Learning and adaptive control for robots =PrL

Compliant Control with Dynamical Systems
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When and why should a robot be compliant?
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Automation in a well-structed environment.

Kia Sportage factory production line. 2012
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Automation in an unstructured environment.
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Actively
backdrivable

Robotics Lab at DIAG 2012

Caccavale et al, Experimental Robotics 1998
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Actively backdrivable

2Xpp L - =~ N e
Kronander, Billard, RAL 2016 Khoramshahi, Billard, Autonomous Robots 2018 6
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Compliance with impedance control
Principle
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What does Impedance control do?

It imposes a desired dynamic behavior to the interaction between an object (in our case a
robot) and environment.

How does Impedance control work?
» The desired performance is specified through a set of mass-spring-damper equations:

mi +dx + k(x — x*) = F,,;, m: mass, d: damping, k: stiffness, F,,.: External forces
This model describes how the system reacts to the external forces with environment deformation.

Very soft - T Very Stiff
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What will the behavior of the system be for different

values of the spring constant k?
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What will the behavior of the system be for different
values of the damping constant d?

X —x*

k ==l mi +dx +k(x —x*) = F,pt
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What will the behavior of the system be for different
values of the damping constant d?

¥+ 20x + w?(x —x*) = Fopy

w = \/g IS the natural frequency of the system.
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https://en.wikipedia.org/wiki/Natural_frequency
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What does impedance mean in robotics?

 In control, impedance indicates how much a system resists a harmonic force (i.e., the ratio
of the force to the resulting velocity)

mi +dx +k(x —x*) = F,,
Impedance of a mass-spring-damper is (solution of diff. equation through Laplace transform):
F.. s°m+sd+k

Low
Impedance

High
Impedance

13
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Robot dynamics . Joint 6

« Dynamic of a robot (in the joint space):
M(q)G +C(q,q)q +G(q) =J(@) Fexe + T
g € R® (Joint position)
M(g) € R®*® (Mass matrix)

» Symmetric, positive definite
C(q,q) € R®*® (Coriolis and centrifugal forces)

Joint |
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Robot dynamics ,Joint 6

« Dynamic of a robot (in the joint space):
M(q)G +C(q,q)q +G(q) =J(@) Fexe + T ot

g € R® (Joint position)
M(g) € R®*® (Mass matrix)

» Symmetric, positive definite
C(q,q) € R®*® (Coriolis and centrifugal forces)

Joint 3

Joint |
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Robot dynamics Fext

Joint 6

« Dynamic of a robot (in the joint space):
M(q)4 +C(q,4)q +G(q) =J(q@) Fext + T
g € R® (Joint position)
M(q) € R®*® (Mass matrix)
» Symmetric, positive definite

C(q,q) € R®*® (Coriolis and centrifugal forces)
> M(q) — 2C(q, §) is skew symmetric.

G(q) € R®*! (Gravity) Joint 3

J(q) € R®*® (Jacobian matrix)
» v=J(q)q, V: speed of end-effector

F... € R%*1 (External force and torque)
T € R®*! (Control input)

Joint 1
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Robot dynamics

« Dynamic of a robot (in the joint space):
M(q)4 +C(q,q)q +G(q) =J(@) Fexe + T

g € R’ (Joint position)

M(q) € R”*7 (Mass matrix)

» Symmetric, positive definite

C(g,q) € R”*7 (Coriolis and centrifugal forces)
> M(q) — 2C(q, ) is skew symmetric.

G(q) € R”*! (Gravity)

J(q) € R7*® (Jacobian matrix)

» v=J(q)q

F,.: € R®*! (External force and torque)

7 € R7*! (Control input)

18
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Robot dynamics

« Dynamic of a robot (in the joint space):
M(@)G+C(q,9)q+G(q) =J(@) Fexe +7 i

g € RN (Joint position)
M(q) € RN*N (Mass matrix)
» Symmetric, positive definite

C(q,q) € RN*N (Coriolis and centrifugal forces)
> M(q) — 2C(q, g) is skew symmetric.

G(g) € RN*1 (Gravity)
J(q) € RN*® (Jacobian matrix)

> v=I(q)q
F,.: € R®*! (External force and torque)

7 € RN*1 (Control input)
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):

M(q)G +C(q,q)q +G(q) =J(@) Fexe + T
How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?

