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Compliant Control with Dynamical Systems
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When and why should a robot be compliant?
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Kia Sportage factory production line. 2012

Automation in a well-structed environment.
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CNB, 2016

Kia Sportage factory production line. 

2012

Automation in an unstructured environment.
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Safety

Actively 

backdrivable

Haddadin et al, ICRA 2009

Caccavale et al, Experimental Robotics 1998Robotics Lab at DIAG 2012

Haddadin et al, ICRA 2009
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Actively backdrivable

Caccavale et al, Experimental Robotics 1998Robotics Lab at DIAG 2012

Kronander, Billard,  RAL 2016 Khoramshahi, Billard, Autonomous Robots 2018

Allows for live interactions with humans during task execution
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Compliance with impedance control

Principle
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What does Impedance control do?

• It imposes a desired dynamic behavior to the interaction between an object (in our case a 

robot) and environment.

How does Impedance control work?

• The desired performance is specified through a set of mass-spring-damper equations:

  𝑚 ሷ𝑥 + 𝑑 ሶ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡, m: mass, d: damping, k: stiffness, 𝐹𝑒𝑥𝑡: External forces

This model describes how the system reacts to the external forces with environment deformation.
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Very StiffVery soft

beaming
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What does Impedance control do?

• It imposes a desired dynamic behavior to the interaction between an object (in our case a 

robot) and environment.

How does Impedance control work?

• The desired performance is specified through a set of mass-spring-damper equations:

  𝑚 ሷ𝑥 + 𝑑 ሶ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡, m: mass, d: damping, k: stiffness, 𝐹𝑒𝑥𝑡: External forces

This model describes how the system reacts to the external forces with environment deformation.
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Very Stiff
Very soft
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What will the behavior of the system be for different 

values of the spring constant k?

𝑚 ሷ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡
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What will the behavior of the system be for different 

values of the damping constant d?

𝑚 ሷ𝑥 + 𝑑 ሶ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡

No-damping

Under-damped

Over-damped

Critically-damped 

system
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What will the behavior of the system be for different 

values of the damping constant d?

𝑚 ሷ𝑥 + 𝑑 ሶ𝑥 + 𝑘 𝑥 − 𝑥∗ = 0

Critically-damped 

system

ሷ𝑥 + 2𝜔 ሶ𝑥 + 𝜔2 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡
natural frequency

𝜔 =
𝑘

𝑚
 is the natural frequency of the system.

https://en.wikipedia.org/wiki/Natural_frequency
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What does impedance mean in robotics?

• In control, impedance indicates how much a system resists a harmonic force (i.e., the ratio 

of the force to the resulting velocity)

   𝑚 ሷ𝑥 + 𝑑 ሶ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡  

    Impedance of a mass-spring-damper is (solution of diff. equation through Laplace transform):

𝐹𝑒𝑥𝑡

ሶ𝑥
=

𝑠2𝑚 + 𝑠𝑑 + 𝑘

𝑠

13

High 

Impedance

Low

Impedance
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Robot dynamics

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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𝑞 ∈ 𝑅6 (Joint position)

𝑀 𝑞 ∈ 𝑅6×6 (Mass matrix)

➢ Symmetric, positive definite

𝐶 𝑞, ሶ𝑞 ∈ 𝑅6×6 (Coriolis and centrifugal forces)
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Robot dynamics

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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𝑞 ∈ 𝑅6 (Joint position)

𝑀 𝑞 ∈ 𝑅6×6 (Mass matrix)

➢ Symmetric, positive definite

𝐶 𝑞, ሶ𝑞 ∈ 𝑅6×6 (Coriolis and centrifugal forces)
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Robot dynamics

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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𝑞 ∈ 𝑅6 (Joint position)

𝑀 𝑞 ∈ 𝑅6×6 (Mass matrix)

➢ Symmetric, positive definite

𝐶 𝑞, ሶ𝑞 ∈ 𝑅6×6 (Coriolis and centrifugal forces)
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Robot dynamics

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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𝑞 ∈ 𝑅6 (Joint position)

𝑀 𝑞 ∈ 𝑅6×6 (Mass matrix)

➢ Symmetric, positive definite

𝐶 𝑞, ሶ𝑞 ∈ 𝑅6×6 (Coriolis and centrifugal forces)

➢ ሶ𝑀 𝑞 − 2𝐶(𝑞, ሶ𝑞) is skew symmetric.

