
     
 
 

 
 

 
 
 
 

 
 
 
 

Section Microtechnique  
 
 
 
 
 

 

 
MACHINE LEARNING 

TECHNIQUES  
Short Version for the  

Applied Machine Learning Cours 
 

 
Aude G. Billard 

 
 
 

Illustrations based on the  
MLDemos Software by Basilio Noris 

 
 
 

 
SCHOOL OF ENGINEERING 



 

©  A.G.Billard 2004         –         Last Update October 2024 

2 

 
 
 
 

1. I. Introduction ........................................................................................................................... 5 

2. 1 Forewords .............................................................................................................................. 5 

1.1 What is Machine Learning? - Definitions ................................................................................... 5 

1.2 What is Learning? ........................................................................................................................ 6 
1.2.1 Taxonomy of learning algorithms........................................................................................... 6 
1.2.2 Other important terms in machine learning ............................................................................ 7 
1.2.3 Key features for a good learning system................................................................................. 7 
1.2.4 Exercise .................................................................................................................................. 8 

1.3 Best Practices in ML ..................................................................................................................... 8 
1.3.1 Training, validation and testing sets and crossvalidation........................................................ 9 
1.3.2 Crossvalidation ......................................................................................................................10 
1.3.3 Performance measures ...........................................................................................................11 
1.3.4 Other practical considerations ...............................................................................................11 

3. 2 Methods for Dimensionality Reduction ...............................................................................13 

2.1 Formalisation of Reduction of Dimensionality through Linear Projection ............................14 

2.2 Principal Component Analysis ...................................................................................................15 
2.2.1 Principal Component Analysis - Formalism ..........................................................................16 
2.2.2 Dimensionality Reduction .....................................................................................................19 
2.2.3 PCA limitations .....................................................................................................................23 
2.2.4 Projection Pursuit ..................................................................................................................25 
2.2.5 Probabilistic PCA ..................................................................................................................26 

2.3 Canonical Correlation Analysis ..................................................................................................28 
2.3.2 CCA for more than two variables ..........................................................................................30 
2.3.3 Limitations .............................................................................................................................30 

2.4 Independent Component Analysis .............................................................................................31 
2.4.1 Illustration of ICA .................................................................................................................31 
2.4.2 Why Gaussian variables are forbidden ..................................................................................33 
2.4.3 Definition of ICA ...................................................................................................................34 
2.4.4 Whitening ..............................................................................................................................36 
2.4.5 ICA Ambiguities ....................................................................................................................37 
2.4.6 ICA by maximizing non-gaussianity .....................................................................................38 
2.4.7 Further Readings ....................................................................................................................41 

4. 3 Clustering and Classification ...............................................................................................42 
3.1.1 Semi-supervised clustering ....................................................................................................43 

3.2 Types of Clustering Techniques .................................................................................................44 
3.2.1 Hierarchical Clustering ..........................................................................................................45 
3.2.2 K-means clustering ................................................................................................................48 
3.2.3 Soft K-means .........................................................................................................................51 
3.2.4 Density Based Spatial Clustering of Applications with Noise (DBSCAN) ...........................53 
3.2.5 Clustering with Mixtures of Gaussians ..................................................................................54 
3.2.6 Gaussian Mixture Models ......................................................................................................57 



 

©  A.G.Billard 2004         –         Last Update October 2024 

3 

3.2.7 Metrics for evaluating clustering techniques .........................................................................61 

3.3 Classification ................................................................................................................................65 
3.3.1 Bayes Classifier .....................................................................................................................65 

3.4 Bayes classification with Gaussian Mixture Models .................................................................67 

3.5 Performance Measures for Clasification ...................................................................................69 
3.5.1 ROC .......................................................................................................................................69 

3.6 Further Readings .........................................................................................................................70 

5. 4 Regression Techniques .........................................................................................................71 

4.1 Linear Regression ........................................................................................................................71 

4.2 Gaussian Mixture Regression .....................................................................................................71 
4.2.1 One Gaussian Case ................................................................................................................72 
4.2.2 Multi-Gaussian Case ..............................................................................................................73 

6. 5 Kernel Methods .....................................................................................................................75 

5.1 The kernel trick ...........................................................................................................................75 
5.1.1 Stationary and non-stationary kernels ....................................................................................77 

5.2 Which kernel, when? ...................................................................................................................77 

5.3 Kernel PCA ..................................................................................................................................77 

5.4 Kernel CCA ..................................................................................................................................83 

5.5 Kernel ICA ...................................................................................................................................86 

5.6 Kernel K-Means ...........................................................................................................................90 

5.7 Support Vector Machines ...........................................................................................................93 
5.7.1 Support Vector Machine for Linearly Separable Datasets .....................................................96 
5.7.2 Support Vector Machine for Non-linearly Separable Datasets ..............................................99 
5.7.3 Non-Linear Support Vector Machines .................................................................................100 
5.7.4 Nu-SVM ..............................................................................................................................101 

5.8 Support Vector Regression .......................................................................................................103 
5.8.1 Nu-SVR ...............................................................................................................................110 

5.9 Gaussian Process Regression ....................................................................................................113 
5.9.1 What is a Gaussian Process .................................................................................................113 
5.9.2 Equivalence of Gaussian Process Regression and Gaussian Mixture Regression ...............117 
5.9.3 Curse of dimensionality, choice of hyperparameters ...........................................................119 

5.10 Gaussian Process Classification ................................................................................................120 

7. 6 Markov-Based Models ........................................................................................................125 

6.1 Markov Process..........................................................................................................................125 

6.2 Hidden Markov Models ............................................................................................................126 
6.2.1 Formalism ............................................................................................................................126 
6.2.2 Estimating a HMM ..............................................................................................................128 
6.2.3 Determining the number of states ........................................................................................131 
6.2.4 Decoding an HMM ..............................................................................................................132 
6.2.5 Further Readings ..................................................................................................................134 

8. 7 Annexes ...............................................................................................................................135 

7.1 Brief recall of basic transformations from linear algebra ......................................................135 
7.1.1 Eigenvalue Decomposition ..................................................................................................135 



 

©  A.G.Billard 2004         –         Last Update October 2024 

4 

7.1.2 Singular Value Decomposition (SVD) ................................................................................136 
7.1.3 Frobenius Norm ...................................................................................................................137 

