called a path
integral

Figure 5: Path integral of pendulum DS for [θ(0) θ̇(0)]⊤ = (π/2, 3)
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Phase Plot of Pendulum DS (no damping)

All path integrals taken together generate a phase plot. Consider the DS

θ̈ = −g sin θ

Figure 6: Phase Plot, Oscillations represented by closed curves 11 / 35
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Phase Plot of Pendulum DS (no damping)

All path integrals taken together generate a phase plot. Consider the DS

θ̈ = −g sin θ

Low amplitude oscillations around θ = 0:
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Phase Plot of Pendulum DS (no damping)

All path integrals taken together generate a phase plot. Consider the DS

θ̈ = −g sin θ

Clockwise motion:
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Phase Plot of Pendulum DS (no damping)

All path integrals taken together generate a phase plot. Consider the DS

θ̈ = −g sin θ

Counter clockwise motion:
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Phase Plot of Pendulum DS (with damping)

Figure 6: Pendulum DS with m = l = k = 1 is θ̈ = −g sin θ − θ̇
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The points from which the DS does not evolve further are equilibrium
points or fixed points or stationary points

If a DS is initialized at an equilibrium point the solution stays at the
equilibrium point for all time.

Definition

The equilibrium points x∗ of the DS: ẋ = f(x) are those x which satisfy the
equation f(x) = 0.
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Figure 7: DS: ẋ = x− x2,
x∗ = {0, 1}
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Figure 8: Pendulum DS with
x∗ = (nπ, 0), n = 0, 1, 2, . . .
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Vector field vanishes at equilibrium points

Figure 9: Vector field of damped pendulum DS: θ̈ = −g sin θ − θ̇ for θ ∈ [−2π, 2π],

θ̇ ∈ [−2π, 2π]
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Equilibrium points can be isolated (as seen in examples above) or occur in
clusters:

Linear DS

ẋ = Ax, x =

(
x1

x2

)
, A =

(
1 −0.5
2 −1

)
(
ẋ1

ẋ2

)
=

(
x1 − 0.5x2

2x1 − x2

)

Equilibrium Points:
{(x1, x2) : x1 = 0.5 ∗ x2 }

Van der Pol Oscillator DS

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − x1 µ > 0

x(0)=(1,1)
x(0)=(-1,0)
x(0)=(3,1)

Figure 10: Stable limit cycle (an isolated
periodic orbit)
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The stability of an equilibrium point x∗ can be classified as

Unstable if x moves away from x∗ with time.

Asymptotically stable if x → x∗ from all x(0) ∈ D as t tends to infinity,
D is a subset of the state space.

Globally asymptotically stable if x → x∗ as t tend to infinity, from all
x(0) in the state space.

Exponentially stable if the rate of convergence to x∗ is exponentially
fast within D
Globally exponentially stable if the rate of convergence to x∗ is
exponentially fast from everywhere in the state space.

We make these notions mathematically precise after a brief study of
stability in linear DS
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Figure 11: Pendulum DS with m = l = k = 1 is θ̈ = −g sin θ − θ̇

Observe that (θ, θ̇) = (0, 0) is asymptotically stable and
(θ, θ̇) ∈ {(π, 0), (−π, 0)} are unstable

17 / 35



Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Figure 11: Pendulum DS with m = l = k = 1 is θ̈ = −g sin θ − θ̇

Observe that (θ, θ̇) = (0, 0) is asymptotically stable and
(θ, θ̇) ∈ {(π, 0), (−π, 0)} are unstable

17 / 35



Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Linear DS in 2D

Consider the following DS:

ẋ = Ax, x =

(
x1

x2

)
, x(0) =

(
x1,0

x2,0

)
Equilibrium Point: x∗ = (0, 0)

Solving linear ODE through matrix exponential

The solution of the differential equation ẋ = Ax, x ∈ Rn, is given by
x = eAtx(0).

