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Extensions to control with DS

Coupling DS & Examples of Applications

Multi-attractor DS, Switching across DS, On-line update of DS
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Coupled DS
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Isolated Dynamics

Until now, we have considered a DS control law in isolation.

X = f (X) The state of the system x at time t depends solely
on the state of x at the previous time step.

x(t)=x(t-1)+ f (x)dt

In general, systems do not function in isolation.
Their dynamics is influenced by the dynamics of their environment.
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Coupled DS in Nature

Healthy cell division

Shostak, A. Circadian Clock, Cell Division, and Cancer:
From Molecules to Organism. Int. J. Mol. Sci. 2017, 18, 873.

In Astrophysics, a pair of close-by stars act as a coupled system.

The two stars’ dynamics are influenced by their relative masses.
In a perfectly balanced system, one would obtain a perfect oscillator,
where each star rotates around an ellipse.

Heintz, Wulff Dieter. Double stars. Vol. 15. Springer Science & Business Media, 2012.

Coupled DS are often oscillatory in nature, but coupling can also be done to discrete movements, e.g. reach and
grasp movements as well as bimanual reaching movements are coupled in amplitude and speed.

Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235-254; Swinnen et al. "' Behavioural Brain Research, 2001.




Learning and adaptive control for robots =PrL
Coupled DS

In DS theory, the concept of “coupling” is used to express dependencies across dynamics.

Consider two variate x and y with dynamics: x and y are coupled if any of the following happens:
X = fX(X) {X: 1:X(X’ y) {X: fx(x) {X: fx(x’ y)
y:fy(Y) y:fy(y) y:fy(x’y) y:fy(x’y)

In the case of a linear DS on a multi-dimensional variable:
xeR", x=Ax The variables follow an uncoupled dynamics only if A is diagonal.
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Coupled DS: Stability

Stability can be inherited through coupling

Consider the system:
x=f (%), If lim f (x)=0 then, lim f (y,x)=0

t—o0 t—0
y = fy(y’x): A YX

If the two DS are coupled, the stability of the coupled system must be studied.

X a b |[X _
= Study the eigenvalues of A.
(Y] L d } [ yj

A




Learning and adaptive control for robots =PrL

Uncoupled DS

=

x=f,(xy?) y="f,(y,x?)
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Uncoupled DS

To determine if the systems are coupled, generate a perturbation on one and observe
If this affects dynamics of the other system, and conversely

=
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Uncoupled DS

To determine if the systems are coupled, generate a perturbation on one and observe
If this affects dynamics of the other system, and conversely

e
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Coupled DS

=
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Coupled DS

S

x=f,(x,y?) y=1,(y.x)

Repeat the experiment but, this time,
by applying a perturbation ony.

11
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Example
Coupled DS for Hand-Arm Coordination

12
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Arm-hand coordination
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Hand-Arm Coupling under Disturbances

Unperturbed trial Perturbed trial

Hand-finger coordination: Fingers start opening (preshape) for the final posture at about half of the
reaching cycle motion. Is this coupling preserved during perturbation?

A. Shukla and A. Billard, Robotics and Science Systems Conference, RSS 2011. 14
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Hand-Arm Coupling under Disturbances

When the target is changed, subjects re-open
completely the fingers while redirecting the hand to the
new target’s location.

—> This may be advantageous to adapt to a new
configuration of the object that requires a larger hand
aperture with a different fingers’ positioning.

—> Coupling across fingers and hand offers on-the-fly re-computation of hand motion.

15
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Usefulness for Grasping in Robots

Arm/hand and fingers are not coupled Arm/hand and fingers are explicitly coupled

16
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Modeling Arm-Hand Coupling

X=1f, (X) Controller for hand transport — attractor on object

y= fy (Y) Controller for finger motion — attractor in joint space

17
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Modeling Arm-Hand Coupling

x=f,(x)

y="1,(YX
( IIHII)

Dependency on distance to target

Couple finger-hand dynamics

18
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Modeling Arm-Hand Coupling

x=f,(x)

y="1,(YX
( IIHII)

Dependency on distance to target

Couple finger-hand dynamics
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Modeling Arm-Hand Coupling

x=f,(x)

y="1,(YX
( IIHII)

Dependency on distance to target

Couple finger-hand dynamics

20



Learning and adaptive control for robots =PrL

Learning the coupling

Couple finger-hand dynamics

y="1,(YX
( HHH)

Dependency on distance to target

Learn p(y||x||) dependency on distance to target
from human demonstrations

At run time, compute expected finger aperture:

g=E{p(ylx)}

21
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Learning the coupling

At run time, compute expected finger aperture:

