
Exercise 3 - Solutions Machine Learning I MASTER 2024

1 Clustering with K-means

Consider the two datasets Fig.1(a,b) and Fig.1(c,d) below. We want to cluster these datasets
using K-means (L-2 norm, K = 2), with different initial conditions. Starting from the given
initial means (black and white circles), approximate by hand a few iterations of K-means and
draw the resulting separation boundary between the two clusters. Is the K-means algorithm
able to separate the two clusters well on both datasets? What is the effect of the initialization
of the means on each dataset? Explain.
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Figure 1: Datasets with different initial conditions. The black and white circles correspond to
the initial means for K-means.

Solutions

Dataset 1
K-Means with L2-Norm results in a clustering where each data point is assigned to its near-

est cluster centroid using the Euclidean L2-Norm as the distance metric for proximity. Hence,
all the points that are closer to a cluster centroid are assigned to that cluster. Once all points
have been assigned to a cluster, new cluster centroids are computed. This procedure is repeated
until the clusters are stable.

In order to obtain the separating boundary, one must compute the perpendicular bisector
of the line joining the two cluster centers. The result of K-means applied on the first dataset is
shown in Figure 2.
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Dataset 1

(a)

Dataset 1

(b)

Figure 2: Results of K-means (L2-Norm, K=2) for the first dataset with two different initial
conditions. The initial means are shown as green circles and the final ones as black and white
circles.

We can see that even though we start with two very different initial centroid locations, the
first ones placed very close to each cluster (Fig.2a) and the second ones close to only one cluster
(Fig.2b), the final clustering result is exactly the same. This is due to the fact that the data
is sufficiently balanced between each cluster. Hence, in the second case (Fig.2b), one of them
stays with the left cluster, while the upper right cluster pulls the other centroid towards itself.

Dataset 2

Dataset 2

(a)

Dataset 2

(b)

Figure 3: Results of K-means (L2-Norm, K=2) for the second dataset with two different initial
conditions. The initial means are shown as green circles and the final ones as black and white
circles.

The results of K-means with K=2 and the L2-Norm applied on the second dataset are shown
on Fig.3. For the first initial condition (Fig.3a), the algorithm clustered the data as expected.
However, in the second case (Fig.3b), rather than separating the clusters, K-means splits the
left cluster in two. In this case, the data is not well balanced between the clusters. The upper
right cluster is not able to pull the other centroid towards itself due to its low weight compared
to the big cluster. In the case of an unbalanced dataset, a good choice of initial conditions is
thus particularly important.
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2 K-means

A) An artist wants to turn a photo of a flower (see Figure 4) into a painting. He can only fit 6
colors in his palette so it would be much easier to only use 6 colors for the painting. Could you
use K-means to tell him which colors to use and where to use them ? How would you do this ?
Note: you can represent the image in a M × 3 matrix where M is the number of pixels and 3
are the necessary components to represent the color (RGB).

(a) (b)

Figure 4: a) The photo of the flower. b) Just in case you didn’t know what a palette is.

B) You have to write a piece of software that will assign a different label to each fruit present
in Figure 5a. You know the image has five different fruits and that the background is white.
You run the K-Means on all the M pixels, that don’t have a white color, and you represent each
datapoint as a vector with three dimensions (the RGB values), xi ∈ R3. You ran K-Means with
K = 5 and obtained the results in Figure 5b. The K-Means assigned the two raspberries to the
same cluster because they have similar color. What information should you add to the K-Means
algorithm so that he could separate all the fruits ? Should you use the L-2 norm in this case ?

(a) (b)

Figure 5: a) Photo with five different fruits in a white background. b) Result of K-Means.

Solutions

A) We need to assign each pixel to one of the six different colors. For the image to be
recognizable, pixels with similar color should be represented by the same color. This can be
achieved by running K-Means (with L-2 norm) on the photo’s pixels represented in the RGB
space. This means that we will haveM datapoints and each datapoins is a vector with dimension
three xi ∈ R3. We set K=6 and we find 6 clusters where each datapoint is assigned to the
nearest cluster. The colors to be used by the painter are the means of each cluster. In order
to tell the painter where to use those colors, we assign each pixel to the nearest cluster center,
ki = argmink d(x

i,uk) where d(xi,uk) corresponds to the L-2 norm. We can then paint each
pixel with its cluster color obtaining the result shown in figure 6.
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Figure 6: Photo of the flower after replacing each pixel color by its cluster’s color. This image
was created using only 6 different colors.

