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Dynamical System as an Ordinary Differential Equation (ODE)

A first order time-invariant (autonomous) dynamical system (DS) is
expressed as a differential equation

%m = f(z), z(0)=z0, f:R"—>R"
z €R™ State: x=[r1...2,]"
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Representation, Examples
DS as a vector field

Path Integral

Phase Plot

Dynamical System as an Ordinary Differential Equation (ODE)

A first order time-invariant (autonomous) dynamical system (DS) is
expressed as a differential equation

x €R™ State: z=[z1...2,

—z = f(z), z(0)=z0, [f:R"—>R"

]T

A second order DS

Represented as two differential equations

y, z € R"

i=f(z%), =zdieR"

4
a? =

d
4o e s

States: y = [y1 .. .yn]T, z=|z1... zn]T

Set of all possible y, z is called state space
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Representation, Examples

Descripti f a dynamical syste
escription of a dynamical system DS as a vootor field

Equilibrium points: Types
Nonlinear DS S

Phase Plot

In a control system the internal dynamics of the plant and the control effort
u(t) are distinguished. In this lecture we assume

@ The solution of a DS is a path to be followed by a robot and that we
can completely track this path with available controls.

Figure 1: Robot moves towards box

o The robot is controlled in velocity: Lz = f(z), z € R"
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DS as a vector field

Path Integral

Phase Plot

Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Coupled DS

Two DS can be coupled to achieve an objective

For example, to track a flying object, both the robot position and velocity
must be coupled to that of the flying object

Figure 2: Coupled DS of robot and flying object such that they move together
after the interception point
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DS as a vector field
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Phase Plot

Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Representation

o Consider two DS: & = g(z), y = f(y)
o In previous example the robot end effector z(t), flying object y(¢)
o Objective was to modify g(z) to g(z,y) so that limi oo z(t) —y(t) =0

e Coupled DS: '
= () == (%)
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Representation, Examples
DS as a vector field

Path Integral

Phase Plot

Description of a dynamical system

Representation

o Consider two DS: & = g(z), y = f(y)
o In previous example the robot end effector z(t), flying object y(¢)
o Objective was to modify g(z) to g(z,y) so that limi oo z(t) —y(t) =0

o Coupled DS: .
2= () =ma= ()

o Example of coupled linear DS:
t=z—-y y=-y+y

Representation:

N~
A(z) z
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Representation, Examples
DS as a vector field

Path Integral

Phase Plot

Description of a dynamical system

Representation

o Consider two DS: & = g(z), y = f(y)
o In previous example the robot end effector z(t), flying object y(¢)
o Objective was to modify g(z) to g(z,y) so that limi oo z(t) —y(t) =0

o Coupled DS: .
2= () =ma= ()

o Example of coupled linear DS:

T=x—-y Yy=-y+y

(-6 D66

N~
A(z) z

Representation:

o We shall see in exercises how to choose A(z) so that
lim; o0 2(t) —y(t) =0
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Representation, Examples
DS as a vector field

Path Integral

Phase Plot

Description of a dynamical system

z=a(zx)r, a€R—-R, z(0)=0

Linear : a(z) = ¢, Nonlinear:a(z)=1—=z

Second Order DS (Pendulum in 2D)

y=0, z=40
y=1zy(0)=1wyo

3= _% siny — EZ’ 2(0) = 2 Figure 3: Second order DS

o Different initial conditions of the DS give different solutions

e z(t), t € [0,00] in case of 1st order DS
[y(t) 2(®)]T,t € [0,00] in case of a 2nd order DS .
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Trajectory of

Solution to ODE
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Description of a dynamical system
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Nonlinear DS Stability

Trajectory of a DS

Solution to ODE

First order DS: = = cx

Therefore,
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Description of a dynamical system

Trajectory of a DS

Representation, Examples
DS as a vector field

Path Integral

Phase Plot

Solution to ODE

First order DS: & = cx

Therefore,
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Representation, Examples
DS as a vector field