7=E{p(yIIx])
Drive finger motion:
y= fy(y_ﬂy)’ Yea = Yo Y,

\_—

Amplitude and speed of finger reopening

Learn o and £ from human demonstrations

22
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= o Re-opening velocity can be inferred from measuring mean hand velocity prior to perturbation

= [3 Re-opening amplitude can be inferred from reopening velocity

* SI;lbietﬂ
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“——Llinear |
— Linear
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o parameter inferred from human data

--- Model run with optimal parameters

— Human Demonstration
T
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o parameter inferred from human data

--=- Model run with optimal parameters

iy =B e
[ [
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'
[ | .
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[ —PModel run with inferred parameters J

& ééf

R W s

Time Steps Time Steps Time Steps

3 trials for the same subject

The Coupled DS model gives both a good qualitative and quantitative assessment of human motion.

25
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Adaptation from pinch to power grasp
(train two separate Coupled DS for each grasp type)
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Adaptation under visual or tactile disturbances
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Example
Coupled DS for Bimanual Coordination

28
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Coupling through External Variable

DS-s can be coupled through an external variable.

Let z be a virtual variable. x and y can be coupled through z:
x="f.(x2)
y=1, (y’ Z)

29
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Robot arms reach the
. object simultaneously |

31
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Robots’ workspaces
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Control law for virtual object
coordinated with real object

= (xV,xo)

Virtual object limx' = x°

t—oo

\
N
4
I
Control law for the two arms |' Intercept point
coordinated with virtual object I
\
)'(R:fR(xR,xV) \
!im X" =x’ _
o Object

S.S. Mirrazavi Saliehian, N. Figueroa and A. Billard. Int. Journal of Robotics Research, 2016,.
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KUKA AWARD FINALIST 2017

34
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Scenario 2: Long bar flying towards the robots, thrown by a human.

S.S. Mirrazavi Saliehian, N. Figueroa and A. Billard. RSS 2016,. Best Student Paper Award

35
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Example
Coupled DS for Cutting Tissue

36
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Cutting a tissue

x=f,(x) Nominal DS to go to the surface

X = A(x — x*) Once on the surface, move in a straight line
37
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Coupling with Virtual Dynamics

Double Coupling across two DS-s.

x=f (x,2) To make sure we move towards a single line,
2= 1f,(z2) model it with a virtual system.

Xx=f (x, X (z)) = A(x~—2): Attractor is on the location of the virtual system

Perturb the system

Prevent the virtual dynamics to continue moving,
otherwise we have an uncut segment.

7= Az

38
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Coupling with Virtual Dynamics

Double Coupling across two DS-s.

Xx=f (x, X (z)) = A(x~—2): Attractor is on the location of the virtual system

Perturb the system

2=(Bz+b)o(x-12):
The virtual system stops as soon as x and z are not colocated
— It waits until the system comes back to cutting point.
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Application for Cutting Soft Tissue

Goal: cut a piece of silicon in a straight line

Wu, R. and Billard, A., 2021. Learning From Demonstration and Interactive Control of Variable-Impedance to Cut Soft Tissues.
IEEE/ASME Transactions on Mechatronics. 40


http://drive.google.com/file/d/1IcwU5YHoif31iueBl2B3EXSyy2BdpKRM/view
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Human Demonstration

- won TN Using OptiTrack
Record EMG record position
signal of FCU g

. ,

and estimate arm
impedance

Recorded data:
o Knife position
o Interaction force
o Human arm
Impedance

Record cutting
force with ATI
force sensor

41
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From Raw Data to DS
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Modeling with Coupled DS

Approaching the Tissue
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Comparison Coupled DS with SEDS

get disturb and go

back to the attractor

tollowed SEDS

Recovery after disturbance
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SEDS would simply send the knife to the end-effector but it would not come back to the cutting trajectory.
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Robotic Implementation

45
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Robotic Implementation

46
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DS attractor modulated by external input
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Object Handover
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Learning and adaptive control for robots

Industrial Application
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o . Load Share

Control law for robot motion
limx® =x ()

X =1 (x*,g(a)), |
Origin on the intercept point

Control law for estimating human motion

)-(H =AHXH
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a =1: Full load on robot

o . Load Share

Control law for robot motion
X = £ (xF,g(a)),
Origin on the intercept point

limx® =x"(«)

