Learning and adaptive control for robots “PFL

Learning and Adaptive Control for Robots Course
Overview of Main Concepts Seen in Class

&
Exam Instructions
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Exam Format
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Exam Format

The exam lasts a total of 25 minutes:
- Upon entering the room, you pick at random 2 questions.
- You present your answers on the black board.

- The exam consists of a discussion over the topic of the question, and you may be
asked to answer additional related questions.

Exam is closed book, but you can bring one A4 recto-verso page with personal
handwritten notes. Personal notes written on a tablet are allowed too.
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Exam Material

Today’s overview highlights only some key components of each technique seen
In class. The exam can cover any of the topic we have seen in:

- Slides & videos

- Material in the associated Book chapters

- Solutions to the pen and paper exercises

- Material done during the matlab and robotic practice sessions
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Preparation for the Exam

Theory:

You should be able to explain mathematically and in words (+ with
schematics):

- Fundamental concepts of DS, such as stability under Lyapunov &
Contraction Theory, asymptotical/global and local stability, passivity,
definition of linear/nonlinear DS, limit cycle, saddle points, impedance control.

- Key steps of each DS algorithms seen in class (optimization approach to
SEDS / LPV-DS; types of modulation and machine learning method used
to estimate these; principle of impedance/force control with DS) and
mathematical principles behind their theoretical guarantees

Exercises:

You should be able to solve the exercises done in class (or variants on these).
Practice sessions:

Examples of the dynamics generated by each algorithm; examples of the
algorithm’s sensitivity to certain choice of hyperparameters.
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Preparation for the Exam

Role play with a friend!
One of you is the professor and the other the student.
As student, explain to your friend one technique.

A professor, ask questions to the student to test understanding of the technique,
ask for examples, ask for justification of some statement (e.g. why is it stable?)

© Aude Billard 6
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Brief Overview of Main Course’s Topics

© Aude Billard



Learning and adaptive control for robots “PFL

Which path?
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Control with dynamical systems
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What happens if target moves?
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What happens if target moves?
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Teaching trajectories

Trajectories can also be generated
by optimal control.
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Data-Driven Learning
How to Transmit Skills to Robots

Chapter 2, Book

-
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How do we gather data for learning?

Method to generate Online mode Need model of robot Trainer Number of
the data or world training
examples
Learning from YES NO Anyone <20
human
demonstrations
Optimal control NO YES Skilled >100
programmer
RL (live) YES YES (model-based RL) Anyone >100
NO (model-free RL) (reward)
RL (simulation) No YES Skilled >1,000
programmer

© Aude Billard
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Interfaces to provide demonstrations

Kinesthetic Teaching

Teleoperation

« Embody the robot

» Solves part of the
correspondence problem
(kinematic feasibility)

e Feel the interaction forces

«  Graphical user interface/Tablet Observational Learning
« Joysticks

« Exoskeleton

« Haptic devices

*  Track human motion with video
or motion sensors

« Natural demonstrations
« No force measurements
(must be inferred from motion)

© Aude Billard

15



Learning and adaptive control for robots “PFL

Learning a dynamical system

Learned with SVR

Learn a function:X = f (x)
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Learning a dynamical system
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Learned with Neural Networks

Learn a function:X = f (x)
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Properties for the DS

11
117

‘What is V2 | ,./
Convergence to a fixed point.
X'=f(x)=0, limx=0

t—oo

‘What is 7 |

Lyapunov Stability:
AV (x) positive,
st.V(X)=0 & V (x)<0 vx # X’
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Motivation for Use of DS

« Real-time adaptation to disturbances

* Closed-form expression
« Embed a flow of trajectories, all of
which guaranteed to reach the target

© Aude Billard
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Mathematical Expression

DS control law (1%t order ordinary differential equation)
. xeR" : Robot's state
x=f(x) ., .y .

xeR" : Time-derivative of state, velocity

The system is asymptotically stable at a target, x*, and only at the goal:

lim £ (x")=0

t—>w

Places the origin of the system on the attractor.
The trajectories move with the origin.