7.2 Recall of basic notions of statistics and probabilities..............................................................137 
7.2.1 Probabilities .........................................................................................................................137 
7.2.2 Probability Distributions, Probability Density Function ......................................................138 
7.2.3 Expectation ..........................................................................................................................139 
7.2.4 Variance and Covariance .....................................................................................................139 
7.2.5 Distribution Function or Cumulative Distribution Function ................................................139 
7.2.6 Joint and Conditional Probability Distribution ....................................................................140 
7.2.7 Marginal Probability Distribution or Marginal Density ......................................................140 
7.2.8 Statistical Independence ......................................................................................................140 
7.2.9 Uncorrelatedness .................................................................................................................140 
7.2.10 Uniform and Gaussian PDF .................................................................................................140 
7.2.11 Likelihood Function ............................................................................................................142 
7.2.12 Kullback-Leibler Distance ...................................................................................................143 

7.3 Estimators ..................................................................................................................................144 
7.3.1 Maximum Likelihood ..........................................................................................................144 
7.3.2 EM-Algorithm .....................................................................................................................144 
7.3.3 Gradient descent ..................................................................................................................146 
7.3.4 Conjugate Gradient descent .................................................................................................147 

9. 8 References ...........................................................................................................................149 
8.1.1 ML Resources: .....................................................................................................................150 

  



 

©  A.G.Billard 2004         –         Last Update October 2024 

5 

I. Introduction 
 

 

1 Forewords 
These lecture notes have been written with the goal of providing a memento of the main concepts 
covered in the Applied and Advanced Machine Learning courses given at the EPFL. They do not 
constitute a textbook. We hence encourage students to refer to existing textbooks for 
complementary information on these techniques. A list of existing textbooks is given in Chapter 8. 
 
The course and these lecture notes are intended to students, who have completed their Bachelor 
in an engineering field. It hence assumes that the reader has a solid background in Linear Algebra, 
Calculus and Statistics. The annexes to these lecture notes give a brief summary of basic concepts 
from these fields used in the technical development covered in the lecture notes.  
 
 

1.1 What is Machine Learning? - Definitions 
 
Machine Learning (ML) encompasses a variety of techniques to enable machines (computers, 
robots, etc) to learn from a set of data. While it started as a topical curiosity of statistics and 
computer science in the 80's, it has matured over the past decades and is now a field of scientific 
study on its own.  
 
It is broad in scope, as ML algorithms differ in both the type of computation performed and the way 
they perform these computations. ML entails algorithms for classification, clustering, feature 
extraction and regression, to name a few.  
  
There is, hence, not a single definition of machine learning that is representative of this variety of 
applications and use of machine learning techniques. We can however list three definitions that 
encapsulate some of the key concepts behind the field: 

 
Machine Learning is the field of scientific study that concentrates on induction algorithms and on 
other algorithms that can be said to “learn”. 

Machine Learning Journal, Kluwer Acadnemic 
 
 

Machine Learning is an area of artificial intelligence involving developing techniques to allow 
computers to “learn”. More specifically, machine learning is a method for creating computer 
programs by the analysis of data sets, rather than the intuition of engineers. Machine learning 
overlaps heavily with statistics, since both fields study the analysis of data. 

Webster Dictionary 
 

Machine learning is a branch of statistics and computer science, which studies algorithms and 
architectures that learn from data sets. 

WordIQ 
 
 These three definitions are similar in that they emphasize the idea of learning from data. This 

implies that, on the one hand, we have data, and on the other hand, we process these data so as 
to extract some useful information from which we can "learn". In any learning process, including 
the one you undergo when taking courses at EPFL, you need to be provided with relevant material 
to be able to learn from it. Hence, gathering an informative dataset is a key issue in machine 
learning. In Section 1.3, we will discuss issues related to choosing and using the dataset to obtain 
optimal performance. Additionally, the practice sessions that accompany the courses will be 



 

©  A.G.Billard 2004         –         Last Update October 2024 

6 

devoted to help you to acquire a practical understanding of the effect of choosing a poor or good 
dataset on the algorithms' performance. Let us first start by giving you’re an intuition of what is 
meant for a machine to "learn". 

 
 

1.2 What is Learning? 

 
We start by citing two definitions provided by the machine learning community to situate how 
"learning" is understood in the context of ML. 
 

A computer program is said to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance at tasks in T, as measured by P, 
improves with experience E. 

Mitchell, Tom. M. 1997. Machine Learning. New York: McGraw-Hill. 
 

 
Things learn when they change their behavior in a way that makes them perform better in 
the future. 

Witten, Ian H., and Eibe Frank. 2000. Data Mining: Practical Machine Learning 
Tools and Techniques with Java Implementations. San Diego, CA: Morgan 
Kaufmann. 

 
 
Both definitions emphasize the notion of learning from experience. Learning hence depends on 
gathering data and is inhenrently an incremental process. The second definition implies also that 
this process leads to an improvement. Note that this raises one important issue. To measure 
improvement in performance, one must have a metric to measure performance. The metric of 
performance is key to guide how the system may change its behavior when incorporating new data, 
and it must be chosen with care.  
 

1.2.1 Taxonomy of learning algorithms 

 
Machine learning algorithms are often organized according to taxonomy, based on the desired 
outcome of the algorithm. Common algorithm types include: 
 

• Supervised learning – where the algorithm learns a function or model that maps best a 
set of inputs to a set of desired outputs. 

• Reinforcement learning – where the algorithm learns a mechanism that generates a set 
of outputs from one input in order to maximize a reward value (external and delayed 
feedback) 

• Unsupervised learning – where the algorithm learns a model that best represents a set 
of inputs without any feedback (no desired output, no external reinforcement) 

• Learning to learn – where the algorithm learns its own inductive bias based on previous 
experiences 

 
In all types of learning, it is important that the training examples contain enough information to 
enable the system to find the solution, and that they are representative of the complexity of the 
whole dataset in order to avoid an overgeneralization. 
 
Machine learning algorithms can also be classified according to the type of computation they can 
perform on a given dataset. Common types of computation include: 
 

• Features extraction: finding relationship within the data 



 

©  A.G.Billard 2004         –         Last Update October 2024 

7 

 

• Classification: learn to put instances into pre-defined classes 
 

• Clustering: discover classes of instances that belong together 
 

• Regression: Predict a continuous output given a set of input. This can be used for 
predicting time series or trends in data. 
 