𝐺 𝑞 ∈ 𝑅6×1 (Gravity)

J(q) ∈ 𝑅6×6 (Jacobian matrix)
➢v=J(q) ሶq, v: speed of end-effector

𝐹𝑒𝑥𝑡 ∈ 𝑅6×1 (External force and torque)

𝜏 ∈ 𝑅6×1 (Control input)

𝐹𝑒𝑥𝑡
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Robot dynamics

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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𝑞 ∈ 𝑅7 (Joint position)

𝑀 𝑞 ∈ 𝑅7×7 (Mass matrix)

➢ Symmetric, positive definite

𝐶 𝑞, ሶ𝑞 ∈ 𝑅7×7 (Coriolis and centrifugal forces)

➢ ሶ𝑀 𝑞 − 2𝐶(𝑞, ሶ𝑞) is skew symmetric.

𝐺 𝑞 ∈ 𝑅7×1 (Gravity)

J(q) ∈ 𝑅7×6 (Jacobian matrix)

➢v=J(q) ሶq

𝐹𝑒𝑥𝑡 ∈ 𝑅6×1 (External force and torque)

𝜏 ∈ 𝑅7×1 (Control input)

𝐹𝑒𝑥𝑡
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Robot dynamics

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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𝑞 ∈ 𝑅N (Joint position)

𝑀 𝑞 ∈ 𝑅N×N (Mass matrix)
➢ Symmetric, positive definite

𝐶 𝑞, ሶ𝑞 ∈ 𝑅N×N (Coriolis and centrifugal forces)
➢ ሶ𝑀 𝑞 − 2𝐶(𝑞, ሶ𝑞) is skew symmetric.

𝐺 𝑞 ∈ 𝑅N×1 (Gravity)

J(q) ∈ 𝑅N×6 (Jacobian matrix)
➢ v=J(q) ሶq

𝐹𝑒𝑥𝑡 ∈ 𝑅6×1 (External force and torque)

𝜏 ∈ 𝑅N×1 (Control input)

𝐹𝑒𝑥𝑡
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

20
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!  

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + ⋯
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!  

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + ⋯

• 𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + ⋯
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!  

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + ⋯

• 𝑀 𝑞 ሷ𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + ⋯

23

Why we can’t define 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + 𝑀 𝑞 ሷ𝑞 − 𝛬 ሷ𝑞 − D ሶq − Kq
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What are the inputs and the outputs in this system?

𝑚 ሷ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡
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What are the inputs and the outputs in this system?

𝑚 ሷ𝑥 + 𝑘 𝑥 − 𝑥∗ = 𝐹𝑒𝑥𝑡
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!  

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + ⋯

• 𝑀 𝑞 ሷ𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + ⋯

26

We can’t define 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 + 𝑀 𝑞 ሷ𝑞 − 𝛬 ሷ𝑞 − D ሶq − Kq
 as we can’t have ሷ𝑞 in both sides!
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization! 

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)

27
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization! 

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)

• 𝑀 𝑞 ሷ𝑞 + Λ−1(D ሶ𝑞+K 𝑞) = J(q)𝑇𝐹𝑒𝑥𝑡 + ⋯

28
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!    

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡

29
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!    

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡

• 𝑀 𝑞 ሷ𝑞 + Λ−1(D ሶ𝑞+K 𝑞) = J(q)𝑇𝐹𝑒𝑥𝑡+(M(q)Λ
−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡

30
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!    

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡

• 𝑀 𝑞 ሷ𝑞 + Λ−1(D ሶ𝑞+K 𝑞) = M(q)Λ−1J(q)𝑇𝐹𝑒𝑥𝑡

31
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!    

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡

• ሷ𝑞 + Λ−1(D ሶ𝑞+K 𝑞) = Λ−1J(q)𝑇𝐹𝑒𝑥𝑡

32
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What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper: Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡?

Hint:

 Feed-back linearization!    

 𝑀(𝑞) and Λ are positive definite   

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ𝑞+K 𝑞)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡

• Λ ሷ𝑞 + D ሶq + Kq = J(q)𝑇𝐹𝑒𝑥𝑡

33



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper while following a desired path: 

    Λ ሷ෤𝑞 + D ሶ෤q + K෤q = J(q)𝑇𝐹𝑒𝑥𝑡?

