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Introduction

INTRO
This part of the course follows exercises 11.1 and 11.2 and programming exercise 11.1 of the

book ” Learning for Adaptive and Reactive Robot Control: A Dynamical Systems Approach.
MIT Press, 2022".

1 Theoretical exercises [1h]

1.1

Book correspondence: Fx10.10
Let the nominal task model f(x) be composed of conservative and non-conservative parts:

f(@) = fe(z) + fr(2)
Let the system M (z)i + C(x, &) + g(z) = 7. + 7. be controlled by the following:
Te = g(x) — D(2)& + A1 fe(@) + Br(2, $)A1 fr(2)

where z = 37 f,(z)

The storage variable s has the following dynamics
5= a(s)iT D(x)i — Bs(s, 2) M1z

and the following properties are satisfied,

0<a(s)<1 5<5
a(s) =0 5>5
Bs(z,8) =0 s<0 and z>0
Bs(z,8) =0 s>5and 2<0
0<ps(z,8) <1 elsewhere
Br(z,8) = Bs(z,8) 220
Br(z,8) > Bs(z,5)  2<0

Consider the storage function W (z, &, s) = 1iTMi + A\ V.(z) + s, where V,(z) is the potential
function associated with f.(x)



Prove that if 0 < s(0) < 5, the resulting closed loop system is passive with respect to the
input-output pair 7, x.

Solution:

First, note that 0 < s(0) < § = 0 < s(t) < 5,Vt > to. Consider the storage function
W(z,d,s) = 33T Mi + A\ Ve(z) + s, where V,(z) is the potential function associated with f.(z).
The rate of change of W is:

) 1 )
Wz, &) = &TMi + QJ'UTMj: +MVVIGE 4+ 5 (1)
Substituting M# and 7. using the skew-symmetry of M — 2C yields:

W(z,i) = — 2" Di + 27 7. + Br(z, s) A2+

2
+ M@l (x) + MVVIE + 5 ®

The second-to-last two terms cancel because f.(z) = —VV_.(z). Substituting $ then yields:
W(z,2) = — (1 —a(s)) & Di + (2, s) Mz + & 7, (3)
——
>0

where ((z, s) = Br(z,s)—Bs(z, s) has been introduced to ease the notation. We have 1—a(s) > 0
and ((z,s) =0 for all z> 0 and ((z,s) > 0 for z < 0. Hence, we have:

W(z,i) < il (4)
which concludes the proof.
1.2
Book correspondence: Ex11.1, p302
Consider the control law :
Te = g(@) + D(x)(&q — &) = g(x) + \dqg — D(x)d (5)
This control law is passive for conservative DSs. However, equation 6
Lqg = f(x) + fnlz) (6)

is not a conservative DS. By using the energy tanks approach, modify equation 6 such that the
system stays passive.
Hint 1: define a dynamics for the storage variable s. § = a(s)2TD(z)i — Bs(s, 2) A1 2
Hint 2: M(x) — 2C(x, %) is a skew symmetric matrix
As mentioned in Exercise 1.1, following properties are satisfied,

0<a(s) <1 s<§

a(s) =0 s>5
0 s<0and z>0

=0 s>8§ and z<0
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)
)
)
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0< 6 z,8) <1 elsewhere
Br(z,8) = Bs(z,5) 220
Br(z,8) > Bs(z,s)  2<0



Solution:
Let us start by assuming that the nominal dynamical system f(x) is composed of a conservative
part f.(z) and a non-conservative part f,(z):

f(x) = fe(z) + fr(2) (7)
with f.(z) deriving from a potential function V,(z) such that:
fe(z) = =VVe(x) (8)

Let us then consider a storage function W (z, &) that includes the kinetic energy of the robot
and the potential function V. (z):

Wz, i) = é:’cTM(:E):t* + A Ve(w) (9)

Using (8), the rate of change of W(z, ) is:

W, @) = &7 M(2)i + %:'UTM(M ~ i fua) (10)

By substituting M (z)# and using the skew-symmetry of M(x) — 2C(z, ), (10) simplifies to:
Wiz, &) =271 + &T7e — M fo(x) — i g(x) (11)
Substituting 7. finally leads to:
W(z, ) = Ma? f(z) + Mz fu(x) — 2T D(z)i + 277, (12)
which can be rewritten into:
W (2, &) = pr+pn — pa+ " 7 (13)

pq = 27 D(2)x, pr = MaT f.(z) and p, = \iT f,,(z) respectively denote the dissipated power,
the power due to the non-conservative part of the nominal dynamical system and the power
generated by the normal modulation term. Thanks to the definition of D(z), we can ensure
that pg > 0 while the sign of the first two terms in (13) is undefined. Therefore, we cannot
guarantee passivity of the system with respect to the environment. To restore passivity, we
consider an approach based on energy tanks.