If A is diagonalizable: There exists B > 0 s.t. BDB−1 = A, with
D = diag(λ1, . . . , λn), Eig(A) = {λi}ni=1

exp(A) = BeDB−1

Solution to 2 dim linear DS:(
x1(t)
x2(t)

)
= BeDtB−1x(0)
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Assume that A = diag(λ1, λ2), the solution is:

x1(t) = eλ1tx1(0) and x2(t) = eλ2tx2(0)

Visualization of vector field:

Figure 12: x∗ is globally exponentially stable with A = diag(−1,−1)
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Assume that A = diag(λ1, λ2), the solution is:

x1(t) = eλ1tx1(0) and x2(t) = eλ2tx2(0)

Visualization of vector field:

Figure 12: x∗ is unstable with A = diag(1, 1)
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Stability of equilibrium points

Assume that A = diag(λ1, λ2), the solution is:

x1(t) = eλ1tx1(0) and x2(t) = eλ2tx2(0)

Visualization of vector field:

Figure 12: x∗ is a saddle point with A = diag(−1, 1)
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Summary of results for Linear DS

Stability of a linear DS in 2 dimensions is easily verified

If Re(λ1) < 0 and Re(λ2) < 0, x∗ is globally exponentially stable

If Re(λ1) > 0 and Re(λ2) > 0, x∗ is unstable

If Re(λ1) > 0 and Re(λ2) < 0, x∗ is a saddle point

Questions:

What about a higher dimensional linear DS?

What about a nonlinear DS?
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Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Stability of nonlinear DS

Explicit solution to a nonlinear ODE is hard
Hence a precise mathematical notion of stability is necessary

An equilibrium point x∗ is

Stable if for any ϵ > 0, there exists a δ > 0 s.t. for all t > 0,

∥x(0)− x∗∥ < δ =⇒ ∥x(t)− x∗∥ < ϵ

Asymptotically stable if stable and there exists δ > 0 s.t. for all t > 0

∥x(0)− x∗∥ < δ =⇒ lim
t→∞

∥x(t)− x∗∥ = 0

Exponentially stable if asymptotically stable and there exists
δ, α, β > 0 s.t. for all t > 0

∥x(0)− x∗∥ < δ =⇒ ∥x(t)− x∗∥ ≤ α ∥x(t)− x∗∥ e−βt

Unstable if not stable
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Study of stability of x∗ of a DS ẋ = f(x), x ∈ Rn is simplified by the
existence of a candidate Lyapunov function V : D ⊂ Rn → R s.t.

V (x∗) = 0, V (x) > 0 for all x ∈ D − {x∗}

Lyapunov stability theorem

Given x∗ if there exists a candidate V , x∗ is

Stable if d
dt
{V (x)} ≤ 0 for all x ∈ D

Asymptotically stable if d
dt
{V (x)} < 0 for all x ∈ D − {x∗}

Exponentially stable if d
dt
{V (x)} ≤ −βV (x) for all x ∈ D − {x∗} and a

β > 0

For an asymptotically stable x∗

V (x) is an energy like function

D defines the region of attraction
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

General Lyapunov function V : Rn → R for a linear DS (ẋ = Ax) is

V (x) = x⊤Px, P ≻ 0 (is positive definite)

Therefore,

V̇ (x) = x⊤P ẋ+ ẋ⊤Px = x⊤(PA+A⊤P )x

x∗ = 0 is globally asymptotically stable if there exists Q ≻ 0 s.t.

Lyapunov Equation

PA+A⊤P +Q = 0

Closed form solution exists only if A has all negative eigen values

P =

∫ ∞

0

eA
⊤tQeAtdt, Q ≻ 0
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Lyapunov functions

Linear DS with A = diag(−1,−1)

Choose P =

(
1 0
0 1

)
, V (x) = 1

2
x⊤Px = x2

1 + x2
2

V̇ = −2(x2
1 + x2

2) = −2V (x)
(0, 0) is globally exponentially stable
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Lyapunov functions

Pendulum DS: ẋ1 = x2, ẋ2 = −g sinx1 − x2

V1(x) = g(1− cos(x1)) + 0.5x2
2

V1(
(
0 0

)⊤
) = 0 and V (x) > 0 for any x ∈ R2 \ {

(
0 0

)⊤}

d

dt
V1(x) = g sin(x1)ẋ1 + x2ẋ2 = −x2

2 ≤ 0

(0, 0) is stable

V2(x) = g(1− cos(x1)) +
1
2
x⊤Px, P =

(
b b
b 1

)
, 0 < b < 1

P is positive definite as Det(P ) > 0 and Tr(P ) > 0

d

dt
V2(x) = −

1

2
{gx1 sin(x1) + x2

2} < 0 for all − π < x1 < π

Asymptotic stability in D = {x ∈ R2 : |x1| < π}
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Level sets of Lyapunov function

Figure 13: Level sets of V (x1, x2) =
1
2
(x2

1 + x2
2) and V1(x) = g(1− cos(x1)) + 0.5x2

2

The condition V̇ (x(t)) ≤ 0 =⇒ for some τ if x(τ) : V (x(τ)) = c,
then for all t > τ we have V (x(t)) ≤ c.