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ෤𝑞+K ෤𝑞)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡 + …

34



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)𝛬−1(D ሶ෤𝑞+K ෤𝑞)+(M(q)𝛬−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡 + 𝛬 ሷ𝑞𝑑

What does impedance mean in robotics?

• Dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

How the control input should be designed such that the above system will look like a desired 

mass-spring-damper while following a desired path: 

    Λ ሷ෤𝑞 + D ሶ෤q + K෤q = J(q)𝑇𝐹𝑒𝑥𝑡?

• 𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)Λ−1(D ሶ෤q+K ෤q)+(M(q)Λ−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡 + Λ ሷ𝑞𝑑

35
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Example: 2Dof planner robot

36

Quanser

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 −M(q)𝛬−1(D ሶ෤𝑞+K ෤𝑞)+(M(q)𝛬−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡 + 𝛬 ሷ𝑞𝑑

𝑚1 = 1.0 𝑚2=0.5 Mass of the first and second links

𝑙1=1.0 𝑙2=0.5 Length of the first and second links

𝛬 = 𝐼2×2, 𝐷 = 10𝐼2×2, 𝐾 = 25𝐼2×2
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Eq 3

Example: 2Dof planner robot

37

𝜏 = 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 − M(q)𝛬−1(D ሶ෤𝑞+K ෤𝑞)+(M(q)𝛬−1 −I)J(q)𝑇 𝐹𝑒𝑥𝑡 + 𝛬 ሷ𝑞𝑑 𝜏 = C q, ሶq ሶq + G q −  (D ሶ෤q+K ෤q) + M q ሷqd

𝜏 = G q −  (D ሶ𝑞+K ෤q)

Why do you think we can’t always implement Eq 1 or Eq 2?

(5 minutes open discussion)

Eq 2Eq 1

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏 𝑚1 = 1.0 𝑚2=0.5 Mass of the first and second links

𝑙1=1.0 𝑙2=0.5 Length of the first and second links

𝛬 = 𝐼2×2, 𝐷 = 10𝐼2×2, 𝐾 = 25𝐼2×2
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Learning the impedance parameters

38
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The mass-spring-damper depends on choosing well 

the impedance parameters: matrices Λ, D and K.

𝜦 ሷ෤𝑞 + 𝐃 ሶ෤q + 𝐊෤q = J(q)𝑇𝐹𝑒𝑥𝑡

39

How to determine the best impedance value?

Setting the impedance parameters
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The mass-spring-damper depends on choosing well 

the impedance parameters: matrices Λ, D and K.

𝜦 ሷ෤𝑞 + 𝐃 ሶ෤q + 𝐊෤q = J(q)𝑇𝐹𝑒𝑥𝑡

40

One must set both the absolute value of impedance and 

its direction! Impedance can be directional.

Why do you think setting the direction 

of the impedance can be important?

(5 minutes open discussion)

Setting the impedance parameters
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Constant, high stiffness: 

Aggressive response to perturbations, 

spills the coke!

Constant, low stiffness: 

Good when reaching

Not good when pouring!

K. Kronander and A. Billard., IEEE Trans. In Haptics, 2014 

Example: Required Impedance for pouring a drink

43
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45

Variable impedance control 

There is no universal impedance value!

Kronander, Billard,  RAL 2016

Pick and place Grasp

DLR
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Learning the impedance parameters

In variable impedance control

46
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Setting the impedance parameters

  The impedance parameters matrices D and K. may vary during the task. 

  This is expressed by setting an explicit dependency on the state of the system ෤q, ሶ෤q.

  𝜦 ሷ෤𝑞 + 𝐃(෤q, ሶ෤q) ሶ෤q + 𝐊(෤q)෤q = J(q)𝑇𝐹𝑒𝑥𝑡

47
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Modeling variable impedance

• We start with our original dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

 How to model the variations of the impedance parameters?

  Λ ሷ෤𝑞 + 𝐃(෤q, ሶ෤q) ሶ෤q + 𝐊(෤q)෤q = J(q)𝑇𝐹𝑒𝑥𝑡?

48

Hint:

 Feed-back linearization!    

