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Extensions to control with DS

Coupling DS & Examples of Applications

Multi-attractor DS, Switching across DS, On-line update of DS
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Coupled DS
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Until now, we have considered a DS control law in isolation.                           

Isolated Dynamics

3

The state of the system  at time  depends solely 

on the state of  at the previous time step.

x t

x

( ) ( )1 ( )   x t x t f x dt= − +

( )  x f x=

In general, systems do not function in isolation. 

Their dynamics is influenced by the dynamics of their environment.
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Coupled DS in Nature

4

In Biology, the circadian clock and the cell cycle are modelled as two periodic 

processes that are coupled with one another. “In mammalian cells, circadian 

clocks consist of autonomous feedback loop oscillators ticking with an average 

period of about 24 h and controlling many downstream cellular processes.”

In Astrophysics, a pair of close-by stars act as a coupled system.

The two stars’ dynamics are influenced by their relative masses.

In a perfectly balanced system, one would obtain a perfect oscillator, 

where each star rotates around an ellipse.

Heintz, Wulff Dieter. Double stars. Vol. 15. Springer Science & Business Media, 2012.

Droin, C., Paquet, E.R. & Naef, F. Low-dimensional dynamics of two coupled biological oscillators. 

Nat. Phys. 15, 1086–1094 (2019). 

Coupled DS are often oscillatory in nature, but coupling can also be done to discrete movements, e.g. reach and 

grasp movements as well as bimanual reaching movements are coupled in amplitude and speed. 

 Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254; Swinnen et al. " Behavioural Brain Research, 2001.

Shostak, A. Circadian Clock, Cell Division, and Cancer: 

From Molecules to Organism. Int. J. Mol. Sci. 2017, 18, 873. 
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Coupled DS

5

In DS theory, the concept of “coupling” is used to express dependencies across dynamics.

( )

( )

Consider two variate  and  with dynamics:
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In the case of a linear DS on a multi-dimensional variable:

,    Nx x Ax = The variables follow an uncoupled dynamics only if  is diagonal.A
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If the two DS are coupled, the stability of the coupled system must be studied.

Coupled DS: Stability

6

Stability can be inherited through coupling

( )then, lim  , 0y
t

f y x
→

=( )
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Consider the system:
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y c d y

     
    
     

Study the eigenvalues of .A
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( )?,xf yx x= ( )?,yf xy y=

Uncoupled DS
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Uncoupled DS

8

To determine if the systems are coupled, generate a perturbation on one and observe 

if this affects dynamics of the other system, and conversely
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Uncoupled DS
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( )yy f y=

To determine if the systems are coupled, generate a perturbation on one and observe 

if this affects dynamics of the other system, and conversely
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Coupled DS

10
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( ),y xy f y=

Coupled DS

11

( )?,xf yx x=

Repeat the experiment but, this time, 

by applying a perturbation on y.



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Example

Coupled DS for Hand-Arm Coordination

12



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Arm-hand coordination

13
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Hand-Arm Coupling under Disturbances

Unperturbed trial Perturbed trial

Hand-finger coordination: Fingers start opening (preshape) for the final posture at about half of the 

reaching cycle motion. Is this coupling preserved during perturbation?

A. Shukla and A. Billard, Robotics and Science Systems Conference, RSS 2011. 14
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Hand-Arm Coupling under Disturbances

When the target is changed, subjects re-open 

completely the fingers while redirecting the hand to the 

new target’s location.

→ This may be advantageous to adapt to a new 

configuration of the object that requires a larger hand 

aperture with a different fingers’ positioning.   

→ Coupling across fingers and hand offers on-the-fly re-computation of hand motion.   

15



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Arm/hand and fingers are not coupled Arm/hand and fingers are explicitly coupled

Usefulness for Grasping in Robots

16
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( )xx f x=

( )yy f y=

Controller for hand transport – attractor on object

Controller for finger motion – attractor in joint space

Modeling Arm-Hand Coupling

17
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x

Dependency on distance to target

Couple finger-hand dynamics 
( )xx f x=

( ),y xy f y=

Modeling Arm-Hand Coupling

18
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Dependency on distance to target

Couple finger-hand dynamics 
( )xx f x=

( ),y xy f y=

Modeling Arm-Hand Coupling

19

x
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Dependency on distance to target

Couple finger-hand dynamics 
( )xx f x=

( ),y xy f y=

Modeling Arm-Hand Coupling

20
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x

Learning the coupling

21

Dependency on distance to target

Couple finger-hand dynamics 

( ),y xy f y=

( )Learn ,  dependency on distance to target 

from human demonstrations 

p y x

( ) 

At run time, compute expected finger aperture: 