B) The two raspberries have similar colors but different locations, therefore we could add
the pixels positions to our data to help the clustering assignment process. We now have M
datapoints with five dimensions each, xi ∈ R5, where M is the number of pixels, and five
correspond to the number of dimensions, three for color and two for position. We need to be
careful here when using the K-Means. The dimensions which correspond to the color information
can have values from 0 to 255 but the position values can go from 0 to the maximum image size
(which might be much higher than 255). If we run the K-Means L-2 norm, in these conditions,
pixels’ positions will have an higher responsibility for the assignment of clusters than the their
color (see Figure 7a). If we want the position to contribute as much as the color for the
result of the K-Means, some variables should have more weight for the cluster assignment than
others. Therefore, instead of using K-Means L-2 norm we could use a weighted norm d(xi,uk) =
w1

∑3
j=1 d(x

i
j , µ

k
j )+w2

∑5
j=4 d(x

i
j , µ

k
j ), where w1 is the weight associated with the color variables

and w2 is the weight associated with the position variables (see Figure 7b for the results). Each
pixel is assigned to the closest cluster center, ki = argmink d(x

i,uk). The weights can for
example be the inverse of the standard deviations of the color variables and the position ones
and so be seen as a normalization factor.
Note that the same kind of solution can be obtained by normalizing directly the data according
to each dimension. This can be done by removing the mean of each dimension and dividing by
the standard deviation for example. The concept of normalizing data when the scales of some
dimensions are different has already been discussed in the exercises about PCA and is still of
importance here.

(a) (b)

Figure 7: a) Result of K-Means without variable normalization and using the L-2 norm. We
can see that the right part of the banana is assigned to the same cluster as the right raspberry.
b) Result of K-Means with a weighted norm, the misclassifications in this case less significant.
We changed the color of one cluster to see that it is a different one.
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3 Semisupervised clustering F1-measure

(a) (b) (c)

(d) (e)

Figure 8: The figures above show a two-class dataset. The classes are shown by the shapes. This
dataset was subject to a clustering algorithm whose result is shown using the dotted ellipses. In
each case, the algorithm returned two clusters as shown

A) Compute the semi-supervised clustering F1-Measure in each case. The labeled data points
for computing the F1-Measure are shown in color. To recall, the semi-supervised clustering
F1-Measure is given by :

F1(C,K) =
∑
ci∈C

(
|ci|
M

max
k

{F1(ci, k)}
)

F1(ci, k) =
2R(ci, k)P (ci, k)

R(ci, k) + P (ci, k)

R(ci, k) =
nik

|ci|

P (ci, k) =
nik

|k|

(1)

Where M is the total number of labeled datapoints, k indexes the cluster number, C = {ci}
is the set of classes, nik is the number of datapoints of class ci in cluster k, |ci| is the number of
datapoints in class ci and |k| is the number of datapoints in cluster k.

B) Compare the results of Fig.8a with Fig.8b and discuss the effect of the percentage of
labeled data. Next, compare the results of Fig.8b and Fig.8c and explain the effect of mis-
clustered labels on F1-measure. Compare the results of Fig.8d with Fig.8e and discuss the
effect of unbalanced classes.
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Solutions

A) The first equation is essentially a weighted sum of each class’ individual F1-Measure. How-
ever, to compute each of the terms, we must first assign each class to a particular cluster. This
is done in the maxk {F1(ci, k)} expression which is assigning that cluster to a class for which
the F1-Measure is maximum. Hence we have two nested loops, one over all the classes and the
other over all the clusters for picking the best cluster.
The numbering of clusters is arbitrary. Here we choose the top cluster as Cluster 1 and the
bottom cluster as Cluster 2.

