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Learning and Adaptive Control for Robots Course

Overview of Main Concepts Seen in Class 

& 

Exam Instructions
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Exam Format
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Exam Format

The exam lasts a total of 25 minutes:

- Upon entering the room, you pick at random 2 questions. 

- You present your answers on the black board.

- The exam consists of a discussion over the topic of the question, and you may be 

asked to answer additional related questions. 

Exam is closed book, but you can bring one A4 recto-verso page with personal 

handwritten notes. Personal notes written on a tablet are allowed too.
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Exam Material

Today’s overview highlights only some key components of each technique seen 

in class. The exam can cover any of the topic we have seen in:

- Slides & videos

- Material in the associated Book chapters

- Solutions to the pen and paper exercises

- Material done during the matlab and robotic practice sessions
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Theory:

You should be able to explain mathematically and in words (+ with 

schematics):

- Fundamental concepts of DS, such as stability under Lyapunov & 

Contraction Theory, asymptotical/global and local stability, passivity, 

definition of linear/nonlinear DS, limit cycle, saddle points, impedance control.

- Key steps of each DS algorithms seen in class (optimization approach to 

SEDS / LPV-DS; types of modulation and machine learning method used 

to estimate these; principle of impedance/force control with DS) and 

mathematical principles behind their theoretical guarantees

Exercises:

You should be able to solve the exercises done in class (or variants on these).

Practice sessions:

Examples of the dynamics generated by each algorithm; examples of the 

algorithm’s sensitivity to certain choice of hyperparameters.

Preparation for the Exam
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Role play with a friend! 

One of you is the professor and the other the student.

As student, explain to your friend one technique.

A professor, ask questions to the student to test understanding of the technique, 

ask for examples, ask for justification of some statement (e.g. why is it stable?)

Preparation for the Exam 
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Brief Overview of Main Course’s Topics
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?

?

Which path?
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Velocity flow ( )x f x=

1x

2x

Control with dynamical systems
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1x

2x

What happens if target moves?

Velocity flow ( )x f x=
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What happens if target moves?

Velocity flow ( )x f x=

What is f?



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

© Aude Billard              

Teaching trajectories

Trajectories can also be generated 

by optimal control.
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1

3

Data-Driven Learning

How to Transmit Skills to Robots

Chapter 2, Book



APPLIED MACHINE LEARNINGLearning and adaptive control for robots

© Aude Billard              

How do we gather data for learning? 
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Interfaces to provide demonstrations
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Teleoperation
Kinesthetic Teaching

• Graphical user interface/Tablet

• Joysticks

• Exoskeleton

• Haptic devices

Observational Learning

• Embody the robot

• Solves part of the 

correspondence problem 

(kinematic feasibility)

• Feel the interaction forces

• Track human motion with video 

or motion sensors

• Natural demonstrations

• No force measurements 

      (must be inferred from motion)
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Learn a function: ( )x f x=

Learned with SVR

Learning a dynamical system
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Learn a function: ( )x f x=

Learned with Neural Networks

Learning a dynamical system
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Convergence to a fixed point.

( )* * 0,    lim  0
t

x f x x
→

= ==

*x

What is f?What is V?

( )

( ) ( )* *

Lyapunov Stability:

 positive, 

s.t. =0 &  <0 

V x

V x V x x x



 

1x

2x

Properties for the DS
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Motivation for Use of DS

?

• Real-time adaptation to disturbances

• Closed-form expression

• Embed a flow of trajectories, all of 

which guaranteed to reach the target
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Mathematical Expression

DS control law (1st order ordinary differential equation)

( )x f x=
 :  Robot's state

:    Time-derivative of state, velocity

N

N

x

x





The system is asymptotically stable at a target, x*, and only at the goal:

( )*lim 0
t

f x
→

=

Places the origin of the system on the attractor.

The trajectories move with the origin.

*x
* 0x =
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Learning DS: SEDS

*x

Learn parameters of the Gauss function 

as a constrained optimization problem:

Two possible objective functions:

1) Maximum likelihood 

2) Mean-square error 

Under several constraints, among which:

a) kb A= −

( )

* Stability at attractor

- Energy decreases

-  

b) 0    

k

T
k k

x

A A k+ 

 ( ) ( )( )
1

1

Generate an estimate of the DS through Gaussian Mixture Regression: 

; : :      Mixture of  linear DS, k

k k k

k

k
K

K

k
Ax f x x Kb A b

=
=

= += 
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Learning and adaptive control for robots

© Aude Billard              
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Highly Non-linear 
trajectories violate 
stability condition

If V is too conservative.