20
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(q)G +C(q,q)q +G(q) =J(@) Fexe + T
How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?
Hint:
Feed-back linearization!
c T=0(q,9)q+G(q) + -

21
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q)! Foyt?
Hint:

Feed-back linearization!
« T=C(q,9)g+G(q) + -
« M(@)§+C(q,9)q+G(q) =J(q) Fert +C(q,4)q + G(q) + -

22
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q)! Foyt?
Hint:

Feed-back linearization!
« T=C(q,9)g+G(q) + -
© M(q)§ =J(q)" Fext + - Why we can’t define = = C(q, §)q + G(g) + M(q)§ — Aij — D3 — Kg

23
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m — - What are the inputs and the outputs in this system?

mi + k(x — x*) = F,,¢

24
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m — - What are the inputs and the outputs in this system?

mi +k(x —x*) = F,,¢

25
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(q)G +C(q,q)q +G(q) =J(@) Fexe + T
How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?
Hint:
Feed-back linearization!
c T=0(q,9)q+G(q) + -

o M(@Q)§ =J(@)" Fext + We can’t define T = C(g,4)4 + G(q) + M(q)§ — A§ — D4 — Kq
as we can’t have ¢ in both sides!

26
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(q)G +C(q,q)q +G(q) =J(@) Fexe + T
How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?
Hint:
Feed-back linearization!
M(q) and A are positive definite

e T=0C(q,9)q + G(q) — M(¢)A" (DG+K q)

27
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?
Hint:

Feed-back linearization!

M(q) and A are positive definite
e 1=0C(q,9)q+G(q) —M(g)A""(Dg+K q)
o M(q)(G+ A_l(Dq+KQ) ) = J(Q)TFext T

28
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(q)G +C(q,q)q +G(q) =J(@) Fexe + T
How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?
Hint:
Feed-back linearization!
M(q) and A are positive definite

e T=0(q,9)q+ G(q) — M(@)A (DG+K q)+(M(q)A™ —DJ(q)" Fext

29
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q)! Foyt?
Hint:

Feed-back linearization!

M(q) and A are positive definite
« T=C(q,9)q + G(q) — M(g)A™ (DG+K @)+ (M(@)A™" =1)J(q)" Fext
e M(q)(g+ A_l(Dq+K q)) = J(Q)TFext'i_(M(Q)A_l _I)J(Q)T Fext

30
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q)! Foyt?
Hint:

Feed-back linearization!

M(q) and A are positive definite
« T=C(q,9)q + G(q) — M(g)A™ (DG+K @)+ (M(@)A™" =1)J(q)" Fext
¢ M(CI)(CI + A_l(Dq+K q) ) = M(Q)A_lJ(Q)TFext

31
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q@) T F,,?
Hint:

Feed-back linearization!

M(q) and A are positive definite
« T=C(q,9)q + G(q) — M(g)A™ (DG+K @)+ (M(@)A™" =1)J(q)" Fext
¢ G+ADG+Kq) =ANJ(G) Fexy

32



Learning and adaptive control for robots =PrL

What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(@)G+C(q,q)q+G(q) =J(q) Foxe + 7T

How the control input should be designed such that the above system will look like a desired
mass-spring-damper: Ag + Dq + Kq = J(q)! Foyt?
Hint:

Feed-back linearization!

M(q) and A are positive definite
« T=C(q,9)q + G(q) — M(g)A™ (DG+K @)+ (M(@)A™" =1)J(q)" Fext
e Ag+Dq+Kq= J(Q)TFext

33
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(q)4G+C(q,q)q +G(q) = J(Q)TFext +7

How the control input should be designed such that the above system will look like a desired
mass-spring-damper while following a desired path:

AEI: + D’(;l + Kq = J(Q)TFext?

» ©=1C(q,9)q+G(q) — M(@A(DG+K +M(@A =DI(@)" Fexe + .

34
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What does impedance mean In robotics?

« Dynamic of a robot (in the joint space):
M(q)4G+C(q,q)q +G(q) = J(Q)TFext +7

How the control input should be designed such that the above system will look like a desired
mass-spring-damper while following a desired path:

AEI: + D’(;l + Kq = J(Q)TFext?