© Aude Billard
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Learning DS: SEDS

Generate an estimate of the DS through Gaussian Mixture Regression:

X:f(x;{ } ) Zyk )(A“+b"): Mixture of K linear DS

Learn parameters of the Gauss function
as a constrained optimization problem:

Two possible objective functions:
1) Maximum likelihood
2) Mean-square error

Under several constraints, among which:
a) b* = —A“x”- Stability at attractor

b) A* +(A") <0 Vk - Energy decreases

© Aude Billard
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Learning DS: LPV - DS

Relax isotropic form of the Lyapunov function

Parameterized Quadratic Lyapunov Function
(P-QLF)
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Learning DS: LPV - DS

Relax isotropic form of the Lyapunov function

Parameterized Quadratic Lyapunov Function (P-QLF)
Viz)=(x—z*) (x — x*) V(iz)=(z—2") Pz —z¥)

Lyapunov Function V(z) = (z — )T P(z — z*)
Lyapunov Function V(z) = (z — 2*)T(z — )

¢ f
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Learning DS: LPV - DS

Aligns well with direction of curvature

Devise a procedure to place the Gauss
functions of the GMM, so as to follow the
direction of motion of the data.

Introduce a new metric to cluster points.
Points must be: | -'_E":-"---w!:!.'.*..-..'-.',:g__,;-:_ . \.
- Close to one another —

- Have closely co-aligned velocities

Use Bayesian non-parametric Mixture Model . |
training method (train only on position) s 4 -3 2 -1

Once the GMM has been trained, update cross-covariance matrices
to predict dynamics while satisfying stability constraints.

© Aude Billard
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Modulating a DS
Xx=M(x)f(x), M(x)eR"™™

M (x) = (1+x(x))R(

e L
Modulates speed

Learn a local modulation from d

N —

>

Modulation depending on external input

X=M (x,s) f (x), seR": external input

State and input—dependent scaling and rotation
M (x,5)=(1+x(x,5))R(x,s)

7 NS M (X) #0, ¥x
T .
< XYM must be full rank.
Preserve stability at attractor.
= M(x)=1.
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Modulating a DS — Obstacle Avoidance
Xx=M(x)f(x), M(x)eR"™™

M (x—x°)= E(x—x")D(x—x")E(x—x")_l.

Construct a deflection through E.
Modulate deflection through eigenvalues D.

© Aude Billard
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Modulating a DS — Obstacle Avoidance

Extend the principle to enable obstacle avoidance

of concave objects using contraction theory.
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Contracting region
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Lyapunov stable

The space is splitinto aregion that is stable through
contraction theory and the rest that is Lyapunov stable.

27



Learning and adaptive control for robots

Modulating a DS — Obstacle Avoidance
Flow is trapped inside the obstacle. This can be used to enclose DS in a given volume.

Enclosing obstacle

© Aude Billard
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Impedance Control with DS

| = : f(x)
g(x)—D(x)(x-f(x)) =2, 5\\\») y
liz(fi)'ﬁfge-stif(w

e
— —

e —
The eigenvalues set the impedance

A(X):{%éx) 0 :l > 0.5 [ N\\

7 (X)

for accurate tracking.

Set 4, (x) to be very stiff \ Q\,\
s ¢ ()]

Modulate 4, (x) to comply with orthogonal disturbances.
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Impedance Control with DS - Passivity
Passivity analysis

The system must remain passive under external disturbances z..

u=r,
We set: { ,
y=X

We define the storage function as W.

We verify that : W < z," X

We set the storage function: W = % XM (X)%+ AV, (X)

Potential

Kinetic Energy  Epergy of f (x)

If f is Lyapunov stable, the system is passive.
Otherwise, revert to tank-based approach.

© Aude Billard
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Force Control with DS

Position controlled direction
Force controlled direction
Robot
Robot's

control torques

g =fx) + fa(®)

\

| 1
Reach/Move Apply the
on the surface  contact force

To separate control of force and control of motion , we decompose the nominal DS into two components:
%, = f(x)+f,(x) f.(x)=0 (in free space)

© Aude Billard
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Overview Course & References to Book Sections

WEEK | TOPIC BOOK Chapter

1 Intro to robot path planning Chapter 1

2 Acquiring data for learning Chapter 2

3 Introduction to dynamical systems (DS) Annexes A

4 Learning control laws with DS Chapter 3

5 PRACTICE SESSION |

6 Learning how to modulate a dynamical system Chapter 8

7 Obstacle avoidance with dynamical systems Chapter 9

8 PRACTICE SESSION II

9 Impedance control with dynamical systems Chapter 10

10 Force control with dynamical systems Chapter 11

11 Extensions & other application to learning with DS~ Selections from Ch. 4,5,6&7*

Overview and Exam Preparation * Not exam material

12,13, PRACTICE SESSION Il — ON ROBOTS

14
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