Path Integral

Phase Plot

Vector field of a DS

o Attach the vector [z f(y,2)]" at [y 2] on the state space

o Repeat the process at every point in the state space

T T
6 - - N & - <
N NN D = B
\ N P
4 ~ LI
VNN y »
AN " \ e i
T N ; tt o
= o o) .
= I 5
s oz B 3
4r ~ = . ~ ~
p L :
6 N P e
. . . L L . .
E) 5 4 0 2 4 6
o(t) —

Figure 4: Vector field of pendulum
0 € [—6,06]

DS: § = —gsin@ — 0 for 6 € [—27, 27],
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Representation, Examples

Description of a dynamical system
1 & A DS as a vector field

Bquilibrium points:_ T3./p.ut;, ‘Exa.un.p.lcs Poth Integral
Nonlinear DS Stability
Phase Plot

@ Solution to the ODE of a DS integrated at some z(0) is called a path
integral

Figure 5: Path integral of pendulum DS for [#(0) 6(0)]T = (n/2,3)
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Equilibrium points: Types, Examples
Nonlinear DS Stability

Phase Plot of Pendulum DS (no damping)

All path integrals taken together generate a phase plot. Consider the DS
6=— gsinf

°
1

-
T

1

~

/
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o(t) —

O(t) —
N o
T T
1 1

A
T

&

Figure 6: Phase Plot, Oscillations represented by closed curves 11/35



Representation, Examples
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b b b7 Phase Plot

Phase Plot of Pendulum DS (no damping) _

All path integrals taken together generate a phase plot. Consider the DS
6 =—gsind

Low amplitude oscillations around 6 = 0:
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All path integrals taken together generate a phase plot. Consider the DS
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11/35



Representation, Examples

Description of a dynamical system
1 & A DS as a vector field

b7 Phase Plot

Phase Plot of Pendulum DS (no damping) _

All path integrals taken together generate a phase plot. Consider the DS

6 =—gsind

Clockwise motion:
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Representation, Examples

D ipti f a d ical t
escription of a dynamical system DS as a vector fiold

b b b7 Phase Plot

Phase Plot of Pendulum DS (no damping) _

All path integrals taken together generate a phase plot. Consider the DS

6 =—gsind

High amplitude clockwise motion:
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Representation, Examples

Description of a dynamical system D e ]

b7 Phase Plot

Phase Plot of Pendulum DS (no damping) _

All path integrals taken together generate a phase plot. Consider the DS

6 =—gsind

Counter clockwise motion:
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tation, Examples
DS as a vector field

Path Integral

Phase Plot

Description of a dynamical system
Equilibrium points: Types, Examplec
Nonlinear DS Stability

Phase Plot of Pendulum DS (with damping)

0(t) —

Figure 6: Pendulum DS withm =l =k =1is 6 = —gsinf — 0
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

e The points from which the DS does not evolve further are equilibrium
points or fized points or stationary points
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Equilibrium points of a DS
Stability of equilibrium points

e The points from which the DS does not evolve further are equilibrium
points or fized points or stationary points

o If a DS is initialized at an equilibrium point the solution stays at the
equilibrium point for all time.
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

e The points from which the DS does not evolve further are equilibrium
points or fized points or stationary points

o If a DS is initialized at an equilibrium point the solution stays at the
equilibrium point for all time.

Definition

The equilibrium points z* of the DS: & = f(x) are those x which satisfy the
equation f(z) = 0.

.
ol —x(0)=1 sk
I\ x(0)=2
x(0)=0 A
g x(0)=0.5
o [-x(0)=0.1 ot
g/ BN
o il
0 )
: e e A . S . ‘ R
o(t) —
Figure 7: DS: & = & — 2 . .
o ’ Figure 8: Pendulum DS with
z* ={0,1}

z* = (nm,0),n=0,1,2,...
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Description of a dynamical system Equilibrium points of a DS
Equilibrium points: Types, Examples s e
Nonlinear DS Stability “ y ot equ um points
.

