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Introduction

INTRO
This part of the course follows exercises 11.1 and 11.2 and programming exercise 11.1 of the
book ”Learning for Adaptive and Reactive Robot Control: A Dynamical Systems Approach.
MIT Press, 2022”.

1 Theoretical exercises [1h]

1.1

Book correspondence: Ex10.10
Let the nominal task model f(x) be composed of conservative and non-conservative parts:

f(x) = fc(x) + fr(x)

Let the system M(x)ẍ+ C(x, ẋ)ẋ+ g(x) = τc + τe be controlled by the following:

τc = g(x)−D(x)ẋ+ λ1fc(x) + βR(z, s)λ1fr(x)

where z = ẋT fr(x)
The storage variable s has the following dynamics

ṡ = α(s)ẋTD(x)ẋ− βs(s, z)λ1z

and the following properties are satisfied,

0 ≤ α(s) ≤ 1 s < s̄

α(s) = 0 s ≥ s̄

βs(z, s) = 0 s ≤ 0 and z ≥ 0

βs(z, s) = 0 s ≥ s̄ and z ≤ 0

0 ≤ βs(z, s) ≤ 1 elsewhere

βR(z, s) = βs(z, s) z ≥ 0

βR(z, s) ≥ βs(z, s) z < 0

Consider the storage function W (x, ẋ, s) = 1
2 ẋ

TMẋ+ λ1Vc(x) + s, where Vc(x) is the potential
function associated with fc(x)
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Prove that if 0 < s(0) ≤ s̄, the resulting closed loop system is passive with respect to the
input-output pair τe, x.

Solution:
First, note that 0 < s(0) ≤ s̄ ⇒ 0 ≤ s(t) ≤ s̄, ∀t > t0. Consider the storage function
W (x, ẋ, s) = 1

2 ẋ
TMẋ+ λ1Vc(x) + s, where Vc(x) is the potential function associated with fc(x).

The rate of change of W is:

Ẇ (x, ẋ) = ẋTMẍ+
1

2
ẋT Ṁẋ+ λ1∇V T

c ẋ+ ṡ (1)

Substituting Mẍ and τc using the skew-symmetry of Ṁ− 2C yields:

Ẇ (x, ẋ) =− ẋTDẋ+ ẋT τe + βR(z, s)λ1z+

+ λ1ẋ
T fc(x) + λ1∇V T

c ẋ+ ṡ
(2)

The second-to-last two terms cancel because fc(x) = −∇Vc(x). Substituting ṡ then yields:

Ẇ (x, ẋ) = − (1− α(s))︸ ︷︷ ︸
≥0

ẋTDẋ+ ζ(z, s)λ1z + ẋT τe (3)

where ζ(z, s) = βR(z, s)−βs(z, s) has been introduced to ease the notation. We have 1−α(s) ≥ 0
and ζ(z, s) = 0 for all z > 0 and ζ(z, s) ≥ 0 for z < 0. Hence, we have:

Ẇ (x, ẋ) ≤ ẋT τe (4)

which concludes the proof.

1.2

Book correspondence: Ex11.1, p302

Consider the control law :

τc = g(x) +D(x)(ẋd − ẋ) = g(x) + λ1ẋd −D(x)ẋ (5)

This control law is passive for conservative DSs. However, equation 6

ẋd = f(x) + fn(x) (6)

is not a conservative DS. By using the energy tanks approach, modify equation 6 such that the
system stays passive.
Hint 1: define a dynamics for the storage variable s. ṡ = α(s)ẋTD(x)ẋ− βs(s, z)λ1z
Hint 2: Ṁ(x)− 2C(x, ẋ) is a skew symmetric matrix
As mentioned in Exercise 1.1, following properties are satisfied,

0 ≤ α(s) ≤ 1 s < s̄

α(s) = 0 s ≥ s̄

βs(z, s) = 0 s ≤ 0 and z ≥ 0

βs(z, s) = 0 s ≥ s̄ and z ≤ 0

0 ≤ βs(z, s) ≤ 1 elsewhere

βR(z, s) = βs(z, s) z ≥ 0

βR(z, s) ≥ βs(z, s) z < 0
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Solution:
Let us start by assuming that the nominal dynamical system f(x) is composed of a conservative
part fc(x) and a non-conservative part fr(x):

f(x) = fc(x) + fr(x) (7)

with fc(x) deriving from a potential function Vc(x) such that:

fc(x) = −∇Vc(x) (8)

Let us then consider a storage function W (x, ẋ) that includes the kinetic energy of the robot
and the potential function Vc(x):

W (x, ẋ) =
1

2
ẋTM(x)ẋ+ λ1Vc(x) (9)

Using (8), the rate of change of W (x, ẋ) is:

Ẇ (x, ẋ) = ẋTM(x)ẍ+
1

2
ẋT Ṁ(x)ẋ− λ1ẋ

T fc(x) (10)

By substituting M(x)ẍ and using the skew-symmetry of Ṁ(x)− 2C(x, ẋ), (10) simplifies to:

Ẇ (x, ẋ) = ẋT τc + ẋT τe − λ1ẋ
T fc(x)− ẋT g(x) (11)

Substituting τc finally leads to:

Ẇ (x, ẋ) = λ1ẋ
T fr(x) + λ1ẋ

T fn(x)− ẋTD(x)ẋ+ ẋT τe (12)

which can be rewritten into:

Ẇ (x, ẋ) = pr + pn − pd + ẋT τe (13)

pd = ẋTD(x)ẋ, pr = λ1ẋ
T fr(x) and pn = λ1ẋ

T fn(x) respectively denote the dissipated power,
the power due to the non-conservative part of the nominal dynamical system and the power
generated by the normal modulation term. Thanks to the definition of D(x), we can ensure
that pd ≥ 0 while the sign of the first two terms in (13) is undefined. Therefore, we cannot
guarantee passivity of the system with respect to the environment. To restore passivity, we
consider an approach based on energy tanks.