• Association: learn relationships between the attributes 
 

1.2.2 Other important terms in machine learning 

 
On-line learning: an algorithm is said to work on-line or in real-time, when it can perform its 
computation on the data as they stream through. Typical example is an algorithm for vision that 
could be performed without slowing down the 30 frames per second flow of images. 
 
Connectionist models, more commonly called Artificial Neural Networks (ANN), form a large 
part of the algorithms of machine learning. ANNs encompass a diverse set of algorithms that share 
the same principle of computation, pseudo-parallel computation.  
 
In connectionist models, unsupervised learning is also known as self-organization, a principle by 
which the network self-organizes to best represent the data. Examples of self-organized networks 
are Kohonen, Hopfield and other Associative Memories. Examples of supervised networks are 
feed-forward and recurrent neural networks with Backpropagation. 
 

1.2.3 Key features for a good learning system 

 
There are a number of desiderata one could formulate for any given learning system, such as: 
 
Denoising: Working in a real world application implies noise. Noise can mean several things. It 
can be imprecision in the measurement (e.g. light affecting infra-red sensors). It can be side effects 
from the experimental setups (e.g. systematic bias in the initial conditions). Eliminating noise is 
probably the most crucial processing one might want to perform on the data, prior to any other 
processing. However, it has its costs. Denoising requires noise model. It is seldom the case that 
the model is known. There are methods to learn these models, but the process is slow. An incorrect 
noise model is bound to eliminate good data with the noise, or get rid of too little noise.   
 
Decorrelating: Decorrelating the data is often a first step before denoising or proceeding to any 
feature extraction. The process of decorrelation aims at making sure that, prior to analyzing the 
data, you have found a way to represent the data that explicitly encapsulate the correlations. Data 
with low correlations can often be considered as noise, or of little relevance to modeling the 
process. 
 
Generalization versus memorization: A general and important feature of a learning system that 
differentiates it from a pure “memory” is its ability to generalize. Generalizing consists of extracting 
key features from the data, matching those across data (to find resemblances) and storing a 
generalized representation of the data features that account best (according to a given metric) for 
all the small differences across data. Classification and clustering techniques are examples of 
methods that generalize through a categorization of the data. Generalizing is the opposite of 
memorizing and often one might want to find a tradeoff between over-generalizing, hence losing 
information on the data, and over fitting, i.e. keeping more information than required. Generalization 
is particularly important in order to reduce the influence of noise, introduced in the variability of the 
data. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

8 

Feature extraction Part of the process of learning consists in extracting what is relevant in a set 
of data. This is often done by finding what is common across all the examples used for learning. 
The common feature to all data may consist of complex patterns (e.g. when training an algorithm 
to recognize faces, you may expect the algorithm to learn to extract features such as nose, eyes, 
mouth, etc). The process of finding what is common relies usually on a measure of correlation 
across data points. Extracting correlation can often reduce the dimensionality of the dataset at 
hand, by saving only a subpart of all the information. 
 
Curse of dimensionality A problem which one often encounters in machine learning is what one 
calls the curse of dimensionality, whereby the number of samples used for training should grow 
exponentially with the dimensionality of your data set to remain representative. This exponential 
increase is reflected back into an exponential increase of the computation steps for training. Both 
of these are usually not practical and, as we will see in this class, many algorithms have been 
developed to reduce the dimensionality of the data prior to further processing. Alternatively, efforts 
are made when designing new algorithms to ensure that the growth of the computation cost is 
reduced by finding simplification in the computation. The ideal is a linear growth. Algorithms that 
achieve this are highly praised. 
 

 

1.2.4 Exercise 

For the following scenarios: 1) learning to drive a bicycle; 2) learning how to open a box with a 
lever; 3) learning sign language (if lost on a Island with only deaf people), determine: 
 

a) The variables at hand (input and output to the system), 
b) The unknown parameters of the model,  
c) A good measure of performance,  
d) A criteria of “good enough” optimality, 
e) A threshold of sub-optimality (“too poor”) 
f) The minimal time lag  

 
 

1.3 Best Practices in ML 
 

ML algorithms are sensitive to the choice of data you use for training them. Ideally, you would like 
your training set to be sufficiently large to be representative of all possible data you may encounter 
(In a probabilistic view, this means that you want your sample to be representative of the distribution 
of the data you try to estimate.) In practice, this is not feasible. For instance, imagine that you want 
to train an algorithm to recognize human faces. When training the algorithm, you can use only a 
subset of all faces you may encounter in life. Yet, you would still like your algorithm to generalize a 



 

©  A.G.Billard 2004         –         Last Update October 2024 

9 

model of “human faces”. If you provide the algorithm with too many examples of the same type of 
faces (e.g. by training the algorithm only on faces of people with long hair), the algorithm may 
overfit, i.e. it may learn that faces all have long hair and fail to latter recognize faces of people with 
short hair. Each time an algorithm cannot detect correctly instances of a given class (e.g. human 
faces with short hair) is called a false negative.  
 
If the algorithm was not provided with representative examples of what is not a face, it may 
incorrectly classify images of other objects as faces. For instance, in the above example, an 
algorithm that retained that the feature "long hair" is representative of human faces may incorrectly 
classify a picture of a horse as a human face. Such mistakes are called false positives. In ML, you 
try to balance the number of false negatives and false positives and one uses the ROC curve to 
measure this, see Section 3.5.1. In some applications, you may want to ensure to have no false 
positives, even at the cost of increasing the false negatives, or conversely. For instance, if you 
develop an application for identity verification, you want to make sure that no identity is mistakenly 
associated with the wrong person. 
 
Finally, since ML algorithms are essentially looking at correlations across data, they may fit 
spurious correlations, if provided with a poorly chosen set of training data. To ensure that the 
algorithm has generalized correctly over the subsets of training examples you used, a number of 
good practices have been developed, which we review briefly below. 

 

1.3.1 Training, validation and testing sets and crossvalidation. 

 
Common practice to assess the validity of a Machine Learning 
algorithm is to measure its performance against three data 
sets, the training, validation and testing sets. These three sets 
are disjoint partitions of all the data at hand. 