ˆ |y E p y x=
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( ) 1,

Drive finger motion

  ˆ

:

  y t t tf yy y y y y += − = +

Amplitude and speed of finger reopening

Learning the coupling

22

( ) 

At run time, compute expected finger aperture: 

ˆ |y E p y x=

Learn  and  from human demonstrations 



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

( ) 1,

Drive finger motion

  ˆ

:

  y t t tf yy y y y y += − = +

▪  Re-opening velocity can be inferred from measuring mean hand velocity prior to perturbation

▪  Re-opening amplitude can be inferred from reopening velocity

23
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 parameter inferred from human data

24
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The Coupled DS model gives both a good qualitative and quantitative assessment of human motion.   

 parameter inferred from human data

3 trials for the same subject

25
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26

Adaptation from pinch to power grasp 

(train two separate Coupled DS for each grasp type) 
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Adaptation under visual or tactile disturbances
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Example

Coupled DS for Bimanual Coordination

28
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Coupling through External Variable

29

DS-s can be coupled through an external variable.

( )

( )

Let z be a virtual variable.  and  can be coupled through :

,

,
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z
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x f
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x
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y y
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30
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31

Track the object

Robot arms reach the 

object simultaneously
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32

The virtual 

object

Object 

Robots’ workspaces

Intercept point
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33

Virtual object

Intercept point

Object 

( )

Control law for virtual object

coordinated with real object 

,

lim

V V O

V

V O

t

x f x x

x x
→

=

=

( )

Control law for the two arms

coordinated with virtual object

,

lim

R R V

R

R V

t

x f x x

x x
→

=

=

S.S. Mirrazavi Saliehian, N. Figueroa and A. Billard. Int. Journal of Robotics Research, 2016,.
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34

KUKA AWARD FINALIST 2017
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35

S.S. Mirrazavi Saliehian, N. Figueroa and A. Billard. RSS 2016,. Best Student Paper Award
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Example

Coupled DS for Cutting Tissue

36
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Cutting a tissue

37

( )xx f x=

Cutting line

Stop

Nominal DS to go to the surface

( )*x A x x= − Once on the surface, move in a straight line
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38

Double Coupling across two DS-s.

( )

( )

,x

z z

zx f x

z f

=

=

( )( )*,xx f x x z=

Cutting line

Stop

( ) :  Attractor is on the location of the virtual system zA x= −

Perturb the system

Coupling with Virtual Dynamics

Prevent the virtual dynamics to continue moving,

otherwise we have an uncut segment.

zz A=

To make sure we move towards a single line,

model it with a virtual system.
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Double Coupling across two DS-s.

( )

( )

,

,

x

z

z

x

x f x

z f z

=

=

( )( )*,xx f x x z=

Cutting line

Stop

( ),z xz f z=

( ) :  Attractor is on the location of the virtual system zA x= −

Perturb the system

Coupling with Virtual Dynamics

( ) ( ) :  

The virtual system stops as soon as x and z are not colocated

It waits until the system comes back to cutting point.  

z Bz b x z= +  −

→
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Application for Cutting Soft Tissue

VID_20200301_193715~1.mp4

Wu, R. and Billard, A., 2021. Learning From Demonstration and Interactive Control of Variable-Impedance to Cut Soft Tissues. 

IEEE/ASME Transactions on Mechatronics.

Goal: cut a piece of silicon in a straight line

40

http://drive.google.com/file/d/1IcwU5YHoif31iueBl2B3EXSyy2BdpKRM/view


APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Human Demonstration

Recorded data:
○ Knife position

○ Interaction force

○ Human arm 

impedance

41
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From Raw Data to DS

Raw Data

Learned Gauss Functions

42
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Modeling with Coupled DS

Approaching the Tissue Cutting Phase Recovery after disturbance

43
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Comparison Coupled DS with SEDS

Recovery after disturbance

SEDS would simply send the knife to the end-effector but it would not come back to the cutting trajectory.

44
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Robotic Implementation

45
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Robotic Implementation

46
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DS attractor modulated by external input
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HumanRobot

Object Handover
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Industrial Application
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Control law for estimating human motion

H H

Hx A x=

( )

Control law for robot motion

,   limR R R h

t
x f x x x

→
= =

Load S e:  har

( )( ) ( )*

Control law for robot motion

, ,   lim

Origin on the intercept point

R R R

t
gx f x x x 

→
= =
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Load S e:  har

( )( ) ( )*

Control law for robot motion

, ,   lim

Origin on the intercept point

R R R

t
gx f x x x 

→
= =

Full load on r1  ot: ob =

( )* 1x  =



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Load S e:  har

( )( ) ( )*

Control law for robot motion

, ,   lim

Origin on the intercept point

R R R

t
gx f x x x 

→
= =

Share0.5 d :  load =

Grip force decreases
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Load S e:  har