Vector field vanishes at equilibrium points

8 T T T T T T T
6 = nd BN ]
4 e b 4
2r R b
e
T ok il t 4
A 0 o [} N
Yoo
2 oo LS - 4
NI
ol N
4t e -
e 4
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-8 £ -4 2 0 2 4 6 8
60—

Figure 9: Vector field of damped pendulum DS: 6= —gsinf — 6 for 6 € [—2m, 27,

6 € [—2m, 27
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Equilibrium points can be isolated (as seen in examples above) or occur in
clusters:

15 /35



Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Equilibrium points can be isolated (as seen in examples above) or occur in
clusters:

. Z1
& =Az, z= (arz) A= (2 —il ) Equilibrium Points:

{(z1,22) : 1 =05 %2 }

x'l I % 0.5{132
Za) 271 — z2
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Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Equilibrium points can be isolated (as seen in examples above) or occur in
clusters:

. Z1
& =Az, z= (arz) A= (2 —il ) Equilibrium Points:

{(z1,22) : 1 =05 %2 }

x'l I % 0.5{132
Za) 271 — z2

Van der Pol Oscillator DS

i‘l — 22,

o =p(l—adza—z1 p>0
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Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Equilibrium points can be isolated (as seen in examples above) or occur in
clusters:

. Z1
& =Az, z= (arz) A= (2 —il ) Equilibrium Points:

. {(z1,22) : 1 =05 %2 }
1\ _ (T1— 0.5{132
(:172) - ( 2:131 — T2 >

Van der Pol Oscillator DS 1
T = a2, T
o =p(l—adza—z1 p>0 I

zy(t) —

Figure 10: Stable limit cycle (an isolated 5,45



Description of a dynamical system
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Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

The stability of an equilibrium point x* can be classified as

o Unstable if  moves away from x* with time.
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The stability of an equilibrium point x* can be classified as
o Unstable if  moves away from x* with time.

e Asymptotically stable if z — z* from all £(0) € D as ¢ tends to infinity,
D is a subset of the state space.
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Equilibrium points of a DS
Stability of equilibrium points

The stability of an equilibrium point x* can be classified as
o Unstable if x moves away from z* with time.
o Asymptotically stable if x — z* from all z(0) € D as t tends to infinity,
D is a subset of the state space.
o Globally asymptotically stable if x — z* as t tend to infinity, from all
z(0) in the state space.
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Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

The

stability of an equilibrium point x* can be classified as

Unstable if x moves away from z* with time.

Asymptotically stable if x — z* from all (0) € D as t tends to infinity,
D is a subset of the state space.

Globally asymptotically stable if x — x* as ¢ tend to infinity, from all
z(0) in the state space.

Exponentially stable if the rate of convergence to z* is exponentially
fast within D
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Description of a dynamical t
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Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

The stability of an equilibrium point z* can be classified as
o Unstable if x moves away from z* with time.
o Asymptotically stable if z — z* from all £(0) € D as ¢ tends to infinity,
D is a subset of the state space.
o Globally asymptotically stable if x — z* as t tend to infinity, from all
z(0) in the state space.
o Exponentially stable if the rate of convergence to z* is exponentially
fast within D
o Globally exponentially stable if the rate of convergence to =™ is
exponentially fast from everywhere in the state space.
We make these notions mathematically precise after a brief study of
stability in linear DS
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Yes >tior a dynamica <
- Ll]i‘lik‘)r'i’lllrr: ‘O;Zts_ LE" l‘: Elxa‘m“l:; Equilibrium points of a DS
gl 1» Not ‘«HNY,I') “’;1 St \xi]:\)v\\ Stability of equilibrium points

a(t) -

Figure 11: Pendulum DS withm =1l=k=11s 6= —gsinf — 60
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Figure 11: Pendulum DS withm =1l=k=11s 6= —gsinf — 60