Let us therefore introduce a virtual tank state s that stores the dissipated energy in the
system mainly coming from the damping term pd. We use this energy to modulate the nominal
dynamical system without violating passivity. The resulting energy flow is governed by the
tank’s dynamics, which is coupled with the robot’s state (x and ẋ) as follows:

ṡ = α(s)pd − βr(s, pr)pr − βn(s, pn)pn (14)

The scalar functions α(s), βr(s, pr) and βn(s, pn) control the energy flow between the virtual
tank and the robot. If the tank is depleted, the controller should not generate the potential
non-passive actions. The control law should be corrected accordingly by taking the state of
the tank and the power variables into account. To this end, we correct the modulation law as
follows:

ẋd = f ′(x) + f ′
n(x) (15)
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with: {
f ′(x) = fc(x) + β′

r(s, pr)fr(x)
f ′
n(x) = β′

n(s, pn)fn(x)
(16)

where β′
r(s, pr) and β′

n(s, pn) are scalar functions satisfying:

β′
i(s, pi) =

{
1 if pi < 0
βi(s, pi) otherwise

i = r, n (17)

Let us now define the final storage function W (x, ẋ, s) taking the tank’s dynamics into account:

W (x, ẋ, s) =
1

2
ẋTM(x)ẋ+ λ1Vc(x) + s (18)

Substituting ṡ by (14) and ẋd by (15), the rate of change of W (x, ẋ, s) becomes:

Ẇ (x, ẋ, s) =
(
β′
r(s, pr)− βr(s, pr)

)
pr

+
(
β′
n(s, pn)− βn(s, pn)

)
pn −

(
1− α(s)

)
pd + ẋT τe

(19)

The first two terms are now both non-positives, while the third one remains dissipative since
1− α(s) ≥ 0. As a result, the full system is passive with respect to ẋT τe, which concludes the
proof.

1.3 (Optional)

Book correspondence: Ex11.2, p302

In section 11.1.2, the presented control law 5

τc = D(x)(ẋd − ẋ) = λ1ẋd −D(x)ẋ

is used to accomplish a dual-arm scenario. Modify the DS 6

ẋd = f(x) + fn(x)

for each robotic arm, such that the robots reach the object, apply a specific amount of force on
the object, and move it.

Solution:
To start, let us consider the scenario illustrated in Figure 1. The main variables used to describe
the problem are provided in Table 1. The superscript L and R will refer to the left and right
robot respectively.

The robots’ center position xC and distance vector xD are computed from their tool tip
positions xR and xL:

xC =
xL + xR

2
xD = xR − xL (20)

from where we can derive the relation below:

ẋR = ẋC +
ẋD

2
ẋL = ẋC − ẋD

2
(21)

To reach and manipulate the object during the task, we choose to couple the robots’ motion by
controlling for a desired robots’ centre position xCd and distance vector xDd , using simple linear
dynamics: {

ẋCd = AC

(
xCd − xC

)
ẋDd = AD

(
xDd − xD

) (22)
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xL,ẋL,ẋLd Left robot tool position, velocity and desired dynamics

xR,ẋR,ẋRd Right robot tool position, velocity and desired dynamics

xCo and xDo Measured object center position and dimension vector

xC and xD Measured center position and distance vector between the two robots

xCd and xDd Desired center position and distance vector

ẋCd and ẋDd Desired center position and distance vector dynamics

Table 1: Main variables used to describe the reaching, grasping and manipulation task with two
robots.

where AC and AD are positive gain diagonal matrices. Basically, ẋCd specifies the desired
positioning behavior of the robots’ center while ẋDd defines the desired closing behavior on the
object’s surface. xCd and xDd can be set to xCo and xDo respectively during the reaching phase
and modified during the manipulation phase.

To do the grasping part of the task, first, the nominal dynamical system fR(xL, xR) and
fL(xL, xR) must be introduced. The nominal dynamical system should bring each robot in
contact with the target surface (e.g the object’s surface). This role is achieved by ẋDd . Following
(21) the nominal dynamical system are defined such that:

fR(xL, xR) = -fL(xL, xR) =
ẋDd
2

(23)

Once the robots reach the object’s surface, they should generate the desired contact force profile
Fd(x

L, xR) ≥ 0 which is assumed to be the same for both of them. To this end, the normal
modulation terms are defined as follows:

f i
n(x

L, xR) =
Fd(x

L, xR)

di1
ni i = L,R (24)

Figure 1: Scenario for reaching, grasping and manipulating an object with two robotic arms
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The force application directions nR and nL are derived from the desired distance vector. For a
box (with two parallel surfaces), they are opposite for the two robots:

nL = −nR =
xDd
∥xDd ∥

(25)

From there, the desired robots’ velocity can be finally expressed:

ẋid = f i(xL, xR) + f i
n(x

L, xR) + ẋCd i = L,R (26)

which includes the desired robots’ center dynamics ẋCd , needed to properly positioned the
robots’ centre. The modulated dynamical system are then tracked with the dynamical sys-
tem impedance controller.
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