Learning and adaptive control for robots =PrL

Force Control with Dynamical Systems

Amanhoud, W., Khoramshahi, M. and Billard, A. (2019) “A Dynamical System Approach to Motion and Force Generation in Contact Tasks.”
In Proceedings of Robotics, Science and Systems (RSS). 1
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Controlling Robot’s Forces when in Contact
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Controlling Robot’s Forces when in Contact
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Controlling for force at contact

Nominal DS f(x)

<
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Controlling for force at contact: Principle

n(x) n(x) normal vector to the surface
Make contact

Assumption: Surface is impenetrable
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Controlling for force at contact: Principle

} Once in contact, move tangential to the surface
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Controlling for force at contact: Principle

n(x)
The force may vary along the surface F (x)

Goal: Apply a desired force F,

F,(x)

Idea: If we can project the control torques onto the surface, we simplify the computation.

- We assume that we can compute the normal to the surface when in contact and we project the
control onto a frame of reference moving along the surface in direction of motion.
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Passive-DS for Controlling Forces on the Surface

To generate forces, we need to control the robot’s torques. We use the passive DS approach.

Force controlled direction
Robot

. =-D(x)(X—%)

C
I'N

Robot's
control torques

xd = + fn(x)

|

1 1
Apply the
contact force

To separate control of force and control of motion , we decompose the nominal DS into two components:

X, =T (x)+f,(x) Force is applied only once in contact, hence f, (x)=0 in free space
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Passive-DS for Controlling Forces on the Surface

To generate forces, we need to control the robot’s torques. We use the passive DS approach.

n(x)

& (%)

Force controlled direction

Robot's
control torques

Eigencomposition of D(x)

D(x)=Q(x)A(x)Q(x)

Fixed impedance

QM) =[a(x) &(x)] o A:ﬁ J
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Passive-DS for Controlling Forces on the Surface

To generate forces, we need to control the robot’s torques. We use the passive DS approach.

n(x)

Force controlled direction

Robot

F4(x)
. Fy (%)
7, :ﬂlf(x)+ﬂlfn(x)—D(x)x‘ setf, (x) =2 n(x)
Robot's — &
control torques Design to apply the

desired contact force | Fa(x)n(x)
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Modeling the Surface

We model the surface through a continuous function I'(x), that measures the distance to the surface.

I'(x) is continuously differentiable such that we can compute the normal vector n(x) at any position x

1 T T T T T T ]

I T
" & Surface levels 5 &
—»n(z) u :

['(x)=0 (on the surface)
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Nominal DS

We define a linear DS moving downwards towards the surface.

We modulate this DS to force it to move along the surface.
To stop the motion at a target on the surface, we can set this as the attractor of the DS.

&> Surface levels — n(x) ATarget
——= Vector field of f(x) —= f(x) 02
¥ .

—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 |

f (x)=R(x)Ax

R(x): Rotation to align to the surface once in contact

(same as in obstacle avoidance with constant velocity)
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Visualization of the Decomposition

To separate control of force and control of motion , we decompose the nominal DS into two components:

X, = £ (x)+ f,(x) f.(x)=0 (in free space)

0.6 —
' @& Surface levels —>n(x) —» fnx) 03
: —= Vector field of X3 — f(x) 4 x, 0.2
\ —X — Xy 4 Target

0.4

—1 0.8 0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
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Animation of Principle

No perturbation
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Robotic Demonstration

Task: The robot must polish in circular motion the surface applying a constant force of 20N.

Learn a model of the surface
using Support Vector Regression

Input dataset to learn the surface model:

0.35
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-0.05
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Robotic Demonstration

Task: The robot must polish in circular motion the surface applying a constant force of 20N.

Define a nominal DS that creates Project on the surface.
a limit cycle on the surface.

o1 0.19
o2
Zo,3
*x  Attractor

I Surface

-0.2 &
y [m] 04
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Robotic Demonstration — Robustness to VVarious Disturbances

30
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Extension to Control Bimanual Platform

Task: The robots must reach either side of the box and apply enough force to support the box’s weight.