Observe that (0,0) = (0,0) is asymptotically stable and
(0,0) € {(n,0), (—m,0)} are unstable
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Equilibrium points of a DS

Equilibrium points: Types, Examples Stability of equilibrium points

Linear DS in 2D

Consider the following DS:

Solving linear ODE through matrix exponential

o The solution of the differential equation & = Az, z € R", is given by
z = e4tz(0).

o If A is diagonalizable: There exists B > 0 s.t. BDB™! = A, with
D = diag(h, ., An)s Big(A) = {A )iy

exp(A) = Be" B!

Solution to 2 dim linear DS:

<x1(t)) — BeP'B~'2(0)

X2 (t)
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Assume that A = diag(A1, A2), the solution is:
z1(t) = eM'21(0)  and  2a(t) = €' 1(0)

Visualization of vector field:

4 T T T T T T T
3F Y M @& L o & |
% N & R
. &g S
2r NN p .
. ~ Y / ' -
1k ~ ~ ~ ;e - i
1 B mS B B G oma m=
~ OF = B H B 4
8§ B P
Ak 7 T ~ 7
& 1 ¢ L’
N ol I I R i
-2 2 S S N
2 L T 8 3§
3k A F g kK 4
4 L L L L L L 1
-4 -3 2 -1 0 1 2 3 4

Figure 12: z* is globally exponentially stable with A = diag(—1,—1)
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Nonlinear DS Stability

Assume that A = diag(\1, A\2), the solution is:
z1(t) = eMz1(0)  and  za(t) = €*2'22(0)

Visualization of vector field:

4 T T T T T T T
X A i) 1 ! T A
3t NN
X N X 4 7 r
2k oK & o 4 g
oo ;oo
5, % B -
1+ i 5 & ] » -
& 2 g
1k - - ! N N
o Bo& 8 s
< I's i v N ~
2F £ 2 F 4 & NN
2 2 T T T
3k 2 S T TR N
A T
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-4 3 2 -1 0 1 2 3
Ty —

Figure 12: z* is unstable with A = diag(1,1)
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Assume that A = diag(\1, A\2), the solution is:
z1(t) = M2 (0)  and  ao(t) = 2'22(0)

Visualization of vector field:

Ty —

Figure 12: z* is a saddle point with A = diag(—1,1)
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Equilibrium points of a DS
Stability of equilibrium points

Summary of results for Linear DS

Stability of a linear DS in 2 dimensions is easily verified

o If Re(A1) < 0 and Re(X2) < 0, z* is globally exponentially stable
o If Re(A1) > 0 and Re(A2) > 0, z* is unstable
o If Re(A1) > 0 and Re(X2) < 0, z* is a saddle point

Questions:
e What about a higher dimensional linear DS?

e What about a nonlinear DS?
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Stability of nonlinear DS

o Explicit solution to a nonlinear ODE is hard
o Hence a precise mathematical notion of stability is necessary

An equilibrium point z* is
e Stable if for any € > 0, there exists a 6 > 0 s.t. for all ¢ > 0,

[€(0) =27l <0 = la(t) — 27| <e
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Stability of nonlinear DS

o Explicit solution to a nonlinear ODE is hard
o Hence a precise mathematical notion of stability is necessary

An equilibrium point z* is
e Stable if for any € > 0, there exists a 6 > 0 s.t. for all ¢ > 0,

[€(0) =27l <0 = la(t) — 27| <e

o Asymptotically stable if stable and there exists § > 0 s.t. for all t > 0

2(0) = 2" <6 = Jim [|a(t) — 2"]| = 0
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Lyapunov stability
Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Stability of nonlinear DS

o Explicit solution to a nonlinear ODE is hard
o Hence a precise mathematical notion of stability is necessary