 
Training and validation sets are used to determine the 
sensitivity of the learning to the choice of hyperparameters 
(i.e. parameters not learned during training). Values for the 
hyperparameters are set through a grid search (i.e. by 
sampling uniformly all values that each parameter can take 
within some fixed interval). The effect of each set of parameters on the performance of the algorithm 
is measured through crossvalidation (see below).  
 
Once the optimal hyperparameters have been picked, the model is trained with the complete set 
(training + validation sets) and tested on the testing set.  
 
The testing set consists of a subset of the data which you would normally encounter once training 
is completed. It allows to measure the sensitivity of the algorithm specifically for this application. 
Let us consider again the example we used before, where we trained an algorithm to recognize 
human faces. To proceed to the first stage of training, one would typically choose a set of different 
faces representative of all gender, ethnicities and other fashionable additions (hair cuts, glasses, 
moustache, etc), collected from a variety of type of cameras, so as to provide a generic set of 
examples of pictures of face independent of the material used to collect these. The testing set could 
consist of faces recorded by the camera of the client to whom you plan to sell the algorithm after 
training it in the laboratory and is hence used to validate the generalization properties of your 
algorithm to this specific type of camera.  
 
In practice, one often uses solely training and testing sets and performs crossvalidation directly on 
these, while relying on grid search without crossvalidation (on training + validation sets) to 
determine the optimal set of hyperparameters. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

10 

There is no fixed rule to determine how to split the dataset. In practice, people tend to give more 
datapoints to the training set than to the validation set (and similarly to the testing set), using the 
2/3rd – 1/3rd rule, i.e. with twice more datapoints for training than for validation or testing. But you 
can try to reduce this ratio. The smaller the training/testing ratio required for good generalization, 
the better the model. 
 
Increasing the training/testing ratio provides the algorithm with more information and usually leads 
to better performance at training. However, this can be detrimental at testing and lead to 
overfitting. The training/testing ratio required to achieve good performance is indicative of the 
complexity of the dataset. If one needs to use at least 80% or more of the datapoints to achieve 
good generalization, this indicates that the dataset is very complex, since almost all datapoints are 
needed to build a representative model. In this case, one should collect more data to provide more 
statistics.  

1.3.2 Crossvalidation 

 
To ensure that the splitting of data into training and validation sets was not a lucky split leading to 
an optimal (but not representative) performance, one must apply a crossvalidation step. 
“Crossvalidation refers to the practice of confirming an experimental finding by repeating the 
experiment using an independent assay technique” (Wikipedia). In ML, this consists of splitting the 
dataset several times at random into training and validation sets. The number of repetitions is 
referred to as the number of folds. When one proceeds to 10 such random draws of training and 
validation sets, one says that one performs 10-fold crossvalidation.  

K-fold cross validation: The data set is divided into k subsets and the training/validation steps is 
repeated k times. Each time, one of the k subsets is used as the test set and the other k-1 subsets 
are put together to form a training set. Then the average error across all k trials is computed. The 
advantage of this method is that it matters less how the data gets divided. Every data point gets to 
be in a test set exactly once, and gets to be in a training set k-1 times. The variance of the resulting 
estimate is reduced as k is increased. The disadvantage of this method is that the training algorithm 
has to be rerun from scratch k times, which means it takes k times as much computation to make 
an evaluation. A variant of this method is to randomly divide the data into a test and training set k 
different times. The advantage of doing this is that you can independently choose how large each 
test set is and how many trials you average over. In this class, we use the random variant of K-fold 
crossvalidation. 

Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, with K equal 
to N, the number of data points in the set. The evaluation given by leave-one-out cross validation 
error is very informative and comprehensive, but it is overly expensive if you use algorithms that 
are very expensive to compute at training time  

As for the choice of training/validation sets ratio, there is no fixed rule to determine what would be 
the optimal number of folds. People tend to use 10-fold crossvalidation. However, this makes sense 
only if the number of datapoints is large enough for such a large set of repetitions to draw groups 
of datapoints that are statistically significantly different at each round. 

 
The performance of the algorithms is then measured on the whole set of experiments, e.g. by taking 
the mean and standard deviation of the error when applying the algorithm on each set. The 
standard deviation is important as it gives a measure of potential discrepancies in the structure of 
your data set. A large variance is indicative of overfitting, as shown in the example below. The 
crossvalidation phase is used to fine tune parameters of the algorithm (e.g. thresholds, priors, 
learning rates, etc) to ensure optimal performance. 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

11 

The plot on the left shows 
the result of 10-fold 
crossvalidation with a 66% 
training/testing ratio for two 
different sets of 
hyperparameters in a 
binary classification 
problem, using SVM as 
classifier. The secon model 
that uses a large penalty 
(C=5000) and very small 
kernel width (0.2) (see 
Section 5.7 on SVM) leads 
to overfitting.  
 

This overfitting is visible through the large standard deviation on the error.  
 

 
The two plots above display the result of the classification for the first and second models (left and 
right figures respectively). On the right, we see that the model fitted perfectly the small set of 
datapoints of the red class located in the middle of the white class, leading to overgeneralization 
on the bottom right of the distribution. 

1.3.2.1 Ground Truth 

Comparing the performance of a novel method to existing ones or trivial baselines is crucial. 
Whenever possible, one will use the ground truth as a means to compare performance of the 
system during training. 
 
In classification, the ground truthcan be obtained for instance from manually labeling each data 
with the appropriate class label. If the choice of class label may be subjective (e.g. labeling facial 
expressions of happiness, sadness, etc), one may ask several raters to label the picture and one 
may take the average score across raters for the “true” label. 

1.3.3 Performance measures 

Performance measures depend on the method you use. We will present performance measure 
for clustering, semi-supervised clustering and classification in their respective chapters. 
 

1.3.4 Other practical considerations 

 

This class will allow you to program some ML algorithms. Here are a few caveats to bear in mind 
when programming ML algorithms. 
 
A large number of algorithms we will see in class require knowing the mean and covariance of the 
probability distribution function of the data. In practice, the class means and covariances are not 
known. They can, however, be estimated from the training set. Either the maximum likelihood 
estimate or the maximum a posteriori estimate may be used in place of the exact value. Further, 



 

©  A.G.Billard 2004         –         Last Update October 2024 

12 

several of these algorithms assume that the underlying distribution follow a normal distribution. This 
again is usually not true. Thus, one should keep in mind that, although the estimates of the 
covariance may be considered optimal, this does not mean that the resulting computation obtained 
by substituting these values is optimal, even if the assumption of normally distributed classes is 
correct. 