Learning DS: LPV - DS

Parameterized Quadratic Lyapunov Function 

(P-QLF)

Relax isotropic form of the Lyapunov function
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Learning DS: LPV - DS

23

Parameterized Quadratic Lyapunov Function (P-QLF)

23

Relax isotropic form of the Lyapunov function
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Learning DS: LPV - DS

Devise a procedure to place the Gauss 

functions of the GMM, so as to follow the 

direction of motion of the data.

Aligns well with direction of curvature

Introduce a new metric to cluster points.

Points must be:

- Close to one another

- Have closely co-aligned velocities 

Once the GMM has been trained, update cross-covariance matrices 

to predict dynamics while satisfying stability constraints. 

24

Use Bayesian non-parametric Mixture Model 

training method (train only on position)
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Modulating a DS

25

( ) ( )x f xM x= ( ),   N NM x 

( )*

Preserve stability at attractor.

 .M x I =

( )

Locality if modulation preserves

uniqueness of attractor

0,  

 must be full rank.

M x x

M

  

Learn a local modulation from data

( ) ( ) e= , ,    :  ext rnal t inpuMx M x f xs s

( ) ( )( ) ( )

iS ntate and input–dependent  nscal

,

rotatiand g o

,, 1 R x ss xx sM = +

Rotation             
( ) ( )( ) ( )1 xM Rx x= +

N NR 

Modulates speed

Modulation depending on external input
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Modulating a DS – Obstacle Avoidance
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( ) ( )x f xM x= ( ),   N NM x 

( ) ( ) ( ) ( )
1

.o o o oM x x E x x D x x E x x
−

− = − − −

ox

Construct a deflection through .

Modulate deflection through eigenvalues .

E

D
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Modulating a DS – Obstacle Avoidance
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x*

The space is split into a region that is stable through 

contraction theory and the rest that is Lyapunov stable.

Contracting region Lyapunov stable

Extend the principle to enable obstacle avoidance

of concave objects using contraction theory.
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Modulating a DS – Obstacle Avoidance

28

Flow is trapped inside the obstacle. This can be used to enclose DS in a given volume.
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Impedance Control with DS
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( )
( )

( )

1

2

The eigenvalues set the impedance

       0

   0       

x
x

x





 
 =  

  
( )1e x

( )2  large - stiffx

( )2  small - compliantx

( )f x

( )2e x

( )1  largex

( )1Set  to be very stiff 

for accurate tracking.

x

( )2Modulate  to comply with orthogonal disturbances.x

( ) ( )( )( ) cg xD xx f x − − =
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Impedance Control with DS - Passivity
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Passivity analysis

The system must remain passive under external disturbances .e

We verify that : T

eW x

We set: 
eu

y x

=


=

We define the storage function as .W

( ) ( )1

Potential
Kinetic Energy Energy of ( )

1
We set the storage function: 

2

T

f

f x

W x M x x V x= +

If  is Lyapunov stable, the system is passive.f

Otherwise, revert to tank-based approach.
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Force Control with DS

31

( ) ( )( )
Robot's
control torques

     c D x x f x = −( )( )
Robot's
control torques

           c dD x x x = − −

Robot

Position controlled direction

Force controlled direction

Reach/Move 

on the surface

Apply the 

contact force

ሶ𝒙𝒅 = 𝒇 𝒙  +  𝒇𝒏 𝒙

To separate control of force and control of motion , we decompose the nominal DS into two components: 

( ) ( )d nx f x f x= + ( ) ( )0  in free spacenf x =
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Overview Course & References to Book Sections

32

WEEK TOPIC BOOK Chapter

1 Intro to robot path planning Chapter 1

2 Acquiring data for learning Chapter 2

3 Introduction to dynamical systems (DS) Annexes A

4 Learning control laws with DS Chapter 3

5 PRACTICE SESSION I

6 Learning how to modulate a dynamical system Chapter 8

7 Obstacle avoidance with dynamical systems Chapter 9

8 PRACTICE SESSION II

9 Impedance control with dynamical systems Chapter 10

10 Force control with dynamical systems Chapter 11

11 Extensions & other application to learning with DS 

Overview and Exam Preparation 

Selections from Ch. 4,5,6&7*

12, 13, 

14

PRACTICE SESSION III – ON ROBOTS

* Not exam material
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