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Controlling Robot’s Forces when in Contact
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Controlling for force at contact

Surface
Robot
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Nominal DS 𝒇 𝒙
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Controlling for force at contact: Principle

n(x) normal vector to the surface

Make contact
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𝒏 𝒙

Assumption: Surface is impenetrable
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Controlling for force at contact: Principle

Once in contact, move tangential to the surface
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Controlling for force at contact: Principle

The force may vary along the surface 𝑭 𝒙

Goal: Apply a desired force 𝑭

𝑭 𝒙
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Idea: If we can project the control torques onto the surface, we simplify the computation.

→We assume that we can compute the normal to the surface when in contact and we project the 

control onto a frame of reference moving along the surface in direction of motion.

𝒕 𝒙

𝒏 𝒙
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( ) ( )( )
Robot's
control torques

     c D x x f x = −( )( )
Robot's
control torques

           c dD x x x = − −

Passive-DS for Controlling Forces on the Surface

Robot

Position controlled direction

Force controlled direction

Reach/Move 

on the surface

Apply the 

contact force

ሶ𝒙𝒅 = 𝒇 𝒙 + 𝒇𝒏 𝒙
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To separate control of force and control of motion , we decompose the nominal DS into two components: 

( ) ( )d nx f x f x= + ( )Force is applied only once in contact, hence  0  in free spacenf x =

To generate forces, we need to control the robot’s torques. We use the passive DS approach.
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( )( )
Robot's
control torques

     dc D x x x = −( ) ( ) ( )( )
Robot's
control torques

     c nf xxD x x f − +=

Passive-DS for Controlling Forces on the Surface

Robot
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To generate forces, we need to control the robot’s torques. We use the passive DS approach.

𝒏 𝒙

( )

( ) ( ) ( ) ( )

Eigencomposition of 

T

D x

D x Q x x Q x= 

( ) ( ) ( )1 2    Q x e x e x=   

( ) ( ) ( )1 1

Robot's
control torques

     c nf x f x D x x  = + −

1

2

Fixed impedance

           





 
 =  

 

( ) ( )2e x n x=

( )1e x

( )
( )

( )
1    

f x
e x

f x
=

Position controlled direction

Force controlled direction
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( )( )
Robot's
control torques

     dc D x x x = −( ) ( ) ( )( )
Robot's
control torques

     nc f x f xD x x − +=

Passive-DS for Controlling Forces on the Surface

Robot

Force controlled direction

10

To generate forces, we need to control the robot’s torques. We use the passive DS approach.

𝑭 𝒙

( ) ( ) ( )1 1

Robot's
control torques

     c nf x f x D x x  = + − ( )
( )

( )
1

set 
d

n

F x
f x n x


=

Design to apply the 

desired contact force 𝐹𝑑 𝒙 𝒏 𝒙

𝒏 𝒙
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We model the surface through a continuous function Γ 𝑥 , that measures the distance to the surface.

Γ 𝑥 is continuously differentiable such that we can compute the normal vector 𝑛 𝑥 at any position 𝑥

Modeling the Surface

( ) 0  (on the surface)x =

( ) 0x 

( ) 0x 
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We define a linear DS moving downwards towards the surface.

We modulate this DS to force it to move along the surface. 

To stop the motion at a target on the surface, we can set this as the attractor of the DS. 

Nominal DS

( ) ( )

( ): Rotation to align to the surface once in contact 

(same as in obstacle avoidance with constant velocity)

f R x Ax

R x

x =

x Ax=
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To separate control of force and control of motion , we decompose the nominal DS into two components: 

Visualization of the Decomposition

( ) ( )d nx f x f x= + ( ) ( )0  in free spacenf x =
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Animation of Principle
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Input dataset to learn the surface model: 
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Robotic Demonstration

Task: The robot must polish in circular motion the surface applying  a constant force of 20N.

Learn a model of the surface 

using Support Vector Regression
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Robotic Demonstration

Task: The robot must polish in circular motion the surface applying  a constant force of 20N.