Note that if precision (P) and recall (R) are both zero, the F1-Measure is also zero. We can
show this as follows

F =
2 ∗ P ∗R
P +R

=
2

1
P + 1

R

When P → 0 and R → 0, 1
P → ∞ and 1

R → ∞ ; i.e. the denominator of F goes to infinity.
So F → 0
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Table 1: Results (a)
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Table 2: Results (b)
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Table 3: Results (c)

Class
ci

nci

M
Cluster

k
P R F1(ci, k) maxk

F1(ci, k)
F1

Circle
5

6

1
5

10

5

5

2

3
2

3

5

6
× 2

3
+

1

6
× 1

=

0.72

2
0

1

0

5
0

Square
1

6

1
0

10

0

1
0

1

2
1

1

1

1
1

Table 4: Results (d)
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Table 5: Results (e)

B)

• Comparing results of (a) and (b) : The F1-Measure in (a) is a perfect 1.0. The
F1-Measure in (b) is a lower value (0.5) than in (a) despite the same labels appearing in
the clusters as in (a). This is because there is more data in the clusters now for
which we do not have the class information. This uncertainty is penalized by
the F1-Measure. The F1-measure is 1.0 only when all data-points have the
same class label and are all labeled. In this case, we are no longer performing
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semi-supervised clustering but classification (fully supervised clustering).

• Comparing results of (b) and (c) : The F1-Measure in (c) is lower than that of (b).
This is due to misclustered labels in both classes. Notice that there are also mis-
clustered data in (b) but they are not labeled. Thanks to the labeling in (c),
F1-measure is aware of misclustered data and it has penalized the clustering
accordingly.

• Comparing results of (d) and (e) : we see that the F1-Measure in (e) is higher than
that of (d) although they both have only one misclassified datapoint (1 unlabeled square
wrongly clustered with circles). This is due to the fact that classes are unbalanced in the
number of labeled data-points (five times more labeled data-points in Class 1 than in Class
2). The F1-Measure corresponding to the circle class (Class 1) gives more weight to its
associated F1-measure than to that of Class 2. This is, however, slightly counterbalanced
by the fact that Cluster 1 contains more points than Cluster 2 and hence has more associ-
ated uncertainty. Hence, it important to provide balanced labeling for the classes
to avoid influencing the F1-Measure to favor the class with most labels.
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4 DBSCAN

You are given the following points :

aaaaaaaaaaa
Points

Coordinates

x1 x2

x1 1 10

x2 2 5

x3 8 4

x4 5 8

x5 7 5

x6 6 4

x7 1 2

x8 4 10

x9 7 4

x10 8 9

Data points

Visualisation of the points

The distance matrix based on the L-2 norm is the following :

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 0 5.1 9.2 4.5 7.8 7.8 8 3 8.5 7.1

x2 0 6.1 4.2 5 4.1 3.2 5.4 5.1 7.2

x3 0 5 1.4 2 7.3 7.2 1 5

x4 0 3.6 4.1 7.2 2.2 4.5 3.2

x5 0 1.4 6.7 5.8 1 4.1

x6 0 5.4 6.3 1 5.4

x7 0 8.5 6.3 9.9

x8 0 6.7 4.1

x9 0 5.1

x10 0

Table 7: Distance Matrix

The pseudocode for DBSCAN described in Algorithm 1.
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Algorithm 1 DBSCAN

1: procedure DBSCAN(X, ϵ, MinPoint)
2: K = 0
3: Cores = {}
4: ∀ x in X, Labels(x) = Noise
5: for each point x in X do
6: Neighbors Nx = GetNeighbors(X, x, ϵ)

7: if |Nx| >= MinPoints− 1 then
8: Cores = Cores ∪ {x}
9: for each c ∈ Cores do

10: if Labels(c) = Noise then
11: K = K + 1;
12: Labels(c) = K
13: Neighbors Nc = GetNeighbors(X, c, ϵ)
14: ReachableSet = Nc

15: while ReachableSet not empty do
16: Get and remove last element r from ReachableSet
17: if Label(r) = Noise then
18: Labels(r) = K
19: if r ∈ Cores then
20: Neighbors Nr = GetNeighbors(X, r, ϵ)
21: ReachableSet = ReachableSet ∪Nr

return K, Cores, Labels

In this algorithm, the Cores have (MinPoints - 1) samples1 in their neighborhood and are used
to define the boundaries of the clusters (circles) for testing. A core’s neighborhood is merged
with another (i.e. we ”extend” a given cluster) only if the two cores are neighbors.

A) For each pair of parameters given after, find the number of clusters given by the DBSCAN
algorithm and draw them:

1. ϵ = 2.5 and MinPoints = 2

2. ϵ = 3.5 and MinPoints = 2

3. ϵ = 3.5 and MinPoints = 4

Solutions

A)

1. First we need to look for the ϵ-neighborhood of each point. Let’s call N(xi) the ϵ-
neighborhood of the point xi.

We have :

N(x1) = {};N(x2) = {};N(x3) = {x5, x6, x9};N(x4) = {x8};N(x5) = {x3, x6, x9};N(x6) =
{x3, x5, x9};N(x7) = {};N(x8) = {x4};N(x9) = {x3, x5, x6};N(x10) = {}
Since MinPoints = 2, x1, x2, x7 and x10 are considered outliers and we get two clusters
C1 = {x3, x5, x6, x9} and C2 = {x4, x8}. We just select the tightest clusters. See Figure
10.