 
Another complication that you will often encounter when dealing with algorithms that require 
computing the inverse of the covariance matrix of the data is that, with real data, the number 
of observations of each sample exceeds the number of samples. In this case, the covariance 
estimates do not have full rank, and so cannot be inverted. There are a number of ways to 
deal with this. One is to use the pseudoinverse of the covariance matrix. Another way is to 
proceed to singular value decomposition. 

 
  



 

©  A.G.Billard 2004         –         Last Update October 2024 

13 

2 Methods for Dimensionality Reduction 
 
This chapter will introduce you to basic techniques used to perform reduction of dimensionality. As 
discussed in the introduction of these lecture notes, reducing the dimension of dataset is a main 
goal in Machine Learning. Indeed, most machine learning algorithms suffer from the curse of 
dimensionality. This refers to the fact that the number of model's parameters to estimate grow 
usually exponentially with the dimension of the data. Techniques for reducing the dimensionality of 
the problem aim, hence, at reducing the dimension of the space in which each datapoint is encoded. 
To reduce the dimension of the space, these techniques try to determine the minimum number of 
dimensions required to encode each datapoint while incurring minimum loss. This minimum loss 
can be measured in different ways. In Principle Component Analysis (PCA) it is measured in terms 
of mean-square error when reconstructing the dataset. In other probabilistic techniques (such as 
Gaussian Mixture Models), which we will see in later chapters of these lecture notes, loss is 
measured in terms of minimum discrepancy in likelihood term when estimating the density of 
datapoints. 
 

Data are usually encoded in thousands of dimensions. Take, for example the problem of 
separating a set of pictures of faces from two different persons, as shown in  

Figure 2-1. Pictures are high-dimensional, as they are composed of millions of pixels. Standard 
cameras usually take pictures in a 320x240 format, which results in 76800 pixels. If the image is 

in color, this number must be multiplied by 3 as each pixel has an associated 3 color channel 
code RGB (Red-Green-Blue channel), yielding a dimension of 230400. If we apply Principal 

Component Analysis (PCA), a method for reducing the dimension through linear projection (which 
we will cover in Section 2.2.1), and look at the projections of each data picture along the first two 

projections (see  
Figure 2-1 right) we see that the picture s of the first person (in red) can be easily separated from 
the picture s of the second person (in green) by drawing a line. When sole a line is sufficient to 
distinguish between two groups of datapoints, one calls this a linearly separable problem. As we 
will see when tackling Classification methods in Chapter 3, being able to separate linearly is 
preferred over non-linear separation as it requires less parameters to code for a line than it does 
for coding a complex curve.  
 

The example of  
Figure 2-1 shows that the true dimension of the problem was orders of magnitude smaller than the 
original dimension of the problem. Projecting the data through PCA reduced the dimension from 
230400 to 2, hence a gain of more than 99% of memory required to store the projected data. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

14 

 
Figure 2-1: Example of two-class classification problem which can be approached by first 

projecting the high-dimensional points from camera pictures (left) into a low-dimensional space 
(2-dimensional, right), where they can be separated through a line. 

 
In this chapter, we present one technique for reducing the dimensionality of the dataset which is 
based on linear projections only. Extensions of these techniques for non-linear projection will be 
presented in long version of these lecture notes, dedicated for advanced course in ML. Next, we 
introduce the general formalism of linear projection techniques. 
 

2.1 Formalisation of Reduction of Dimensionality through Linear Projection 
 
Projection in 1-dimension: Recall that if you project a 
vector point x onto a projection vector a, the image y of x 
on a is given by: 

2

Ta x
y a

a


= .  

The figure on the right illustrates this projection. 
 
 
Projection in 2-dimensions: The projection onto a plane defined by 

the pair of linearly independent and orthogonal vectors ( )1 2,a a  with 

( )1 2 0
T

a a = is given by:  

( ) ( )1 2

1 2

2 2
1 2

 

coordinate coordinate 
1 2of y onto of y onto 

T T

a x a x
y a a

a a

a a

 
= +

      

If the axes of projection ( )1 2,a a  are orthonormal, the numerators disappear and Equation 

Error! Reference source not found. simplifies to: ( ) ( )1 1 2 2
T T

y a x a a x a=   +   . As we will PCA 

uses orthonormal axes of projection.  
 
 
Projection in larger dimensions: 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

15 

The result in 2-dimensions generalizes to higher dimensions as long as the axes of projections are 
orthogonal. It is hence interesting to project onto a basis formed of orthogonal axes. As we will PCA 
and its variants choose an orthogonal basis (other techniques, such as Independent Component 
Analysis, relaxes this constraint and requests only that the axes of projections be linearly 
independent). We now formalize the principle of linear projection onto an orthonormal basis: 
 

Consider a dataset X of M datapoints, i.e.  
1

M
i

i
X x

=
= . Each datapoint is N-dimensional, i.e.

 1...,i N
i Mx = . We order each datapoint in a matrix X whose columns are composed of the 

each datapoint 
ix . A linear projection of the dataset onto a low-dimensional space is performed 

by applying a projection matrix : ,  A p N p N    onto X .  The image Y  of X  is given by: 

 

 Y AX=   (2.1) 
 

Y is a matrix with M column vectors 1... M,  i P
iy = , each of which corresponds to the image 

of each original vector .ix  

 
Each row of the matrix A corresponds to the projection axes onto which the data is projected. Below 
is an example of such projection: 
 

 
 
 

 
If we apply this formalism to the example of  

Figure 2-1, we have M=37 original datapoints 
ix of dimension N=230400. The images of these 

datapoints when projected onto a low dimensional space, p=2, correspond to a set of 2-dimensional 
points. 
 
 

2.2 Principal Component Analysis 
 
Principal Component Analysis (PCA) is a technique for reducing the dimensionality of a 
multidimensional data set by identifying a suitable projection of the data in which the data are de-
correlated. To do this, PCA will seek to determine directions along which the data is correlated!  
 