Define a nominal DS that creates 

a limit cycle on the surface.
Project on the surface.
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Robotic Demonstration – Robustness to Various Disturbances

Passivity see exercise session
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Extension to Control Bimanual Platform

Task: The robots must reach either side of the box and apply enough force to support the box’s weight.
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Extension to Control Bimanual Platform
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Variables to Control Bimanual Platform

• Robots’ center position and distance vector

൞
𝒙𝑪 =

𝒙𝑳 + 𝒙𝑹

2
𝒙𝑫 = 𝒙𝑹 − 𝒙𝑳

𝒙𝑳

ሶ𝒙𝑳

ሶ𝒙𝒅
𝑳

𝒙𝑹

ሶ𝒙𝑹

ሶ𝒙𝒅
𝑹

𝒙𝒐
𝑫

𝒙𝒐
𝑪

𝒙𝑪

𝒙𝒅
𝑪

ሶ𝒙𝒅
𝑪

𝒙𝑫

𝒙𝒅
𝑫

ሶ𝒙𝒅
𝑫

• Robots’ nominal dynamics

𝒇𝑹 𝒙𝑪 , 𝒙𝑫 = ሶ𝒙𝒅
𝑪 +

ሶ𝒙𝒅
𝑫

2

𝒇𝑳 𝒙𝑪 , 𝒙𝑫 = ሶ𝒙𝒅
𝑪 + −

ሶ𝒙𝒅
𝑫

2 Positioning + grasping dynamics

To simplify control and ensure coordination, 

compute control in relative position



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Left 

Robot
Right 

Robot

𝒙𝑳

ሶ𝒙𝑳
𝒙𝑹

ሶ𝒙𝑹

𝒙𝑫

𝒙𝑪

• Desired robots’ center position and distance vector dynamics:

• Robots’ nominal dynamics:

ቐ
ሶ𝒙𝒅
𝑪 = 𝑨𝑪 𝒙𝒅

𝑪 − 𝒙𝑪

ሶ𝒙𝒅
𝑫 = 𝑨𝑫 𝒙𝒅

𝑫 − 𝒙𝑫

𝒙𝒅
𝑪

𝒙𝒅
𝑫

Object

Center positioning dynamics

Closing dynamics

with: 𝑨𝑪, 𝑨𝑫 ≥ 0

𝒇𝑹 𝒙𝑳 , 𝒙𝑹 = ሶ𝒙𝒅
𝑪 +

ሶ𝒙𝒅
𝑫

2

𝒇𝑳 𝒙𝑳 , 𝒙𝑹 = ሶ𝒙𝒅
𝑪 + −

ሶ𝒙𝒅
𝑫

2

Center positioning

+ 

Closing dynamics
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Nominal Dynamics for Bimanual Platform
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Left 

Robot
Right 

Robot

𝐹𝑑(𝒙
𝑳 , 𝒙𝑹 )𝒏𝑹

Object
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Force Desired for Bimanual Platform

• Robots’ desired modulated dynamics:

ሶ𝒙𝒅
𝑹 = 𝒇𝑹 𝒙𝑳 , 𝒙𝑹 +

𝐹𝑑(𝒙
𝑳 , 𝒙𝑹 )

𝑑1
𝑅 𝒏𝑹

ሶ𝒙𝒅
𝑳 = 𝒇𝑳 𝒙𝑳 , 𝒙𝑹 +

𝐹𝑑(𝒙
𝑳 , 𝒙𝑹 )

𝑑1
𝑳 𝒏𝑳

𝒏𝑹 = −𝒏𝑳 =
𝒙𝒅
𝑫

𝒙𝒅
𝑫

=

with: Grasping direction

𝐹𝑑(𝒙
𝑳 , 𝒙𝑹 ): Desired contact force

𝜆1
𝐿, 𝜆1

𝑅: Impedance gains

+
𝐹𝑑(𝒙

𝑳 , 𝒙𝑹 )

𝜆1
𝑅 𝒏𝑹

+
𝐹𝑑(𝒙

𝑳 , 𝒙𝑹 )

𝜆1
𝑳 𝒏𝑳

𝐹𝑑(𝒙
𝑳 , 𝒙𝑹 )𝒏𝑳

• Ensures the passivity through a tank for energy of both arms
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Robot Demonstration
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Learning Force Adaptation

28

Amanhoud, W., Khoramshahi, M., Bonnesoeur, M. and Billard, A., 2020, May. Force adaptation in contact tasks with dynamical systems. 

In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6841-6847). 
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Force tracking errors result from:
• Uncertainties in the surface 
• Uncertainties in the robot model
• Measurement noises

Goal: Exploit the adaptability and robustness of the time-
invariant DS framework to learn force compensation models

29

An error pattern

can be observed

Imprecise Force Generation
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❖ Force generation with DS:

❖ Introduction of a state-dependent force 

correction model ෨𝐹𝑑(𝒙, 𝜽):

𝒇𝒏 𝒙 =
𝐹𝑑 𝒙 + ෨𝐹𝑑(𝒙, 𝜽)

𝜆1
𝒏(𝒙)

30

ሶ𝒙𝒅 = 𝒇 𝒙 + 𝒇𝒏(𝒙)

Nominal DS
(responsible for motion)

Modulation term
(responsible for contact force)