An equilibrium point z* is
o Stable if for any € > 0, there exists a § > 0 s.t. for all ¢ > 0,

[€(0) =27l <0 = la(t) — 27| <e

o Asymptotically stable if stable and there exists § > 0 s.t. for all t > 0

2(0) = 2" <6 = Jim [|a(t) — 2"]| = 0

o Exponentially stable if asymptotically stable and there exists
d,a,8>0s.t. forallt >0

12(0) —2*|| < & = [la(t) — 2"|| < allz(t) — "] e
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Lyapunov stability
Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Stability of nonlinear DS

o Explicit solution to a nonlinear ODE is hard
o Hence a precise mathematical notion of stability is necessary

An equilibrium point z* is
o Stable if for any € > 0, there exists a § > 0 s.t. for all ¢ > 0,

[€(0) =27l <0 = la(t) — 27| <e

o Asymptotically stable if stable and there exists § > 0 s.t. for all t > 0

2(0) = 2" <6 = Jim [|a(t) — 2"]| = 0

o Exponentially stable if asymptotically stable and there exists
d,a,8>0s.t. forallt >0

12(0) —2*|| < & = [la(t) — 2"|| < allz(t) — "] e

o Unstable if not stable
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Example Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Study of stability of z* of a DS & = f(z), € R" is simplified by the
existence of a candidate Lyapunov function V : D C R" — R s.t.

V(z*)=0, V(z)>0foralzeD-—{z"}

Lyapunov stability theorem

Given z™ if there exists a candidate V, ™ is
e Stable if £{V(z)} <0 forallz € D
o Asymptotically stable if &{V(z)} <0 for all z € D — {z*}
o Exponentially stable if ${V(z)} < -8V (z) for all z € D — {z*} and a
B8>0

For an asymptotically stable z*
o V(x) is an energy like function

@ D defines the region of attraction
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examplec Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

o General Lyapunov function V : R™ — R for a linear DS (& = Az) is
V(z)=x"Pz, P >0 (is positive definite)

@ Therefore,
V(z)=x2 Pi+i Pr=x (PA+A'P)z

e =™ =0 is globally asymptotically stable if there exists @ > 0 s.t.

PA+A"P+Q=0

@ Closed form solution exists only if A has all negative eigen values

23/35



Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examplec Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

o General Lyapunov function V : R™ — R for a linear DS (& = Az) is
V(z)=x"Pz, P >0 (is positive definite)

@ Therefore,
V(z)=x2 Pi+i Pr=x (PA+A'P)z

e =™ =0 is globally asymptotically stable if there exists @ > 0 s.t.

PA+A"P+Q=0

@ Closed form solution exists only if A has all negative eigen values

P:/ ATQeMtat, Q=0
0
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Linear DS with A = diag(—1,—1)

1 0
0 1

o V=202 +23) = —2V(z)
e (0,0) is globally exponentially stable

o Choose P = ( >,V(:c)=%xTPx:x:{+a:§
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Description of a dynamical system Lyapunov stability

Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis
Pendulum DS: &1 = 2, 2 = —gsinz1 — z2

o Vi(z) = g(1 — cos(x1)) + 0.5x3
o Vi((0 0)")=0and V(z) >0 for any z € R2\ {(0 0)"}

d
aVl(m) = gsin(z1)d1 + xade = —m% <0
e (0,0) is stable
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Lyapunov stability
Lyapunov stability for linear DS
Contraction Analysis

Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Lyapunov functions
Pendulum DS: &1 = 2, 2 = —gsinz1 — z2
o Vi(z) = g(1 — cos(x1)) + 0.5x3
0"}

o Vi((0 0)")=0and V(z) >0 for any « € B2\ {(0
o
d
avl (z) = gsin(z1)Z1 + z2d2 = fxg <0
o (0,0) is stable
b b
o Va(z) = g(1 —cos(z1)) + 1z " Pz, P = b1
o P is positive definite as Det(P) > 0 and Tr(P) > 0