+ ©=C(q,d)q +G(q) — M@ADIHK Y +HM@A™ ~DI@T Foxe + MG

35
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Example: 2Dof planner robot
M(q)§+C(q,4)q+ G(q) =J(@)" Fexe +7
\ T = C(q,0)d + G(q) — M)A~ (DG+K §)+(M(@)A™" ~DJ(@)" Fexe + AG*

2 I I 1 | | | | | |
=) _q(H)
-4,
‘?’ 1k /\\ N 92) ]
Quanser _5 R g - ‘><’ \ —442)
| | /
m,; = 1.0 m,=0.5 Mass of the first and second links = 0 /\ / T
[,=1.0 [,=0.5 Length of the first and second links g \ / \ \ X
A= IZXZ!D = 10[2X2'K = 25[2><2 —1 1 D 1 I AN /I I I
“ — 50 T T T T T T T T T
g —7(1)
@ Z I —1(2)
L z 0
- =
£
= 50t F
£
8 _100 1 1 | ] ] ] ] ]
100 .
—JTF(T)
50+ —J'F ()R
0 1 1
0 2 4 3 0 12 = 6 18 20

Time (s) 36
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M(q)c']' n C(q C[)C[ n G(q) N J(q)TF i m,; = 1.0 m,=0.5 Mass of the first and second links
) - ext

[,=1.01,=0.5 Length of the first and second links

_ Nn

Joint position (rad) =
W |
O = (e}

ontrol input (Nm)

n
—
(]
(«]

Example 2D0f planner robot A = Iz, D = 10155, K = 255

Eq1l Eq 2
C(q, ‘?)51 + G(q) — M(q)/l‘l(sz +K ﬁ)+(M(q)A‘1 —DI(Q)" Fexe + AG° T= C(q q)q + G(q) — (Dq+I< q) + M(q)q

A\/x\ /%\%/@’ AP

=) - '[=q0
_q 1) g(1)

—g41)

-2 |

| | |
i 50k

Eq 3
= G(q) — (Dg+K Q)

T _q(]]
—q,(1)

: I | | %] Why do you think we can’t always implement Eq 1 or Eq 2?
| )7\\% / (5 minutes open discussion)

37
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Learning the impedance parameters

38
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Setting the Impedance parameters

The mass-spring-damper depends on choosing well
the impedance parameters: matrices A, D and K.

AEI: + Dfi + Kq = J(q)TFext

How to determine the best impedance value?

39
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Setting the Impedance parameters

The mass-spring-damper depends on choosing well
the impedance parameters: matrices A, D and K.

Aé + Dél + Kq = J(q)TFext

One must set both the absolute value of impedance and
Its direction! Impedance can be directional.

Why do you think setting the direction

of the Impedance can be important?
(5 minutes open discussion)

40



Learning and adaptive control for robots =PrL

e

41
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o) !
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Example: Required Impedance for pouring a drink

Constant, high stiffness:
Aggressive response to perturbations,
spills the coke!

Constant, low stiffness:
Good when reaching

Not good when pouring!

K. Kronander and A. Billard., IEEE Trans. In Haptics, 2014 43
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Variable impedance control

Pick and place

Kronander, Billard, RAL 2016 DLR

here iIs no universal impedance value!

45
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Learning the impedance parameters
In variable impedance control

46
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Setting the impedance parameters

The impedance parameters matrices D and K. may vary during the task.
This is expressed by setting an explicit dependency on the state of the system 4, .

Aél. + D(q, Q)q + K(Q)q = J(Q)TFext

47
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Modeling variable impedance

« \We start with our original dynamic of a robot (in the joint space):
M(q)g+C(q,9)q +G(q) = J(Q)TFext +7
How to model the variations of the impedance parameters?

AEI: + D(q, q)q + K(9)q = J(Q)TFext?

Hint:
Feed-back linearization!
D(§, ) and K(g) can be modelled by using LPV system:
Kn

K@) = Z V@K Ki € RV Ve € Ry

D(qq) = Zn "(a.4 D; € R™N V" € R

1 =C(qq)q+ G(q) M(@QA™Y(D (G, HFHK@D+M(QAL —DI(q)T Fexe + A 48
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Modeling variable impedance

« \We start with our original dynamic of a robot (in the joint space):
M(q)g+C(q,9)q +G(q) = J(Q)TFext +7

How to model the variations of the impedance parameters?
A(::I: + D(q, Q)q +K(9)q = J(Q)TFext?

