Learning for Adaptive and Reactive Robot Control
Instructions for exercises of lecture 2

Professor: Aude Billard

Spring Semester

Installation

You can now download the solutions folder for last week from Moodle, unzip it and place
it in the lecturel-introduction folder. Your book-code folder should have the following
architecture :

book-code

4>| lecture1-introduction

exercises

solutions

—)| lecture10-force-control |

4>| lectureg-compliant-control ‘

Ly libraries

Figure 1: Workspace directory architecture



1 Exercise 1: Kinematically feasible trajectories

Book correspondence: page 40.

1.1 Goal:

The aim of this exercise is to familiarize the reader with dataset generation, using kinematic
models and dynamic constraints. Specifically, in this exercise, you will code a program that
allows to sample kinematically and dynamically feasible trajectories for a 4 degrees of freedom
robot arm. These trajectories will then be used in the future practice sessions as demonstrations
from which we will learn a stable dynamical system.

1.2 Instructions
1.2.1 STEP 1 OF THE EXERCISE:

1. Generate a joint space trajectory that starts from a random configuration, and reaches a
prespecified target location in Cartesian space, following Algorithm 2.1, see below.

2. Repeat the previous step 10 times, each time by initializing the robot at different initial
configurations. This will generate a dataset of trajectories. Save each trajectory. A
trajectory consists of a series of position and velocities followed by the robot until it
reaches the goal.

Algorithm 2.1 Generate Kinematically Feasible Data Trajectories

Initialization:
x (0) and x* Randomly define the initial robot’s position and final target position.
q0)=F —lx (0)) Inverse kinematics for the initial joint position.
t=0. Initialize time.
Main loop:
While € < [|[F(g(#) —x*|| :
g (t+dt) =argmax; ||gll. Maximizing the velocity of the joints.
subject to:

WZT =Jt(q®) l&::ﬁ%. Moving on the straight line toward the target at the task space.

Iminli] < qlil < gmaxli] Vie {l,...,D}. Kinematic feasibility at the velocity level.

Gmin < q®[i]1+ qlildt < qmax[i]l Vie{1,...,D}. Kinematic feasibility at the position level.
q(t+dt)=q () +q (+df)dt
t=t+dt

F(.) and J(.) are the forward kinematics and the Jacobin matrices, respectively. + is Moore—Penrose inverse.

Matlab steps: Open chp2_algol_inverse kinematic.m. You will have to implement the
main loop of algorithm 2.1 at line 48 of the MATLAB file.

Try first to create a straight line between the initial configuration q0 and the final position
targetPosition without maximizing the velocity of the joints, nor checking for joint position
and velocity limits.

To do this, you can use the Jacobian matrix J of the kinematic model, which relates the joint
velocity q to Cartesian velocity x:

x=Jxq (1)



You can use the following MATLAB functions:

)

% Input 4x1 joint position vector ¢, output 3x1 Cartesian position vector:
position = robot.fastForwardKinematic (q);
% Input 4x1 joint position vector ¢, output 3x4 Jacobian matrix:

1
2
3
4
5 Jjacobian = robot.fastJacobian (q);

As the Jacobian is a 3-by-4 matrix (four joint velocity, three dimensions of Cartesian velocity),
you cannot directly invert it. The simplest solution is to rely on MATLAB pinv() function
(Moore-Penrose pseudo-inverse) to get the Moore-Penrose inverse J* and solve this equation
to get q. A better approach is to use the damped pseudo-inverse:

I =T % (JY + X1 (2)

This method has the advantage of avoiding matrix inversion issues near singularities, which
typically happen when the robot is fully extended, and thus loses a degree of freedom. You
can tune this effect with the parameter A\: for values close to zero, the dampening effect is
reduced, so the Jacobian inversion is more precise but less stable near singularities. Test these
two inversion methods to see when the damped pseudo-inverse is the most useful (hint: try
moving the targetPosition)

You can now compute an increment Aq that moves the end-effector in the direction of your
target. Repeat this step until you are sufficiently close to the target (Cartesian distance less
than toleranceDistance variable). You can store all the joint velocities ¢ and joint positions
q in the variable trajectory as a 8-by-N array.

. 9 - 4N
trajectory = | . . 3
) y [QO qN:| ( )

with q, and q, the joint position and velocity respectively at targetPosition.
: Don’t fill the 3D array trajectories. It will be automatically filled afterward by
resampling nPoints from your array trajectory.
Once you can successfully generate one straight Cartesian trajectory, you can modify the vari-
able nTraj to generate a batch of nTraj trajectories.

As a final improvement, you can scale each joint velocity vector by a scalar to ensure that
the maximum joint speed is just at the limit maxJointSpeed:

lallee = maz(l[qil], [I¢21], [I¢s]], [|¢a||) = maxJointSpeed (4)

which will ensure that all joint speed ¢; are bounded:
—maxJointSpeed < ¢; < maxJointSpeed (5)
Answer the following questions:

e What is the effect of using different Jacobian inversion methods 7

e Can you think of other features that could be added to this algorithm 7




1.2.2 STEP 2 OF THE EXERCISE:

1. Generate joint space trajectories using optimal control.

2. Compare the solutions with the ones from the closed-loop inverse kinematic algorithm.
What are the advantages and disadvantages of each 7

Matlab Steps: Open chp2_algol_optimal_control.m. Add the cost functions you derived
during exercise 1 at the bottom of the file. You can choose which cost function the MPC will
use at line 28.
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