When V (x) < 0, the trajectory moves from one Lyapunov surface to an
inner Lyapunov surface with a smaller c.

As c decreases, the Lyapunov surface V (x) = c shrinks to V (x∗) = 0
=⇒ x(t) → x∗ as t → ∞
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Invariant Set

A set S is positively invariant w.r.t the dynamics if

x(0) ∈ S =⇒ x(t) ∈ S for all t > 0

The set of points x ∈ D for which d
dt
{V (x)} ≤ 0 is a positively

invariant set

In some cases if we have a candidate Lyapunov function V (x) at a fixed
point x∗ satisfying d

dt
{V (x)} ≤ 0, we can ensure asymptotic stability

La Salle’s Invariance Principle: If the only trajectory in {x : V̇ (x) = 0}
is x(t) = x∗, then x∗ is asymptotically stable

Toy Example

ẋ = −(x− x∗), V (x) = x2

d

dt
V (x(t)) = 2(x− x∗)ẋ = −2(x− x∗)2 ≤ 0

Observe that {x : V̇ (x) = 0} = {x∗}. Therefore x∗ is asymptotically stable
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Observe that {x : V̇ (x) = 0} = {x∗}. Therefore x∗ is asymptotically stable

27 / 35



Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Invariant Set

A set S is positively invariant w.r.t the dynamics if

x(0) ∈ S =⇒ x(t) ∈ S for all t > 0

The set of points x ∈ D for which d
dt
{V (x)} ≤ 0 is a positively

invariant set

In some cases if we have a candidate Lyapunov function V (x) at a fixed
point x∗ satisfying d

dt
{V (x)} ≤ 0, we can ensure asymptotic stability

La Salle’s Invariance Principle: If the only trajectory in {x : V̇ (x) = 0}
is x(t) = x∗, then x∗ is asymptotically stable

Toy Example
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Modulation of DS

In many applications modulating the behavior of a DS is essential

Generate rich class of trajectories while preserving stability of fixed
point

To avoid either a single obstacle and converge asymptotically to a
target

Figure 14: Single obstacle
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Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Modulation of DS

In many applications modulating the behavior of a DS is essential

To avoid either a single obstacle and converge asymptotically to a
target

To avoid multiple obstacles and still converge to a target 1

Figure 14: Wheelchair (orange) tries to
avoid a human crowd (circles)

Figure 15: Multiple obstacles in phase
plot

1Source: L. Huber et al, ’Avoidance of Convex and Concave Obstacles With
Convergence Ensured Through Contraction’
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Consider a DS in 2 dimensions asymptotically stable at x∗ and a Lyapunov
function V (x) = (x− x∗)⊤(x− x∗)

From Lyapunov theorem: dV (x)
dt

= (x− x∗)⊤ẋ < 0 is now violated!

V (x) = ||x||2

V (x(t)) →
01234

x
∗

x− x
∗

ẋ

Figure 16: Linear DS asymptotically converging to x∗
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Consider a DS in 2 dimensions asymptotically stable at x∗ and a Lyapunov
function V (x) = (x− x∗)⊤(x− x∗)

From Lyapunov theorem: dV (x)
dt

= (x− x∗)⊤ẋ < 0 is now violated!

V (x) = ||x||2

V (x(t)) →
01234

x
∗

x− x
∗

ẋ

Figure 16: Convex obstacle avoidance with asymptotic stability (Lyapunov) at x∗
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Consider a DS in 2 dimensions asymptotically stable at x∗ and a Lyapunov
function V (x) = (x− x∗)⊤(x− x∗)

From Lyapunov theorem: dV (x)
dt

= (x− x∗)⊤ẋ < 0 is now violated!

V (x) = ||x||2

V (x(t)) →
01234

x
∗

x− x
∗

ẋ

Figure 16: Concave obstacle avoidance with asymptotic stability at x∗ (Lyapunov
condition fails)

Contraction theory:

To show red trajectory is ‘close’ to one of black trajectories
To modulate the behavior of a DS by change of coordinates
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Notation, Definitions

Infinitesimal displacement from a trajectory x(t) of the DS is denoted
by δx(t)

Figure 17: Visualization of δx(t)

Rate of change of δx(t)-

∂f

∂x
δx =

d

dt
(x(t) + δx)− f(x(t)) =

d

dt
δx

Metric M(x) is a positive definite matrix
Rate of change of distance δx⊤M(x)δx is

d

dt
(δx⊤M(x)δx) = δx⊤

[
M(x)

∂f

∂x
+

∂f

∂x

⊤
M(x) + Ṁ(x)

]
δx
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Objective: To find the region D and conditions on M(x) so that
(δx⊤M(x)δx) reduces exponentially

This means δx(t)⊤M(x)δx(t) → 0 as t → ∞
Recall that the solution to a linear ODE of the form dy

dt
≤ −βy is

y(t) ≤ e−βty(0).