  𝐃(෤q, ሶ෤q) and 𝐊(෤q) can be modelled by using LPV system:

𝑲 ෤q = ෍

𝑖=1

𝐾𝑛

𝛾𝑖
𝐾𝑛 ෤𝑞 𝐾𝑖  𝐾𝑖 ∈ 𝑅𝑁×𝑁  𝛾𝑘

𝐾𝑛 ∈ 𝑅(0,1)

𝑫 ෤q, ሶ෤𝑞 = ෍

𝑖=1

𝐷𝑛

𝛾𝑖
𝐷𝑛 ෤𝑞, ሶ෤𝑞 𝐷𝑖  𝐷𝑖 ∈ 𝑅𝑁×𝑁  𝛾𝑘

𝐷𝑛 ∈ 𝑅(0,1)

τ = C q, ሶq ሶq + G q − M(q)Λ−1(𝐃(෤q, ሶ෤q) ሶ෤q+𝐊(෤q)෤q)+(M(q)Λ−1 −I)J(q)T Fext + Λ ሷqd
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Modeling variable impedance

• We start with our original dynamic of a robot (in the joint space):

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

 How to model the variations of the impedance parameters?

  Λ ሷ෤𝑞 + 𝐃(෤q, ሶ෤q) ሶ෤q + 𝐊(෤q)෤q = J(q)𝑇𝐹𝑒𝑥𝑡?

49

τ = C q, ሶq ሶq + G q − M(q)Λ−1(𝐃(෤q, ሶ෤q) ሶ෤q+𝐊(෤q)෤q)+(M(q)Λ−1 −I)J(q)T Fext + Λ ሷqd

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏
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Example: 2Dof planner robot

50

𝑀 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐺 𝑞 = J(q)𝑇𝐹𝑒𝑥𝑡 + 𝜏

τ
= C q, ሶq ሶq + G q
−M(q)Λ−1(𝐃(෤q) ሶ෤q+𝐊(෤q)෤q)+(M(q)Λ−1 −I)J(q)T Fext

+ M q ሷqd

𝐃 ෤q =
10 𝑞 − 𝜇1

𝑇 𝑞 − 𝜇1 + 100 𝑞 − 𝜇2
𝑇 𝑞 − 𝜇2

𝑞 − 𝜇1
𝑇 𝑞 − 𝜇1 + 𝑞 − 𝜇2

𝑇 𝑞 − 𝜇2

𝑲 ෤q =
25 𝑞 − 𝜇1

𝑇 𝑞 − 𝜇1 + 2500 𝑞 − 𝜇2
𝑇 𝑞 − 𝜇2

𝑞 − 𝜇1
𝑇 𝑞 − 𝜇1 + 𝑞 − 𝜇2

𝑇 𝑞 − 𝜇2

𝜇1 =
−1
1

, 𝜇2 =
1
1

 



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

How to teach a robot to stiffen or unstiffen

51
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Constant, high stiffness: 

Aggressive response to perturbations, 

spills the coke!

Constant, low stiffness: 

Good when reaching

Not good when pouring!

K. Kronander and A. Billard., IEEE Trans. In Haptics, 2014 

Example: Required Impedance for pouring a drink

52
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Learning the Desired Impedance Profiles

• Learning VIC from kinesthetic teaching:

• An operator physically interacts with the robotic to adjust the desired stiffness

• A higher perturbation amplitude results in less stiffness

• The stiffness profile can be learned/adjusted online

53Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Tactile information

Artificial skin for detecting the grasp pressure

54
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Teaching how and when to increase stiffness

57
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Teaching how and when to increase stiffness

S
ti
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n

e
s
s
 e

ig
e

n
v
a

lu
e

 1

x1
x2

Default value

High value in 

proximity of the glass
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Learning the Desired Impedance Profiles

• Learning VIC from kinesthetic teaching:

• An operator physically interacts with the robotic to adjust the desired stiffness

• A higher perturbation amplitude results in less stiffness

• The stiffness profile can be learned/adjusted online

59Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012
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Teaching stiffness profile

❑ Start from a known task with strong 

stiffness 

❑ To reduce the stiffness, the teacher 

wiggles the robot during task execution.
start

finish

compliance

61
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Teaching range of tolerance - stiffness

Eigenvalue Decomposition of Covariance of Data (perturbation 

over a time window):

Stiffness aligned with main axes of perturbation

K

1 TK U U−= 

Eigenvalues inversely 
proportional to stiffness

63

1

𝑀
෍

𝑡−𝑆

𝑡

𝑥𝑡 − 𝜇𝑡 𝑥𝑡 − 𝜇𝑡
𝑇 = 𝑈Λ𝑈𝑇

1

𝑀
෍

𝑡−𝑆

𝑡

𝑥𝑡 − 𝜇𝑡 𝑥𝑡 − 𝜇𝑡
𝑇
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The time-varying stiffness is converted into a state-dependent varying stiffness K(x).