DS in closed-loop configuration

𝒙

Controller

(Velocity-based)
Robot

ሶ𝒙𝒅
DS

ሶ𝒙

𝒕𝒄

𝑭𝒄: Control force

State-Dependent Force Correction

ሶ𝒙𝒅 ∈ ℝ3 Desired dynamics

𝒇 𝒙 ∈ ℝ3 Nominal DS

𝒇𝒏 𝒙 ∈ ℝ3 Normal modulation term

𝐹𝑑 𝑥 ≥ 0 Desired force profile

𝒏 𝒙 ∈ ℝ3 Normal direction to the surface

𝜆1 ≥ 0 Impedance gain
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❖ Design ෨𝐹𝑑(𝒙, 𝜽) using Gaussian Radial Basis kernel functions 

(RBFs):

❖ Update the weights 𝜽 to minimize the normal force error 𝐹𝑒:

𝐹𝑒 = 𝐹𝑑 𝒙 − 𝒏 𝒙 𝑻𝑭𝒎

σ𝑖=1
𝐾 𝜃𝑖𝜑(𝒙 − 𝒄𝒊)

σ𝑗=1
𝐾 𝜑(𝒙 − 𝒄𝒋)

෨𝐹𝑑(𝒙, 𝜽) =
𝜑 𝒙 = exp

− 𝒙 𝟐

2𝜎2with:

31

𝐾: Number of Gaussian
𝒄𝒊: Center position of Gaussian 𝑖
𝜎: Kernel width

Hyper-parameters

𝐹𝑑 𝒙 : Desired contact force
𝒏 𝒙 : Normal vector to the surface
𝑭𝒎: Measured contact forces

𝜃𝑖

𝒄𝒊Gaussian kernel

State-Dependent Force Correction
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4x

An error pattern

can be observed
Correction pattern
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4x
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Other Examples of Learned-Force Based Control with DS

34

Khoramshahi, M., Henriks, G., Naef, A., Salehian, S.S.M., Kim, J. and Billard, A., 2020, May. Arm-hand motion-force coordination for physical interactions with non-flat 

surfaces using dynamical systems: Toward compliant robotic massage. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4724-4730).
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Example of application: Learning Motion and Force Pattern to Massage 

Supported by Samsung

Human recordings

Robotic massage

Modeling

35
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GATHERING DATA FOR TRAINING – EXPERIMENTAL SET-UP

36

• 7 Optitrack cameras

• 5 x Prime 17w

• 2 x S250:E

• Limited to 125 Hz

• Infrared marker positions (X, Y, 

Z) captured

❖Mannequin on massage chair 

❖Silicone sheet placed over the 
mannequin

❖Represent human tissue for the robot
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Demonstration by Massage Therapist
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FORCE MEASUREMENT

38

• Pressure Profiles Systems, FingerTPS

+ Sensors have multiple sensing areas

+ Multiple sizes 

+ Fabric covered sensor

- Force mapped across
entire surface

- 40 Hz sampling rate
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Modeling Back Surface
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Modeling Back Surface

• Cross-validation used for model validation with 5 folds.

• Grid search to find optimal 𝐶 and 𝜎 for the SVR.

• Best testing accuracy achieved with a RMSE of 0.52 [cm] for points on the back
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Reconstructed surface & gradients for the trained SVR
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Test data from movements on the back of the mannequin
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Reconstruction of Motion on Back Surface
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Khoramshahi et al, ICRA 2020

Learning Arm Massage

Supported by Samsung



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Train SVR and predict the surface

Create artificial data for the arm
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Step 1:

• Learn the relationship 

between the movement 

and force exertion

• Fit the gaussian model

𝑓 = 3𝑒−0.8 𝜃−𝜋 2

Step 2:

• Use the model to 

reconstruct the 

behavior

Khoramshahi et al, ICRA 2020
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Reconstruction of Motion on Arm Surface
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Reconstruction of Motion on Arm Surface
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❑ Introduced a means to use Passive-DS to perform force control.

– The DS is decomposed into two parts, one controlling for motion along the surface, the other controlling 

for force.

– The control is simplified by introducing a function  that determines the distance and normal to the 

surface everywhere (akin to principle used in obstacle avoidance) → This allows decoupling control of 

force from motion along two orthogonal axes. 

❑Machine learning (e.g nonlinear regression through SVR) can be used to model the function .

❑ A force-based model associated to position is used for modulate the force along the DS

❑ To show that the system remains passive, as the DS is not necessarily conservative, the tank is required.

❑ Pattern of force can be learned

❑ To compensate for unmodeled interaction forces (nonlinear friction, other dynamics of robot poorly 

modelled)

❑ To learn a position-dependent pattern of force. Showed an example of application to model massage

Summary

50
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