[ o)
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o . Load Share

Control law for robot motion
X = £ (xF,g(a)),
Origin on the intercept point

[ o)

limx® =x"(«)

a =0.5: Shared load

N

Grip force decreases

Q
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a =0: Full load on human

o . Load Share

Control law for robot motion

)-(R: f(xR,g(a)), !LTXR:X*(a) /v

Origin on the intercept point



015

Learning and adaptive control for robots =PrL

e b

Giver supports
object

Receiver
supports object

Modeling g () from human data

o . Load Share
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e b

Receiver
supports object

Giver supports
object

Modeling g () from human data

o . Load Share
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Medina, Duvallet, Karnam, Billard, A human-inspired controller for fluid human-robot handover, IEEE Conf. on Humanoid Robots, Humanoids 2016
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DS for tracking moving objects

Kim, Shukla and Billard, IEEE Transaction on Robotics, 2014, Robotics King-Sun Fu Memorial Best Paper Award 57
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../LASA/Seungsu/objectcatching/matlabsim04.avi
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Modeling Object’s Nonlinear Flying Dynamics

Build model of dynamics using

Support Vector Regression

Compute derivative (closed-form) for Extended Kalman Filter 59
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60
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Real measurement

61



Learning and adaptive control for robots

Learn most likely region to catch object

z (mm)

62
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Learn arm-hand coupling
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When it fails ...
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Just on time!
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Failure due to imprecise closing of fingers
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Failure for lack of time to close the fingers
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Soft Catching Strategy

71
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Soft Catching Strategy

72
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Soft Catching Strategy

73



Learning and adaptive control for robots =PrL

Soft Catching Strategy
Tracks the object: X =g (x)
lim]x—2°] =0

Smooth switching:
x=f(x)+y(x)g(x), 0<y(x)<1

Start with: x = f (x)

Stable at the intercept point
f(x")=0

Mirrazavi, Khoramshavi, Billard, A dynamical systems approach for softly catching a flying object: Theory and experiments, IEEE Transaction on Robotics, 2016 74
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Increase performance to more than 80%

75
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Finalist KUKA Award 2017
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Switching across DS

77
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Circular PO|ISh | Linear Polish

Retreat

| Push down

|
Human input @n
RN »;le.
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Circular Pollsh _ Linear Polish Retreat

Push down |
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Human input @m ') 1 Robot response
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Robot's view
with four possible tasks:

The human intends to place the box on either the right or left side. ® Move forward
The exact location for the placement is unknown to the robot. Adapted  Move backward
Task:  Place right
Place left

Khoramshahi, M. and Billard, A., 2019. A dynamical system approach to task-adaptation in physical human—robot interaction. Autonomous Robots, 43(4), pp.927-946. 80
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Adapting DS Parameters on-line

81
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- [ nitial task
== Human interaction
== Adapted task

Automatically adapt center and size of the limit cycle, based on human demonstration
82
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Control law for robot motion

1 ¥
x=f(x;0), 0: parameters to be adapted —DS5. | - -
0.8 -|——Trajectory following the D.S.
0.6—/ /
oal /7 |
0.2+ / /
. : : b ’
Limit cycle in polar coordinates: Xy 0 L
4 \

* . . -0.2 |
t=-a(r-r"), a:radial velocity N ;o
. . ol - - - == S /|
¢ = o, o angular velocity A A
a, @' parameters to be adapted B s /S

-1 . . .

0.5
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Estimate parameters on-line as soon as a discrepancy is recorded
Error measure over K points measured every At: Human demonstration

- . a ; _l,-"' I P - e, .
_—Z( (x(t—kAt);0)—x(t-kat)) M IR SR N,
f | L N
O

Departs from original vector field " N

oo

Update the parameters following gradient of the quadratic cost on error: b
1

Quadratic cost:J(@) = e(0)e' (0) r' i
i |

K1 of (X(t—KAt); 6

A _1 ( ) ); for each parameter 6. 7
86, K = 7 ! !

One can follow the same procedure to update the parameters of a linear DS: % = A(x—x").

Parameters to be learned are all elements of A and of x.

84
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O Pick
(] PLace
2 Via-point

Khoramshahi, M., Laurens, A., Triquet, T. and Billard, A., 2018, October.
From human physical interaction to online motion adaptation using
parameterized dynamical systems. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (pp. 1361-1366). 85
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Summary

O Trajectory generation with DS is a powerful and versatile technique, allowing for the generation of a
variety of behavior to control one or multiple robots.

U They can be parameterized to introduce external dependencies such as dependency on force, or dependency to
another dynamics for tracking moving targets.

O Coupling DS allows to generate temporal and spatial dependencies between different dynamics.

L This can be applied to control different robots (or robot’s parts) in synchrony.

O When combined with the concept of virtual dynamics, it can force the system to track a desired path in space.
1 We have seen methods to combine multiple DS

U To switch at run time across different DS through comparison across observed and control dynamics

U To re-estimate the parameters of a known DS (limit cycle, linear DS) online through simple gradient descent.

86
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