( )( ) ( )*

Control law for robot motion

, ,   lim

Origin on the intercept point

R R R

t
gx f x x x 

→
= =

( )* 0x  =

Full load on h0  an: um =
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Load S e:  har

( )Modeling from human data g 

( )g 



 

Giver supports 

object

Receiver 

supports object
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Load S e:  har

( )Modeling from human data g 

( )g 



 

Giver supports 

object

Receiver 

supports object
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Medina, Duvallet, Karnam, Billard, A human-inspired controller for fluid human-robot handover, IEEE Conf. on Humanoid Robots, Humanoids 2016
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DS for tracking moving objects

57Kim, Shukla and Billard, IEEE Transaction on Robotics, 2014, Robotics King-Sun Fu Memorial Best Paper Award 
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58

Not at the center of mass

../LASA/Seungsu/objectcatching/matlabsim04.avi
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59
Compute derivative (closed-form) for Extended Kalman Filter

Build model of dynamics using 

Support Vector Regression  ( )
1

,  i

M
T Ti i

i

x k x x x x b
=

 = + 

Modeling Object’s Nonlinear Flying Dynamics
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60

Estimated

Real measurement
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Real measurement
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62

Learn most likely region to catch object
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63

Learn arm-hand coupling
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When it fails …
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Just on time!
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Failure due to imprecise closing of fingers
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Failure for lack of time to close the fingers
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71

Soft Catching Strategy
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Soft Catching Strategy
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Soft Catching Strategy
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( )Start with: x f x=

( )*

Stable at the intercept point

0f x =

*x
Ox

( )
0

Tracks the object:

l 0

 

im
t

x g x

x x
→

=

− =

( ) ( ) ( ) ( )

Smooth switching: 

, 0 1  gx xx xf x = + 

Soft Catching Strategy

Mirrazavi, Khoramshavi, Billard,  A dynamical systems approach for softly catching a flying object: Theory and experiments, IEEE Transaction on Robotics, 2016
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75

Increase performance to more than 80%
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76Finalist KUKA Award 2017
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Switching across DS

77



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

Circular Polish Linear Polish Retreat Push down

Winner-Take-All

1f 2f 3f 4f

Human input Robot response

78
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Circular Polish Linear Polish Retreat Push down

Winner-Take-All

1f 2f 3f 4f

Human input Robot response

79
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80Khoramshahi, M. and Billard, A., 2019. A dynamical system approach to task-adaptation in physical human–robot interaction. Autonomous Robots, 43(4), pp.927-946.
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Adapting DS Parameters on-line

81
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82

Automatically adapt center and size of the limit cycle, based on human demonstration
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( )

Control law for robot motion

; ,   :  parameters to be adaptedx f x =

( )*

d

Limit cycle in polar coordinates:

,   : radial velocity

,  :  angular veloc

, :  parameters to be ad p

i

a t

ty

e

r r r 



 

 

= − −

=

1x

2x
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( )( ) ( )( )
0

Estimate parameters on-line as soon as a discrepancy is recorded

Error measure over  points measured every : 

1
;

K

k

e f x t t

K

k t x t k
K

t


=

= −  − 



−

Human demonstration

Departs from original vector field

( ) ( ) ( )

( )
( )( )1

0

Update the parameters following gradient of the quadratic cost on error:

Quadratic cost: 

;1
  ;   for each parameter    

  

K
T

ki i

T

i

f x t k tJ
e

K

J e e





  




−

=

 −

=


=

 


( )*

*

One can follow the same procedure to update the parameters of a linear DS:  . 

Parameters to be learned are all elements of  and of . 

x A x x

A x

= −
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Khoramshahi, M., Laurens, A., Triquet, T. and Billard, A., 2018, October. 

From human physical interaction to online motion adaptation using 

parameterized dynamical systems. In 2018 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS) (pp. 1361-1366). 
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❑  Trajectory generation with DS is a powerful and versatile technique, allowing for the generation of a 

variety of behavior to control one or multiple robots.

❑They can be parameterized to introduce external dependencies such as dependency on force, or dependency to 

another dynamics for tracking moving targets.

❑  Coupling DS allows to generate temporal and spatial dependencies between different dynamics. 

❑This can be applied to control different robots (or robot’s parts) in synchrony. 

❑  When combined with the concept of virtual dynamics, it can force the system to track a desired path in space.

❑We have seen methods to combine multiple DS

❑To switch at run time across different DS through comparison across observed and control dynamics

❑To re-estimate the parameters of a known DS (limit cycle, linear DS) online through simple gradient descent.

Summary

86
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