22
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Extension to Control Bimanual Platform

=P-L
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Variables to Control Bimanual Platform

To simplify control and ensure coordination,

* Robots’ center position and distance vector

compute control in relative position

L R
C X+ x

* Robots’ nominal dynamics

( 563
R(xC ") =5c5+—2
3 D
X
Fr(xC,x) = i+ | == o | |
2 Positioning + grasping dynamics

24
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Nominal Dynamics for Bimanual Platform

« Desired robots’ center position and distance vector dynamics:

xg — Ac(xg _ XC) Center positioning dynamics
.D _ D_ D
Xd = AD(xd X ) Closing dynamics

with: Ac,Ap = 0

« Robots’ nominal dynamics:

L .
fR(x ;xR ) = xﬁ + o Center positioning
{ . D +
X Closing dynamics
L(,L R _ :C d g ay
R Ca )—xd+(—7>
\

25
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Force Desired for Bimanual Platform

» Robots’ desired modulated dynamics:

Fa(axt, x®) R

R L COP L I
1
. Fa(x",x")
dh= i af)
1
with: nf =-nl = ” ” Grasping direction
Xd

F_d(xL ,x™): Desired contact force

Ak, AR Impedance gains

« Ensures the passivity through a tank for energy of both arms

26
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Robot Demonstration

60

Normal force [N]
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Learning Force Adaptation

Amanhoud, W., Khoramshahi, M., Bonnesoeur, M. and Billard, A., 2020, May. Force adaptation in contact tasks with dynamical systems.
In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6841-6847). 28
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Imprecise Force Generation

25

Measured
Desired

20 r

)
2 15 F
E An error pattern
p ~ i can be observed
Force tracking errors result from:
e Uncertainties in the surface 5t
e Uncertainties in the robot model
N Measurement noises ) 0, ; : : :
time [s]

{Goal: Exploit the adaptability and robustness of the time-}

invariant DS framework to learn force compensation models 29
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State-Dependent Force Correction

DS in closed-loop configuration

¢ Force generation with DS: : ¢
DS Xd Controller )l Robot
Xg = f(x) + fn(x) (Velocity-based)
A A X
/ \ }
F.. Control force

Nominal DS Modulation term
. . . . 3 - -
(responsible for motion) (responsible for contact force) Xqg ER Desired dynamics

f(x) e R3 Nominal DS
fo(x) ER3 Normal modulation term

¢ Introduction of a state-dependent force

i 7 Fa(x) = i -
correction model 7, (x, 8): a(x) =0  Desired force profile

n(x) € R3 Normal direction to the surface

Fy(x) + F;(x,0) =20 Impedance gain
P n(x)
1

fn(x) =

30
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State-Dependent Force Correction

% Design F;(x, 8) using Gaussian Radial Basis kernel functions
(RBFs):

K oo [l
Zi:l el(p(x cl) With: (p(x) = eXp 202

5'<=1 p(x—cj) v 4

Fd(xl 6) =

Gaussian kernel

K: Number of Gaussian
Hyper-parameters c;: Center position of Gaussian i
o: Kernel width

*» Update the weights @ to minimize the normal force error E,.

F;(x): Desired contact force
FE, =F;(x) —n(x)TF,, n(x): Normal vector to the surface
F,,: Measured contact forces

31
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25 T
Measured
o .
5 Desired
oo 20
=y
p—
S < Z
= - o 15
. a 8
L
— z An error pattern
Force correction map A  Attractor = 10 1
Robot path - Gaussians location Zo Can be ObserVEd
A Robot position . -
o] z Correction pattern
o 5F -
0 =
0.2 g
— =t
g 2
& 03 g o L . , , |
= 3 4 5 6 7
04| § & time [s]
o
05 =

0 01 -02 -03 -04 -05 -06 -07 m

-10 32



Learning and adaptive control for robots =PrL
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Other Examples of Learned-Force Based Control with DS

Khoramshahi, M., Henriks, G., Naef, A., Salehian, S.S.M., Kim, J. and Billard, A., 2020, May. Arm-hand motion-force coordination for physical interactions with non-flat
surfaces using dynamical systems: Toward compliant robotic massage. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4724-4730). 34
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Example of application: Learning Motion and Force Pattern to Massage

Raw Trajectory R%-:?mtructad Trajectory with Pressure Data

.05

Zz(m)

= <005
E

= 0

(K] aunssalg paijddy

015

0.75 0.2

0.6 0.65 0T 0.78

Human recordings .
J Modeling

Robotic massage

Supported by Samsung 35
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GATHERING DATA FOR TRAINING - EXPERIMENTAL SET-UP