1The MinPoints parameter correspond to the minimum number of samples in the ϵ-neighborhood of a point
for it to be considered as a core. This includes the point itself
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Figure 10: Clusters obtained from the application of DBSCAN with ϵ = 2.5 and MinPoints = 2

2. If ϵ becomes 3.5, then the neighborhood of some points will increase. x8 has now x1 and
x4 in its neighborhood and x10 is also in the neighborhood of x4. So x1 and x10 joins the
cluster C2 = {x1, x4, x8 x10}. Moreover, x2 and x7 are now in each other neighborhood.
So they will form a new cluster C3 = {x2, x7}. Finally, The cluster C1 remains the same
as we just increased the ϵ parameter. See Figure 11.

Figure 11: Clusters obtained from the application of DBSCAN with ϵ = 3.5 and MinPoints = 2
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3. We changed the parameter MinPoints from the previous question. Now, each point needs
to have at least 3 points (and itself) in its neighborhood to not be considered as an outlier.
In the cluster C3, we only have two points so this cluster disappears. In the cluster C2, we
have 4 points but it has been built by merging two clusters {x1, x8, x4} and {x8, x4, x10}.
So none of these points has at least 3 points in its neighborhood. The cluster C2 disappears
too. In the cluster C1, all the points are close enough to all the other points of the clusters
so that C1 still exists. The value here for MinPoints enables to select only the most dense
clusters. See Figure 12.

Figure 12: Clusters obtained from the application of DBSCAN with ϵ = 3.5 and MinPoints = 4
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5 Computational Cost (To be done at home)

The performance of a machine learning technique must often be evaluated in terms of its com-
putational costs. The more computational steps are required the more unlikely it is that the
algorithm could be ported for real-time computation on small portable hardware (robots, cell
phones, etc). Computational costs are also tightly linked to the curse of dimensionality. The
larger the dimension of the dataset, the heavier the computational costs. Knowing whether
computational costs grow linearly or exponentially with the number of datapoints, M, and the
dimension of the dataset, N, is hence crucial. One will prefer a method that grows only linearly
with M and N.

A) Compute the computational cost per iteration of K-means and Soft-K-means.

B) Compute the computational cost of DBSCAN.
How do you think you can reduce the complexity (Think about a way to avoid finding the
distance to all the other points for each point) ?

C) Discuss the pros and cons of these clustering techniques given your answer to previous
questions.

Solutions

A) In each iteration of K-means, you have to compute the distance for each centroids to all the
points in order to be able to assign each point to its cluster and then compute the new position
of each centroid. Moreover, this needs to be done for each dimension, so the time complexity of
K-means is O(K ∗M ∗N) (where K is the number of clusters).

For Soft-K-means, you need to compute in addition the responsbility of each cluster for
each point. So you have the same number of operations as for K-means multiplied by K (the
responsabilities computations). Hence the time complexity of Soft-K-means is O(K2 ∗M ∗N).

B) For DBSCAN, you have to compute for each point the distance to all the other points in
order to know if they are part of the neighborhood. So the time complexity of DBSCAN is
O(M2 ∗N).

However, we can think about a clever way of storing the data points to avoid having to
compute several times the distance from a point to points which are close together. If we know
that one of these points is not in the neighborhood of the considered point then we don’t need
to compute the distance to the points in the same partition. A particular interesting structure
is the KD-tree which enables to partition the space and helps finding the nearest neighbors of a
point quickly. Thanks to this kind of structure we can reduce the time complexity of DBSCAN
to O(M ∗ log(M) ∗N).

C) K-means is the cheapest method. However it can fit solely clusters with globular distribu-
tions.

The soft-K-means algorithm has the same disadvantage but it enables to have a better
understanding of the clusters (position of the centroids) in case of clusters with some overlap
since the points that are difficult to assign to only one of the clusters will have a lower weight.

DBSCAN costs the most but it first can detect clusters which are not globular. Moreover,
it is robust to noise since points which are far from the clusters will be considered as outliers.
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