© = C(q Pq + G(@) — M(@QA (DG, DHK@PDHM(PA™" —DI(q) " Fexe + AG®
M(q)G +C(q,q)q +G(q) =J(@) Foxe +7

49
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Example: 2Dof planner robot

' —qg(1)

N AN

M(@)G+C(q,0)q+G(q) =J(q) Fexe + 7
T
= C(q,9)q + G(q) s

Joint position (rad)

— M(@)A™*D(@F+K@ ) +M(@)A™ —DJ(q)" Fex | -

+ M@y =l
(@) 1060 = #)7(@ = 1) +100(q = 1) (q = 1) o |
1 (g —1)"(q —p) + (@ — p2)"(q — p2) . | i

5 10 1p 20
Time (s)

25(q — u)"(q — pq) +2500(q — p2)"(q — p2) ®

K@ = (q—u)"(q—m)+(q—u)"(q — uz) 100

A

0
- =[5
w=[lw=[] o \/ w\ﬂ( \

D | |
Time (s) 50
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How to teach arobot to stiffen or unstiffen

o1
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Example: Required Impedance for pouring a drink

Constant, high stiffness:
Aggressive response to perturbations,
spills the coke!

Constant, low stiffness:
Good when reaching

Not good when pouring!

K. Kronander and A. Billard., IEEE Trans. In Haptics, 2014

52
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Learning the Desired Impedance Profiles

« Learning VIC from kinesthetic teaching:
« An operator physically interacts with the robotic to adjust the desired stiffness

« A higher perturbation amplitude results in less stiffness
« The stiffness profile can be learned/adjusted online

Stiffness decrease Stiffness increase

Detected

pressure

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012

53
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Tactile information

Artificial skin for detecting the grasp pressure

54
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Learning and adaptive control for robots

Teaching how and when to increase stiffness

igh value in
ol A _ roximity of the glass

Stiffness eigenvalue 1

58
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Learning the Desired Impedance Profiles

« Learning VIC from kinesthetic teaching:
« An operator physically interacts with the robotic to adjust the desired stiffness

« A higher perturbation amplitude results in less stiffness
« The stiffness profile can be learned/adjusted online

Stiffness decrease Stiffness increase

Detected

pressure

Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012

59
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Teaching stiffness profile

a Start from a known task with strong \j finish

stiffness /\,
Q To reduce the stiffness, the teacher start ¥ compliance

wiggles the robot during task execution.

61
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Teaching range of tolerance - stiffness

Stiffness decrease Eigenvalue Decomposition of Covariance of Data (perturbation
over a time window):

t

1 T T

Mz(xt - .ut)(xt — .Ut) = UAU
t—S

. /e Stiffness aligned with main axes of perturbation
Rférence —_ | A ctual K — U A_1U T

position

position

. ) 2 f',‘:-“\\l I— 2‘ :“IIIl_,--t----\--.._h_-'h'uill ) 2 ;"’*:*"\F’
e T e B A I T B B A YA S AT O TS
M t t)\ Xt t) 5 \ — A v (L o ' ST
t—S o b - ?..; o A L o ! -~ _ - J
b r'r \“L -f, IM‘."‘- 'Lf
-2 ~=-- ~2 ~-- —2 ~=--
Eigenvalues inversely 2 x Zeovx Zoeovx
proportional to stiffness 1000) o-mn 1000 --=s. o 100 =oes o
= .f' Y - *-l"" ) = *f' \
= off ek ' ®E ! ek ' i gk
K = \ ; @ \ ;@ \ /
bt "" '\.h £ ™ ,
-1 Tt ~1000___—====" —1000___—===="
1000 0 1000 —1000 % 1000 —1000 %lf 1000
stiff. x stiff. x stiff. x
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Modeling and Iearning state-dependent varying stiffness

[

| 1 | |—|[Ll-|‘.'r=|-:l|-|:|u SLgnaI|~ 12010
n n r' ”"“suffness

gnal

Example of a sinusoidal time-varying signal

=

1000

Stiffmess Trace

Change in frequency are converted into stiffness changes

T
| '“ 'I'I”HH VNI

L

. Interaction Si

[

- 8O0
—-....---r

L L
0 0.5 2.5 3 15 4 4.5 5
Time

The time-varying stiffness is converted into a state-dependent varying stiffness K(x).
To learn the varying stiffness, one learns a dependency between the position x and the Cholesky factor L
through Gaussian Mixture Model, using the variance of the data during demonstration.