“*Mannequin on massage chair

*»Silicone sheet placed over the
mannequin

*»Represent human tissue for the robot

» 7 Optitrack cameras
 5XPrime 17w
 2xS250:E

« Limited to 125 Hz

 Infrared marker positions (X, Y,

Z) captured

36
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Demonstration by Massage Therapist
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FORCE MEASUREMENT

* Pressure Profiles Systems, FingerTPS

+ Sensors have multiple sensing areas
+ Multiple sizes
+ Fabric covered sensor

- Force mapped across
entire surface

- 40 Hz sampling rate

38
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Modeling Back Surface
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Modeling Back Surface

Train and test data for the back of the mannequin

1.2
0.6 : y 1
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~ o Bt £
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o NG 5
-0.4|* W3 7
0.2 A
0.6 1goe
0.2 0
0 0.2
yim] ©2

Cross-validation used for model validation with 5 folds.
Grid search to find optimal C and ¢ for the SVR.
Best testing accuracy achieved with a RMSE of 0.52 [cm] for points on the back
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Reconstructed surface & gradients for the trained SVR

simulated sample trajectories for the trained SVR

ylm] ~ -0.4 1
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Test data from movements on the back of the mannequin

Colormap over duration of applied pressure
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Reconstruction of Motion on Back Surface

Back Surface Massage

| Current Pressure [N] l

Surface ;
—= Gradients
=== _inear Trajectory t \ \ \: b ti/ i E
—>n(x) | | | " W ; \l“
=== Circular Trajectory ‘ t
— Applied Pressure 1.2 \ :ﬂ \,‘t H“it:”‘zjlw1':2;1%1;'1{{7;?/0 %

\‘ X / 1‘ “.““‘\f \~§4' s
RN L
| b, 0

-0.3 . x[m]
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Learning Arm Massage

Supported by Samsung
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Create artificial data for the arm

Train SVR and predict the surface

H o 25
:-c

,g&xx TR,
X XX ’;‘x =

x XX ek

W
ot xi % >
X T

*

L1
WAL

Bl P T L L
bt
&
X %
e
LA
g s

X ® X

t H % x R X

i H s JOK

i s %

118 : e % Xk x%

o i * %k K!xﬁf
'.E‘: - ¥ :IX X MK
i X g X



Step 2:
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Use the model to m —
reconstruct the
behavior

Reconstructed Trajectory with Pressure Data
Stacked Radiu

s of Trajectory with Pressure Data é
0.03 - : - ,

0.02

0.01

y [m]

0

-0.01

-0.02

"-0.03 -0.02 -0.01 O

0.01 0.02
x [m]

U./ 0

0.7
sl o0 0 005 01 015 92 o5 08  x[m]
0 1 Z 3 4 -

Phase [rad]

Khoramshahi et al, ICRA 2020




Learning and adaptive control for robots =PrL

Reconstruction of Motion on Arm Surface
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Reconstruction of Motion on Arm Surface

Arm Surface Massage

Surface | Current Pressure [N] |
—= Gradients
=== |_inear Trajectory 0.04

—>n(x)

v(x) 0.02 .|
=== Circular Trajectory 0
— Applied Pressure

-0.02 |
E
N -0.04
-0.06
-0.08

-0.1
0.35
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Task space
impedance

Desired control
Force

Joint torque
control

Dynamical
System

Fingertip velocity

Fingertip position

[—Desired force
' —Estimated force

2
0

|
|
|
|

-2

L4
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Summary

U Introduced a means to use Passive-DS to perform force control.

— The DS is decomposed into two parts, one controlling for motion along the surface, the other controlling
for force.

— The control is simplified by introducing a function I'" that determines the distance and normal to the

surface everywhere (akin to principle used in obstacle avoidance) - This allows decoupling control of
force from motion along two orthogonal axes.

O Machine learning (e.g nonlinear regression through SVR) can be used to model the function T.
O A force-based model associated to position is used for modulate the force along the DS

O To show that the system remains passive, as the DS is not necessarily conservative, the tank is required.

] Pattern of force can be learned

L To compensate for unmodeled interaction forces (nonlinear friction, other dynamics of robot poorly
modelled)

4 To learn a position-dependent pattern of force. Showed an example of application to model massage

50
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