,0<b<1

d 1
EVg(m) = —5{9331 sin(z1) 423} <O0forall —m <z <7

o Asymptotic stability in D = {x € R? : |z1| < 7}

30

20

VA(x1,x2)

25 /35




Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Level sets of Lyapunov function

Vi(x1x2)

Figure 13: Level sets of V(z1,22) = %(m% +22) and Vi(z) = g(1 — cos(z1)) + 0.523

o The condition V(z(t)) <0 == for some 7 if z(7) : V(z(7)) = ¢,
then for all t > 7 we have V(z(¢)) < c.
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Level sets of Lyapunov function

Vi(x1x2)

Figure 13: Level sets of V(z1,x2) = %(m% +22) and Vi(z) = g(1 — cos(z1)) + 0.523

o The condition V(z(t)) <0 == for some 7 if z(7) : V(z(7)) = ¢,
then for all ¢ > 7 we have V(z(t)) < c.

@ When V(z) < 0, the trajectory moves from one Lyapunov surface to an
inner Lyapunov surface with a smaller c.
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Level sets of Lyapunov function

Vi(x1x2)
3

Figure 13: Level sets of V(z1,x2) = %(m% +22) and Vi(z) = g(1 — cos(z1)) + 0.523

o The condition V(z(t)) <0 == for some 7 if z(7) : V(z(7)) = ¢,
then for all ¢ > 7 we have V(z(¢)) < c.
@ When V(z) < 0, the trajectory moves from one Lyapunov surface to an
inner Lyapunov surface with a smaller c.
o As c decreases, the Lyapunov surface V(z) = ¢ shrinks to V(z*) =0
= z(t) > 2" ast — o0
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Description of a dynamical system
Equilibrium points: Types, Examples
Nonlinear DS Stability

Invariant Set

o A set S is positively invariant w.r.t the dynamics if

z(0)eS = z(t)e S foralt>0
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Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Invariant Set

o A set S is positively invariant w.r.t the dynamics if

z(0)eS = z(t)e S foralt>0

o The set of points z € D for which £{V(z)} <0 is a positively
invariant set

o In some cases if we have a candidate Lyapunov function V(z) at a fixed
point z* satisfying %{V(l‘)} < 0, we can ensure asymptotic stability

e La Salle’s Invariance Principle: If the only trajectory in {z : V(z) = 0}
is z(t) = z*, then z* is asymptotically stable

i=—(z—x), V(z)=2"
d
dt

V(z(t) =2z —2")i = -2z —2")> <0

Observe that {z : V(z) = 0} = {«*}. Therefore z* is asymptotically stable
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Modulation of DS

In many applications modulating the behavior of a DS is essential
@ Generate rich class of trajectories while preserving stability of fixed
point
o To avoid either a single obstacle and converge asymptotically to a
target

Figure 14: Single obstacle
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Modulation of DS -

o In many applications modulating the behavior of a DS is essential

o To avoid either a single obstacle and converge asymptotically to a
target

o To avoid multiple obstacles and still converge to a target *

Figure 14: Wheelchair (orange) tries to Figure 15: Multiple obstacles in phase
avoid a human crowd (circles) plot

1Source: L. Huber et al, >Avoidance of Convex and Concave Obstacles With
Convergence Ensured Through Contraction’
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS

Nonlinear DS Stability Contraction Analysis

Consider a DS in 2 dimensions asymptotically stable at * and a Lyapunov
function V(z) = (z — z*) " (z — z*)

From Lyapunov theorem: 2(® — (z — 2*)T% < 0 is now violated!
yap at

V(z) = ||=|?

Figure 16: Linear DS asymptotically converging to «*
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Consider a DS in 2 dimensions asymptotically stable at * and a Lyapunov
function V(z) = (z — z*) T (z — z*)

dV (x)

From Lyapunov theorem: = (z — )& < 0 is now violated!

dt

V() = ||l=|?