Extracting correlations across dimensions has two advantages a) it allows to reduce the 
dimensionality, as if one dimension is correlated with another dimension, you need to know only 



 

©  A.G.Billard 2004         –         Last Update October 2024 

16 

one of the two dimensions (e.g. assume you have a dataset made of blue balls and red boxes. 
Since all balls in your dataset are blue and all boxes are red, then, detecting the color of the object 
is sufficient to infer that the type of object and you can discard information about the objects’ shape); 
b) in high-dimensional datasets, correlations in subset of the dimensions correspond to features. 
Extracting these features is useful to group datapoints that share these features. PCA can then be 
used as pre-processing method to project data onto dimensions where their features are easily 
extractale. This make it easier then to cluster or classify the data. 
 

2.2.1 Principal Component Analysis - Formalism 

 

Consider a data set of  -dimensional data pointsM N  

 

 
1,...

1...

X=  and   x ,   1,..., .
j N

i M
i i N

jx i M
=

=

 =  

 
 

PCA aims at finding a matrix ,  such that:A  

 1

:   ,   with  q

     X   ,     with ,....,  and each 

AN q

A M i q

A N

Y AX Y y y y

⎯⎯→ 

⎯⎯→ = = 

 

 
Since there exists an infinite number of possible projection matrices A, we need a criterion to limit 
our choice. PCA sets as criterion to determine the projection that incurs minimum loss, by 
minimizing reconstruction error (error measured in norm-2). As we will see later, this is equivalent 
to looking for the projection that maximizes the variance of the projected data. 
 

 

 

Figure 2-2: (left) original data; (right) data reconctructed in 
2

 from the projection on the red axis. 

 
Figure 2-2 above illustrate the principle of minimum loss in PCA. The data (shown in the right figure) 

are projected along the red axes (left figure) in a projection
2:A → . There is a loss of 

information since the distribution of the original data along the direction perpendicular to the red 
axis has become zero. This is however the minimum loss one can incur as any other projection 
would result in a larger fraction of the data' spread lost.  
 
The criterion for minimum loss can be expressed mathematically by computing the mean square 
error between the original data and the reconstructed one after projection. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

17 

If x  is an original datapoint and y  its image after projection through A , then we write 

*
0N p

y
y

−

 
=  

 
 the least square reconstruction vector. The loss incurred by projecting the data 

through A and removing the N-p dimensions is then given by: 
 

 
1 *A y x− −   (2.2) 

 
 
PCA solves then the following constrained minimization: 

 1 *min
A

A y x− −   (2.3) 

 

( )

( )
( )

1

2
1,  

with   and    
0,  .

.

T

i
T

T
i

j

e

e i
eA

e e i j

 
 

 =   
=   

  =  
 
  

 

 

As mentioned previously, the rows of A consist of orthonormal vectors that form a basis of 
p

. 
The image of the datapoint can hence be expressed in this basis as: 
 

 ( )( )
1

p
T

i i

i

y e x e
=

=    (2.4) 

 

Replacing (2.4) into (2.3), and asking that all projection axes be orthogonal, ( ) 0,   
T

i je e i j= 

we get: 

( )( ) ( )( )

( )( ) ( )( ) ( )

,..., ,...,

,..., ,...,

min min

min min

N N
T T

i i i i

i p i p

N NTT T T
i i i i i T i

i p i p

p pN N

p pN N

e e e e

e e e e

e x e e x e

e xe e xe e xx e

= =

= =

 =

 =

 

 

  

The same procedure can be applied to compute the error when projecting the set X of M datapoints: 

( )( ) ( )( ) ( ) ( )
1 1,..., ,...,

1 1
min min

N M N MT
T T T T

i j i i j i i j j i

i p j i p jp pN Ne e e e

e x e e x e e x x e
M M= = = =

=     

 

Observe that ( )
1

1 1M
T

j j T

j

C x x XX
M M=

= =  is the covariance matrix of the dataset, when the 

dataset has zero mean. Hence one first preprocessing step in PCA will be to center the data, i.e. 
to substract the mean of the dataset, so that it is zero-mean. 
 
The constrained based optimization problem expressed in (2.3) becomes: 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

18 

 

( )

( )

min

under the constraints that:

1,  

0,  

j

T
j j

e

i

T
i

j

e Ce

e i

e e i j

= 

=  

  (2.5) 

 
 
We can solve this iteratively (for each projection vector) using Lagrange. We start with the first 

vector
1e  and ask that the first projection vector satisfies only the normality condition (i.e. that its 

norm is 1). This gives us: 
 

( ) ( ) ( )( )
( )

1 1 1 1 1

1

1 1

1

, 1

,
0

T T

L e e Ce e e

L e
Ce e

e

 




= − −


= − =



  

 
The solution is given by: 

 
1 1Ce e=   (2.6) 

 
The first projection vector is hence an eigenvector of the Covariance matrix! 
 
Observe now that, when we proceed to an eigenvalue decomposition of the covariance matrix, we 
end up with N eigenvectors. All these eigenvectors are orthogonal to one another. As a result, 
performing an eigendecomposition of the covariance matrix C is the solution to the constrained 
optimization problem expressed in (2.5). All eigenvectors of the covariance matrix are projection 
vectors that satisfy our objective function (minimal reconstruction error) under the constraint that 
they be orthonormal. We now have all at our disposal to proceed to PCA. We give the steps of the 
algorithm next.  
 
 
Algorithm: 
 
Classical batch algorithm for PCA goes as follows: 
 
Step 1: Center the data and then compute the covariance matrix 

 

The mean of the dataset is denoted by  

 ( ) ( )
11

1 1
1 1

....
, ,..., ,...,

MM

N N
N

x xx x
E X

M M
   

 + ++ +
= = =  

 
 (2.7) 

We substract the mean from the data and we get the new matrix of centered datapoints:

' - ,  where '  is zero mean.X X X=  

The covariance matrix of the centered dataset is: 

 ( ) 

1 1

1 1

1 1 1

,.........,

' ' ,          B ......................................

,.........,

N NT
T

M M

N

x x
B B

C E X X
M

x x

 

 

 − −
 

= = =  
 − − 

 (2.8) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

19 

Each diagonal entry of the covariance matrix C, denoted
iic , corresponds to the variance of the 

data points along the dimension i. 

The off-diagonal components of C, denoted by
1

1
( )( )

M
k k

ij i i j j

k

c x x
M

 
=

= − − , are a measure of 

the correlation of the datapoints across the dimensions i and j. If they are uncorrelated, their 

covariance is zero, i.e. 0ij jic c= = .   