To learn the varying stiffness, one learns a dependency between the position x and the Cholesky factor L 

through Gaussian Mixture Model, using the variance of the data during demonstration.

Stiffness matrix is expressed through Cholesky’s decomposition 𝐾(𝑥) = 𝐿(𝑥)𝐿(𝑥)𝑇

Modeling and learning state-dependent varying stiffness

64

( ) ( )
1

, , ; , ,  , :  Gauss means and covariance matrices 
K

k k k k

k

p x L p x L  
=

=  

At run time, for a query point x*, the stiffness matrix is obtained through Gaussian Mixture regression: 

Λ−1(x*)=L(x*)L(x*)T, L(x*)=E{p(L|x*)}

Example of a sinusoidal time-varying signal

Change in frequency are converted into stiffness changes

Why ?
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Reproduction with correct compliance

65
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Teaching Right Amount of Stiffness for Lighting up a match

Kronander, Klas, and Aude Billard. "Learning compliant manipulation through kinesthetic and tactile human-robot interaction." IEEE transactions on haptics 7.3 (2013): 367-380. 66
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Teaching Right Amount of Stiffness for Lighting up a match

• High stiffness needed for accurate match positioning before the striking 

motion.

• Low stiffness is necessary to reduce contact forces in the striking phase. 

• Joint torque sensors used to measure the interaction.

• Teach a local reduction of the stiffness in the striking phase. 

67
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Teaching Stiffness at Joint Level

68

Teaching Right Amount of Stiffness for Lighting up a match
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Sole the stiffness profile for the 

elbow joint is taught.

The remaining six joints of the 

robot had a constant stiffness of 

1,000 Nm/rad

Striking phase

69

Teaching Right Amount of Stiffness for Lighting up a match

Here the stiffness profile for each joint is learned through Gaussian Process Regression (GPR). 
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70

Lighting a match: results from 20 trials

Broke Broke 

and lit

Not lit Lit Success rate 

Constant high 

stiffness

4 11 2 3 15%

Constant low 

stiffness

0 3 14 3 15%

Learned varying 

stiffness 

0 2 1 17 85%



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

71

Lighting a match: results from 20 trials

Broke Broke 

and lit

Not lit Lit Success rate 

Constant high 

stiffness

4 11 2 3 15%

Constant low 

stiffness

0 3 14 3 15%

Learned varying 

stiffness 

0 2 1 17 85%

Why do you think the constant low stiffness profile 

resulted in numerous Not lit cases?  
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Summary

72

Why compliant control?

▪ Compliant control is crucial to enable robots to interact safely with their environment and in particular 

with humans.

Where is compliant robot control used?

• Constant interaction with the environment 

Image/video credits: READY Robotics Image/video credits: FRANKA EMIKA Image/video credits: 

Electronic Systems 

Laboratory

Image/video credits: 

Merewether

https://www.linkedin.com/company/ready-robotics/
https://www.youtube.com/@frankaemika1747
https://www.youtube.com/watch?v=d3YZttaGT64
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Summary

73

Research in Impedance control?

Learning Force Control for Legged 

Manipulation, ICRA 2024

Current-Based Impedance Control for 

Interacting with Mobile Manipulators, 

IROS 2024

Passivity-Based Adaptive Force-Impedance 

Control for Modular Multi-Manual Object 

Manipulation, RAL 2024
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Summary

74

Why compliant control?

▪ Compliant control is crucial to enable robots to interact safely with their environment and in particular 

with humans.

How to program robots to become compliant?

▪ Compliance is usually obtained by controlling the robot through impedance control.

▪ By setting the impedance parameters (stiffness and damping), one can modulate the response of the robot 

to external forces.

▪ As the compliance depends on the task and may also vary along the task, it is important to set stiffness and 

damping as varying parameters, that varies with time or state of the system (see exercises).

How to teach robots the right compliance ?

▪ Kinesthetic teaching can be used to train the robot to stiffen or unstiffen, using the robot’s tactile and force 

sensing. 

▪ State-dependent stiffness profiles can be learned through standard machine learning for regression.
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