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INTRO
This part of the course follows exercises 9.1 to 9.3 and programming exercise 9.1 of the book

”Learning for Adaptive and Reactive Robot Control: A Dynamical Systems Approach. MIT
Press, 2022”.

1 Theoretical exercises [1h]

Consider the nominal DS f(x) = Ax + b with A =

[
−1 0
0 −1

]
and b = [−1, 1]T . We then

construct a modulation to add a circular obstacle as follows:

ẋ = M(x)f(x) with M(x) = E(x)D(x)E(x)−1, (1)

where M(x) is built through eigenvalue decomposition, using as the basis of the eigenvectors
the normal n(x) and tangents to the obstacle :

E(x) =
[
n(x) e1(x)

]
, D(x) =

[
λn(x) 0
0 λe(x)

]
,

where the tangent e(x) forms an orthonormal basis to the gradient of the distance function
dΓ(x)/dx.

We then set the eigenvalues to cancel the flow in the normal direction once it reaches the
boundary of the obstacle:

λn(x) = 1− 1

Γ(x)
and λe(x) = 1 +

1

Γ(x)

With Γ(x) as our distance function constructed so that :

• Γ(x) > 1 outside the obstacle

• Γ(x) = 1 at the obstacle boundary

• Γ(x) < 1 inside the obstacle

Since we want to model a circular obstacle, we first recall the circle equation :

d(x, xo)
2 = r2,
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where xo is the center of the circle, d(x, xo) is the euclidean distance between x and xo and r
is the radius of the circle. We can implicitly embed the circle equation into Γ(x) to create a
circular obstacle, while still keeping the properties cited above by defining Γ(x) as :

Γ(x) = d(x, xo)
2 − r2 + 1.

This definition ensures Γ(x) follows the prerequisites to implement obstacle avoidance in our
DS.

1.1

The modulation generated by the eigenvalues results in a change of magnitude along the various
basis directions, as described earlier. The increase in velocity along the tangent direction is
bounded.

• What is its upper bound?
Solution: The upper bound when the eigenvalue reaches the maximum. The highest
eigenvalue we can obtain is in tangent direction, with λe(x) = 2. Hence, the maximum
speed up is a factor of 2.

• Where does it occur?
Solution: It occurs on the surface of the obstacle and where the velocity is parallel to
the tangent, i.e.,

ẋ = λe(x)f(x) = 2 f(x)
ẋT f(x)

∥ẋ∥ ∥f(x)∥
= 1, Γ(x) ≈ 1

1.2

In certain scenarios, the conservation of the magnitude of the velocity is required.

1. How can you change the eigenvalues such that the modulated velocity is always slower
than the initial velocity, i.e., ∥ẋ∥ ≤ f(x)?
Solution: The diagonal matrix can be changed to

D(x) =

[
λn(x)
λe(x)

0

0 1

]
,

2. How can you change the eigenvalues such that the modulated velocity is always faster
than the initial velocity, i.e., ∥ẋ∥ ≥ f(x)?
Solution: The diagonal matrix can be changed to

D(x) =

[
1 0

0 λe(x)
λn(x)

]
,

Note, that when getting close to the obstacle there are high accelerations. Furthermore
we assume to never reach the obstacle, i.e. Γ(x) > 1 ⇒ λn(x) > 0.

3. Can you set the eigenvalues such that the norm of the velocity is preserved around the
obstacle?
Solution: Just changing the eigenvalues of the diagonal matrix D(x) does not allow to
conserve the velocity. But the normalization step can be applied after the modulation,
i.e.

˙̄x =
∥f(x)∥
∥ ˙̄x∥

˙̄x with ˙̄x = M(x)f(x)
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1.3

How do you need to modify the modulation in Equation (1), such that it is evaluated with
respect to a linearly, moving obstacle? Assume that we know the obstacle’s linear velocity vo.
Solution: The new equation is given as:

ẋ = M(x) (f(x)− vo) + vo

1.4

Optional Can you create a dynamical system inspired by the obstacle avoidance description,
which leads to a local spurious attractor, while remaining stable at the origin?
Solution: Let us choose a spurious attractor at xa. We construct the modulation matrix as
follows

M(x) = E(x)D(x)E(x)T with E(x) =
[
na(x) ta(x)

]
, D(x) = diag

(
λn(x), λt(x)

)
where na(x) = (x − xa)/∥x − xa∥ is the normal direction to the attractor, and ta(x) is the
tangent direction (which is orthonormal to the normal).
Additionally λn(x) = min(1, ∥x − xa∥/r) is the eigenvalue in normal direction, and λt(x) =
min(1, ∥x− xa∥/r)p is the eigenvalue in tangent direction with p ∈ R> 1. The influence radius
being chosen such that the attractor at the origin does not get affected, i.e. r < ∥xa∥.
Note that this is not a stable attractor.
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