The covariance matrix is symmetric and positive semi-definite. It has, thus, an orthogonal basis, 

defined by N Eigenvectors ,  1,...ie i N= with associated eigenvalues i : 

 i i

iCe e=  (2.9) 

The Eigenvalues i  are calculated by solving the equation:  

 0C I− =  (2.10) 

 

When I is the N N identity matrix and  the determinant of the matrix. 

If the data vector has N components, the characteristic equation becomes of order N. This is easy 
to solve only if N is small. Note that, nowadays, you have numerous code at your disposal to 
perform this eigenvalue decomposition automatically. When N is really large and if we know that 
we care only about a subset of the eigenvectors, one can proceed directly to a singular value 
decomposition, where we search for a subset p of projections. 

Singular value decomposition is also needed when the covariance matrix is not full rank. Recall 
that to compute the covariance matrix, we substract the mean. For the matrix to be full rank, we 
need to have at least N-1 independent observations. When N is high, it may happen that the number 
of observations (datapoints) is small compared to N, such as when using PCA for projecting high-
dimensional images. 

2.2.2 Dimensionality Reduction 

To reduce the dimensionality of the data, we must discard a subset of dimensions. PCA chooses 
the dimensions that incur a minimum reconstruction loss as explained previously. 

By discarding the N-p eigenvectors with smallest eigenvalues 1 2 1... p p N    +      and 

projecting onto the eigenvectors 
1,..., pe e  one can reduce the dimensionality of the dataset to a 

subspace that contains only the major directions of variation of the data. This can be useful in order 
to reduce noise, as it is likely that the noise is encapsulated in the lower dimensions of the dataset. 

We can measure how much information is lost, by looking at the eigenvalues.  



 

©  A.G.Billard 2004         –         Last Update October 2024 

20 

( )( )

( ) ( )

Each projection  of  on  is given by . The percentage of the dataset covered by 

each projection is .

If we expand the numerator, we have .

Using the fact that e

T
i i i

i i

T i

T j

j

T T
T i T i i T i

Y X e Y e X e

X e

X e

X e X e e XX e

=

=



( ) ( )ach eigenvector  and  , ,   0,we have 

.

T
T i i i j

i

T i

i

jT j
j

j

XX e M e i j i j e e

X e

X e







=   =

=




 

Each eigenvalue gives us the amount of information contained in the projection. The loss of 

information when projecting onto the first p eigenvectors is hence given by the ratio:   

`

1
`N

1

p

i

i

i

i





=

=




 

 

Hence, by ordering the eigenvectors in the order of descending eigenvalues (largest first), one can 
create an ordered orthogonal basis with the first eigenvector having the direction of largest variance 
of the data. The eigenvector corresponding to the largest eigenvalue is aligned with the direction 
along which the variance of the data is maximal, see Figure 2-1. In this figure, the directions of the 
two eigenvectors are indicated by the arrows in the right plot; the first eigenvector having the largest 
eigenvalue points to the direction of largest variance (the longest axis of the ellipse) whereas the 
second eigenvector is orthogonal to the first one (pointing to the second axis of the ellipse). The 
right plot shows the data after projection onto the first eigenvector, one we have discarded the 
projections onto the second eigenvector. 

 

Example of PCA for data compression: We describe this procedure for dimensionality reduction 
when applied to one single data vector x and show how PCA, in this case, can be used to compress 
data (a typical example of use of PCA for data compression):  

Let A be a matrix, whose row vectors are composed of the eigenvectors of the covariance matrix 
as, i.e.: 

 

1

2

...

N

e

e
A

e

 
 
 

=
 
 
 
 

 (2.11) 

 

Let us transform the data vector x into y in the orthogonal coordinate system defined by the 
eigenvectors: 

 ( )y A x = −  (2.12) 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

21 

The components ,  1...iy i N= of y are the coordinates of x  in the orthogonal basis formed by 

the eigenvectors.  

In order to reconstruct the original data vector x from y , one must compute: 

Tx A y = +  

using the property of an orthogonal matrix 
1 TA A− = .  

Now, instead of using all the eigenvectors of the covariance matrix, one may represent the data in 
terms of only a few basis vectors of the orthogonal basis. If we denote the reduced transfer matrix

pA , that contains only the p first eigenvectors. The reduced transformation is, thus: 

( )py A x = − . 

If x is a vector composed of the pixel of an image, after the above transformation, the image y of x 
lives in a coordinates system of dimension p. This provides a way to compress data without losing 
much information. Below is an example of PCA compression for one image, where only the first 
10% of the eigenvectors were retained, leading to a 90% compression gain. 

 

Example dimensionality reduction for group of images: PCA can also be used to reduce the 
dimensionality of a dataset. Below, we show two examples of PCA projection of a dataset of images 
of faces and of colored ball. Looking at the eigenvectors provides information on the features 
extracted by each PCA projection. Recall, however, that the first projection is the one that minimizes 
reconstruction error and maximizes variance. It is hence representative of all datapoints and usually 
represents a mix between all the faces. If you want to use PCA to separate groups of images, you 
must often use the 2nd, 3rd, and other projections that will embed features that are not common to 
all the dataset. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

22 

 

Figure 2-3: An example of dimensionality reduction using PCA. The source images (left) are 32x32 color 
pixels. Each image corresponds to a 3072 dimensional vector. (center) the principal components shown in 
decreasing order of eigenvalue, notice how the first components contain the main features of the data (e.g. 
color of the balls) while the components further down only contain fine details. (right) projection of the source 
images onto the first two principal components. 

 

When applying techniques for reducting the dimension of the data, we are faced with contradictory 
goals: On the one hand, we should simplify the problem by reducing the dimension of the 
representation. On the other hand, we want to preserve as much as possible of the original 
information content. PCA offers a convenient way to control the trade-off between loosing 
information and simplifying the problem at hand.  

 

Reconstructing an approximation of the original datapoint after projection: 

( )

( )
( )

1

2

If we want to reconstruct  from the projection ,  we proceed as follows:

First, recall that: 

1,  
  with

0,  .

.

T

i
T

T
i

j

x y

e

e i
eA

e e i j

 
 

 =   
=   

  =  
 
  

  

1 is . As A is square and orthogonal, .

When reducing the dimensionality, we have pruned the  eigenvectors. We obtained ,  

a -dim. vector.   is  ,  and is composed of the  eigenvec

T

p

p

A N N A A

N p y

p A N p p

− =

− 

 1tors: .