Replacing with y(t) = δx(t)⊤M(x)δx(t)

The contraction condition implies

d

dt

[
δx(t)⊤M(x)δx(t)

]
≤ −β(δx(t)⊤M(x)δx(t))

Contraction Region

A set D ⊂ Rn where the following holds for all x ∈ D

M(x)
∂f

∂x
+

∂f

∂x

⊤
M(x) + Ṁ(x) ≤ −βM(x)

for some β > 0 is called a contraction region and M(x) is called a
contraction metric
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(δx⊤M(x)δx) reduces exponentially

This means δx(t)⊤M(x)δx(t) → 0 as t → ∞
Recall that the solution to a linear ODE of the form dy
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≤ −βy is
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Description of a dynamical system
Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

An Equivalent Formulation

As M(x) ≻ 0 there exists an N(x) ≻ 0 s.t. M(x) = N⊤(x)N(x)

Metric formulated as change of coordinates

Infinitesimal displacement δz is a coordinate change of δx defined as

δz = Nδx

Time derivative

d

dt
δz =

(
d

dt
N +N

∂f

∂x

)
N−1δz

Ensure the time derivative evolves as

d

dt
δz = −δz

by the following equivalent condition

Contraction Coordinate change

N ≻ 0 defines a contraction region D if for all x ∈ D(
d

dt
N +N

∂f

∂x

)
N−1 = −Q, Q ≻ 0
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Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Contraction metric, Linear DS

Consider the illustrated DS that is violating locally Lyapunov
constraint.

Make a change of coordinate using N(x) =

(
n1(x)
n2(x)

)
with

n1(x) = −(x− x∗) and n2(x) = f(x)

The metric is M(x) = N(x)TN(x) =

( ∥∥n1(x)
∥∥ n1(x)Tn2(x)

n2(x)Tn1(x)
∥∥n2(x)

∥∥ )
decreases until convergence to the attractor.
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Equilibrium points: Types, Examples

Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Significance of a global contraction region

If the contraction region D = Rn has a unique equilibirum point then all
trajectories converge to it exponentially

Consider a Lyapunov function

V (x) = f(x)⊤M(x)f(x)

Check that this is a valid Lyapunov function

The rate of change of V -

d

dt
V (x) = f(x)⊤[M(x)

∂f

∂x
+

∂f

∂x

⊤
M(x) + Ṁ(x, t)]f(x) = −βV (x)

Conversely, for any exponentially stable x∗, there exists a contraction
metric M(x).
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Nonlinear DS Stability

Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Comparison with Lyapunov theory

Consider a DS with an asymptotically stable fixed point x∗

Lyapunov Theory

Existence of V : D → R s.t.

Contraction Theory

Existence of metric M(x) for all x ∈ D
s.t. (δx)⊤M(δx) → 0 as t → ∞
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Lyapunov Theory

Existence of V : D → R s.t.
∥x(t)− x∗∥ → 0 as t → ∞
Region of attraction D
Condition for asymptotic
stability to x∗ is related to
existence of V s.t.

d

dt
V (x) < 0 for x ∈ D

Contraction Theory

Existence of metric M(x) for all x ∈ D
s.t. (δx)⊤M(δx) → 0 as t → ∞
Contraction region D
Condition for asymptotic stability to
x(t) is related to existence of M
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+
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∂x

⊤
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Comparison with Lyapunov theory

Consider a DS with an asymptotically stable fixed point x∗

Lyapunov Theory

Existence of V : D → R s.t.
∥x(t)− x∗∥ → 0 as t → ∞
Region of attraction D
Condition for asymptotic
stability to x∗ is related to
existence of V s.t.

d

dt
V (x) < 0 for x ∈ D

Trajectory always close to x∗

w.r.t ∥.∥2

Contraction Theory

Existence of metric M(x) for all x ∈ D
s.t. (δx)⊤M(δx) → 0 as t → ∞
Contraction region D
Condition for asymptotic stability to
x(t) is related to existence of M
satisfying

M
∂f

∂x
+

∂f

∂x

⊤
M(x) + Ṁ ≤ −βM(x)

Trajectory not necessary close to x∗

w.r.t ∥.∥2
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