Figure 16: Convex obstacle avoidance with asymptotic stability (Lyapunov) at x*
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Example Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Consider a DS in 2 dimensions asymptotically stable at * and a Lyapunov
function V(z) = (z — z*) " (z — z*)

dV(z)

From Lyapunov theorem: = (z —2*) " < 0 is now violated!

Viw) = [|l=|P

Figure 16: Concave obstacle avoidance with asymptotic stability at z* (Lyapunov
condition fails)

Contraction theory:
o To show red trajectory is ‘close’ to one of black trajectories
o To modulate the behavior of a DS by change of coordinates
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Notation, Definitions _

o Infinitesimal displacement from a trajectory z(t) of the DS is denoted
by 0xz(t)

virtual displacement 8x

virtual velocity 8k

two neighboring
trajectories

Figure 17: Visualization of §z(t)
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Notation, Definitions

o Infinitesimal displacement from a trajectory z(t) of the DS is denoted
by 0xz(t)

virtual displacement 8x

virtual velocity 8k

two neighboring
trajectories

Figure 17: Visualization of dz(t)

o Rate of change of §z(t)-
of d d
Pz or = % (z(t) + dz) — f(z(t)) = —dt&r

e Metric M (z) is a positive definite matrix
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Notation, Definitions

o Infinitesimal displacement from a trajectory z(t) of the DS is denoted
by dx(t)

virtual displacement 8x

virtual velocity 8x

two neighboring
trajectories

Figure 17: Visualization of dz(t)

o Rate of change of §z(t)-

of . _ d _
a—wéx = E(m(t) +dz) — f(z(t)) = a&r

e Metric M (z) is a positive definite matrix
o Rate of change of distance dz " M (x)dz is
d, T of of" -
— M = M(z)=—+— M M
gr (6 M(z)déx) = oz (z) B + D (x) + M(z)| oz s



Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

@ Objective: To find the region D and conditions on M (z) so that
(627 M (x)dz) reduces exponentially
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@ Objective: To find the region D and conditions on M (z) so that
(6" M (z)dz) reduces exponentially

o This means dz(t) " M(x)dz(t) — 0 as t — oo
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS

Nonlinear DS Stability Contraction Analysis

@ Objective: To find the region D and conditions on M (z) so that
(6" M (z)dz) reduces exponentially

o This means dz(t) " M(x)dz(t) — 0 as t — oo
o Recall that the solution to a linear ODE of the form % < —pyis
y(t) < e Pry(0).
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3820 M @)62(1)] < ~Bw() M(@)oa(t))
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Lyapunov stability
Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

@ Objective: To find the region D and conditions on M (z) so that
(6" M (z)dz) reduces exponentially

o This means dz(t) " M(x)dz(t) — 0 as t — oo

o Recall that the solution to a linear ODE of the form d—y < —pyis

y(t) < e Py(0).

Replacing with y(t) = dz(t) " M(x)dz(t)

The contraction condition implies

< [ )™ M@)sa()] < ()T M) (1)

Contraction Region

A set D C R™ where the following holds for all z € D

af ofT
9z bz

for some S > 0 is called a contraction region and M (x) is called a
contraction metric

M(z) M (z) + M(z) < —BM(z)
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An Equivalent Fo

o As M(z) = 0 there exists an N(x) = 0 s.t. M(z) = N (z)N(x)
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o As M(z) = 0 there exists an N(x) = 0 s.t. M(z) = N (z)N(x)
@ Metric formulated as change of coordinates
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

An Equivalent Formulation

o As M(z) > 0 there exists an N(z) = 0 s.t. M(z) = N (z)N(z)
@ Metric formulated as change of coordinates
o Infinitesimal displacement dz is a coordinate change of dx defined as