K
=" p(x,L;u*, =), 1*, " : Gauss means and covariance matrices
k=1

Stiffness matrix is expressed through Cholesky’s decomposition K(x) = L(x)L(x)"  wny ?

At run time, for a query point x*, the stiffness matrix is obtained through Gaussian Mixture regression:

AT () =LOK)L*)T, Lx)=E{p(L[x*)}

64
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Reproduction with correct compliance
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Teaching Right Amount of Stiffness for Lighting up a match

e x,u.m.: l._,..,.J mf Ims ANG .

Joint Stiffness Modulation
through Physical Human-
Robot Interaction

Kronander, Klas, and Aude Billard. "Learning compliant manipulation through kinesthetic and tactile human-robot interaction." IEEE transactions on haptics 7.3 (2013): 367-380. 06
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Teaching Right Amount of Stiffness for Lighting up a match

 High stiffness needed for accurate match positioning before the striking
motion.
 Low stiffness is necessary to reduce contact forces in the striking phase.

« Joint torque sensors used to measure the interaction.
« Teach a local reduction of the stiffness in the striking phase.

playback speed 0.5x

a2

Teachi&s pr 67
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Teaching Right Amount of Stiffness for Lighting up a match

Teaching Stiffness at Joint Level

68
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Teaching Right Amount of Stiffness for Lighting up a match

1200+ + df?munstrated stiffness
stiffness profile

Sole the stiffness profile for the

1000 elbow joint is taught.
=
s 800 N
> The remaining six joints of the
g 600} robot had a constant stiffness of
g 1,000 Nm/rad

400

200¢

% 1 2 3 4 5\

tme. s Striking phase

Here the stiffness profile for each joint is learned through Gaussian Process Regression (GPR).
69
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Lighting a match: results from 20 trials

Broke Broke Not lit | Lit Success rate
and lit

Constant high 4 15%
stiffness
Constant low 0 3 14 3 15%
stiffness
Learned varying O 2 1 17 85%

stiffness
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Lighting a match: results from 20 trials

Broke Broke Not lit | Lit Success rate
and lit

Constant high 4 15%
stiffness
Learned varying O 85%
stiffness

Why do you think the constant low stiffness profile
resulted in numerous Not lit cases?
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Summary

Why compliant control?

= Compliant control is crucial to enable robots to interact safely with their environment and in particular
with humans.

Where is compliant robot control used?
« Constant interaction with the environment

Imagelvideo credits: Image/video credits: Image/video credits: Image/video credits:
Electronic Systems

Laboratory
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https://www.linkedin.com/company/ready-robotics/
https://www.youtube.com/@frankaemika1747
https://www.youtube.com/watch?v=d3YZttaGT64

Learning and adaptive control for robots =PrL

Summary

Research in Impedance control?

Future of Future of
Mobility rk

b

p .% 's‘

Learning Force Control for Legged Current-Based Impedance Control for Passivity-Based Adaptive Force-Impedance

Manipulation, ICRA 2024 Interacting with Mobile Manipulators, Control for Modular Multi-Manual Object
IROS 2024 Manipulation, RAL 2024
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Summary

Why compliant control?
= Compliant control is crucial to enable robots to interact safely with their environment and in particular

with humans.

How to program robots to become compliant?

= Compliance is usually obtained by controlling the robot through impedance control.

= By setting the impedance parameters (stiffness and damping), one can modulate the response of the robot
to external forces.

= As the compliance depends on the task and may also vary along the task, it is important to set stiffness and
damping as varying parameters, that varies with time or state of the system (see exercises).

How to teach robots the right compliance ?
= Kinesthetic teaching can be used to train the robot to stiffen or unstiffen, using the robot’s tactile and force

sensing.
= State-dependent stiffness profiles can be learned through standard machine learning for regression.
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