Let us therefore introduce a virtual tank state s that stores the dissipated energy in the
system mainly coming from the damping term p,;. We use this energy to modulate the nominal
dynamical system without violating passivity. The resulting energy flow is governed by the
tank’s dynamics, which is coupled with the robot’s state (z and &) as follows:

§ = Od(S)pd - 5r(37pr)pr - /Bn(87pn>pn (14)

The scalar functions «(s), B.(s,p,) and B,(s, p,) control the energy flow between the virtual
tank and the robot. If the tank is depleted, the controller should not generate the potential
non-passive actions. The control law should be corrected accordingly by taking the state of
the tank and the power variables into account. To this end, we correct the modulation law as
follows:

&g = f'(z) + fr(z) (15)



with:
f(@) = fo(x) + BL(s,pr) fr(2)
{ fi(x) = Bl(s,pn) fu(x) (16)

where f3.(s,pr) and B),(s,pn) are scalar functions satisfying:

1 ifpi<0

51/(871)2) = { /82(87])@) Otherwise 7 = r,n (17)

Let us now define the final storage function Wz, &, s) taking the tank’s dynamics into account:

W, i, s) = %j:TM(x)ﬁc V() + 5 (18)

Substituting $ by (14) and &4 by (15), the rate of change of W (x, &, s) becomes:

Wz, 2,5) = (BL(s,pr) — Br(s,0r))pr
+ (B;(Svpn) - Bn(svpn))pn - (1 - a<3>>pd + -fTTe

The first two terms are now both non-positives, while the third one remains dissipative since
1 —a(s) > 0. As a result, the full system is passive with respect to 77, which concludes the
proof.

(19)

1.3 ( )
Book correspondence: Fx11.2, p302

In section 11.1.2, the presented control law 5
Te = D(x)(xd — :1:) = Alid — D(m):c
is used to accomplish a dual-arm scenario. Modify the DS 6

Tq = f(x) + fn(m)

for each robotic arm, such that the robots reach the object, apply a specific amount of force on
the object, and move it.

Solution:
To start, let us consider the scenario illustrated in Figure 1. The main variables used to describe
the problem are provided in Table 1. The superscript L and R will refer to the left and right
robot respectively.

The robots’ center position z¢ and distance vector z
positions z and z:

D are computed from their tool tip

L R
z¢ :% 2P =ft — 2L (20)
from where we can derive the relation below:
D . D
iR:i:C+% x’L:j:c—% (21)

To reach and manipulate the object during the task, we choose to couple the robots’ motion by
controlling for a desired robots’ centre position mg and distance vector xfl) , using simple linear
dynamics:

(22)



b il ,a';CLl Left robot tool position, velocity and desired dynamics

xR,ch,jcg Right robot tool position, velocity and desired dynamics
2¢ and 2P | Measured object center position and dimension vector
z¢ and 2P | Measured center position and distance vector between the two robots

mg and xfl) Desired center position and distance vector

idc and j:dD Desired center position and distance vector dynamics

Table 1: Main variables used to describe the reaching, grasping and manipulation task with two
robots.

where Ac and Ap are positive gain diagonal matrices. Basically, :'vg specifies the desired
positioning behavior of the robots’ center while jcdD defines the desired closing behavior on the
object’s surface. xdc and mdD can be set to 2§ and 22 respectively during the reaching phase
and modified during the manipulation phase.

To do the grasping part of the task, first, the nominal dynamical system ff(z”, 2®) and
(2", 2®) must be introduced. The nominal dynamical system should bring each robot in
contact with the target surface (e.g the object’s surface). This role is achieved by jth . Following
(21) the nominal dynamical system are defined such that:

..D

it af) = - fh(at,aft) = Z& (23)
Once the robots reach the object’s surface, they should generate the desired contact force profile
Fy(x",2®) > 0 which is assumed to be the same for both of them. To this end, the normal

modulation terms are defined as follows:

. Fo(zl 2B) .
it ) = T g (21)
1

Figure 1: Scenario for reaching, grasping and manipulating an object with two robotic arms



The force application directions n’t and n” are derived from the desired distance vector. For a
box (with two parallel surfaces), they are opposite for the two robots:

L R 24
n”=-nt= (25)
el

From there, the desired robots’ velocity can be finally expressed:
it = fial, 2 + fiat 2™+ 2§ i=L,R (26)

which includes the desired robots’ center dynamics :i:g, needed to properly positioned the
robots’ centre. The modulated dynamical system are then tracked with the dynamical sys-

tem impedance controller.
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