6z = Néx

o Time derivative

d_ (d Af\ voa
&52_(5N+Nax>N 0z
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Lyapunov stability
Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

An Equivalent Formulation

As M(z) > 0 there exists an N(z) > 0s.t. M(z) = N (z)N(z)
Metric formulated as change of coordinates

Infinitesimal displacement dz is a coordinate change of §z defined as
0z = Nz

o Time derivative

_(d A
552 (dtN+N8>N 0z

@ Ensure the time derivative evolves as

&52 = -4z

by the following equivalent condition

Contraction Coordinate change

N > 0 defines a contraction region D if for all x € D

d Of\ y-1_
(dtN+Na>N =-Q, Q=0
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Examples Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Contraction metric, Linear DS

o Consider the illustrated DS that is violating locally Lyapunov
constraint.

- *

e Make a change of coordinate using N(z) = <n1(3;) with
ni(z) = —(x — z*) and na(z) = f(z)
o The metric is M (z) = N(x)TN(m) — < ’(‘n) fm ‘(’x) n |(|ac) n Tﬂ))

decreases until convergence to the attractor.
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Description of a dynamical system Lyapunov stability
Equilibrium points: Types, Example Lyapunov stability for linear DS
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Significance of a global contraction region

If the contraction region D = R"™ has a unique equilibirum point then all
trajectories converge to it exponentially

o Consider a Lyapunov function

o Check that this is a valid Lyapunov function
o The rate of change of V-

d B of  af7 - _
V@ = f(w)T[M(x)% + 3, M@+ Mz, 1)]f(z) = -V (z)

o Conversely, for any exponentially stable ™, there exists a contraction
metric M (x).
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Comparison with Lyapunov theory

Consider a DS with an asymptotically stable fixed point z*

Contraction Theory
Lyapunov Theory

. o Existence of metric M () for all z € D
o Existence of V : D — R s.t.

s.t. (0z)TM(6z) = 0 ast — oo
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Comparison with Lyapunov theory

Consider a DS with an asymptotically stable fixed point z*

Lyapunov Theory Contraction Theory
o Existence of V : D — R s.t. o Existence of metric M (x) for all z € D
|x(t) —z"|| = 0ast — oo s.t. (02) " M(6x) — 0 as t — oo
o Region of attraction D o Contraction region D
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Nonlinear DS Stability

Lyapunov s
Lyapunov stz
Contraction Analysis

Comparison with Lyapunov theory

ability
bility for linear DS

Consider a DS with an asymptotically stable fixed point z*

Lyapunov Theory
o Existence of V : D — R s.t.
|lz(t) —z"|| = 0ast — oo
o Region of attraction D

o Condition for asymptotic
stability to 2™ is related to
existence of V s.t.

d
EV(I‘) <0forzeD

Contraction Theory

o Existence of metric M(z) for all x € D
s.t. (6x)TM(dz) = 0 ast — oo

o Contraction region D

o Condition for asymptotic stability to
z(t) is related to existence of M

satisfying

M

of

of "

7+7

ox

ox

M(z) + M < —BM(x)
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Lyapunov stability
Lyapunov stability for linear DS
Nonlinear DS Stability Contraction Analysis

Comparison with Lyapunov theory

Consider a DS with an asymptotically stable fixed point z*

Lyapunov Theory Contraction Theory
o Existence of V : D — R s.t. o Existence of metric M (z) for all z € D
lx(t) — z*|| = 0 as t — oo s.t. (0z) " M(6x) — 0 as t — oo
@ Region of attraction D o Contraction region D
o Condition for asymptotic o Condition for asymptotic stability to
stability to z* is related to z(t) is related to existence of M
existence of V s.t. satisfying
T
%V(:c)<0f0ra:€1) M%+% M(l’)-‘rMS—ﬂM(l‘)
o Trajectory always close to z* o Trajectory not necessary close to x*
wort || w.rt |||,
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