We can reconctruct through least-square approximation as .

T

p p

N T

p

A A

x x A y

− =

 =

 

 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

23 

2.2.2.1 Data onto PCA projections is uncorrelated 

 
As stated in introduction to this chapter, projecting onto the vectors generated by PCA de-correlates 
the data.  

Proof: let us start by decomposing the covariance matrix  with  the matrix

of eigenvectors and  the matrix of eigenvalues.

The image  of a dataset  is given by:   with = .

The  covariance 

T

T

C V V V

Y X Y AX A V

= 



=

matrix of  is given by: 

.T T T T

Y

Y

C YY V XXV V V V V= = =  = 

 

 
The covariance matrix in the projected space is hence diagonal. This means that all off-diagonal 
elements that correspond to correlation across dimensions are zero. 

 
The projection vectors (eigenvectors) embed correlations across the original dimensions of the 
dataset (this is true only if there are correlations). Looking at the coordinate of these vectors onto 
the original dimensions gives us an idea of what relations it found across the original dimensions, 
see the exercise sessions of the course for examples. 
 

2.2.2.2 Solving PCA as a variance maximization through constrained optimization 

 
The PCA procedure delineated in the previous paragraphs was derived from solving an 
optimization under constraint problem, where we were minimizing the reconstruction error. As we 
explained earlier on, by projecting the zero-mean dataset onto the eigenvectors of its covariance 
matrix, PCA ensures that the first projection is along the direction of maximal variance of the data. 
 
One can then also formulate PCA as an optimization problem that maximizes variance along the 
projections: 

 ( ) ( ) ( )1

{1,... } 1

1
arg max ,..., arg max

M
T T

N j i j j

j j N i

J e e e x e Ce
M =

= =  (2.13) 

( )

with   the covariance of the dataset.

Adding the constraint that the  should form an orthonormal basis

1,  1...  and 0  .

j

T
j k j

C

e

e j q e e k j=  = =  

 

 
PCA becomes an optimization under constraint problem, which can be solved using Lagrange 
multipliers. PCA proceeds iteratively by first solving for the first eigenvector, using: 
 

 ( ) ( ) ( )( )1 1 1 1 1

1 1
T T

L e e Ce e e= − −  (2.14) 

 

where 1 is the first Lagrange multiplier. We end up with the same solution as found previously with 

the minimization of reconstruction error.   
 

2.2.3 PCA limitations 

 
PCA is a simple and straightforward means of determining the major dimensions of a dataset. It 
suffers, however, from a number of drawbacks. The principal components found by projecting the 



 

©  A.G.Billard 2004         –         Last Update October 2024 

24 

dataset onto the perpendicular basis vectors (eigenvectors) are uncorrelated, and their directions 
orthogonal. The assumption that the referential is orthogonal is often too constraining, see Figure 
2-4 for an illustration. 
 
 

 

 

Figure 2-4: Assume a set of data points whose joint distribution forms a parallelogram. The first PC is the 
direction with the greatest spread, along the longest axis of the parallelogram. The second PC is orthogonal 
to the first one, by necessity. The independent component directions are, however, parallel to the sides of the 
parallelogram.  

 
PCA ensures only uncorrelatedness. This is a less constraining condition than statistical 
independence, which makes standard PCA ill suited for dealing with non-Gaussian data. ICA is a 
method that specifically ensures statistical independence. 
 

It is clear that PCA can be used as the basis of a clustering method, by grouping the points 
according to how they clump along each projection. Each cluster can then be treated separately. 
illustrates a situation in which PCA is useful in projecting the dataset onto a new frame of reference, 
from which the cluster of datapoints can be easily inferred. Figure 2-5 on the other hand shows an 
example in which PCA would fail to segment two clusters. By projecting the data along the principal 
direction, i.e. the vertical axis, PCA would merge the two clusters. ICA is one alternative method 
for separating such clusters. 

 

 

Figure 2-5: A classical illustration of problems occurring with variance-based methods such as PCA. 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

25 

 

2.2.4 Projection Pursuit 

 
Projection–Pursuit (PP) methods aim at finding structures in multivariate data by projecting them 
on a lower-dimensional subspace. Since there are infinitely many projections from a higher 
dimension to a lower dimension, PP aims at finding a technique to pursue a finite sequence of 
projections that can reveal the most “interesting” structures of the data. The interesting projections 
are often those that depart from that of normal/Gaussian distributions. For instance, these 
structures can take the form of trends, clusters, hypersurfaces, or anomalies. Figure 2-5 illustrates 
the ``interestingness'' of non-gaussian projections. The data in this figure is clearly divided into two 
clusters. However, the principal component, i.e. the direction of maximum variance, would be 
vertical, providing no separation between the clusters. In contrast, the strongly non-gaussian 
projection pursuit direction would be horizontal, providing optimal separation of the 
clusters.  Independent Component Analysis (see Section 2.4) is a method for discovering a linear 
decomposition into directions that maximize non-Gaussianity. In this respect, it provides a first step 
for PP decomposition.  
 
Typically, PP uses a projection index, a functional computed on a projected density (or data set), 
to measure the “interestingness” of the current projection and then uses a numerical optimizer to 
move the projection direction to a more interesting position. Interesting projections usually refer to 
non-linear structures in the data, i.e. structure than cannot be extracted by linear projections such 
as PCA and ICA. PP can be formalized as follows: 
 

Given a dataset   X Î P
 and a unit vector  a Î P

one defines an index    Ia
: P ® P

 that 

measures the interest of the associated projection
 
P

a
X( ). PP finds the parameters  a  that 

maximize aI .   

 
PCA is an example of PP approach that takes the variance as the projection index.  Further, if we 

consider a linear projection of each datapoint  x  through  a  of the form  z = aT x  and take the 
negative Shannon entropy as a measure for the index: 
 
 

 
  
I

a
= - f

z
z( )log f

z
z( )ò dz  (2.15) 

 

Where 
 
f

z
 is the probability density function of the projected data , then PP is equivalent to 

Independent Component Analysis. 
  
 
 
 
 
 
 

  

 z



 

©  A.G.Billard 2004         –         Last Update October 2024 

26 

2.2.5 Probabilistic PCA 

 
Until now, all variants of PCA we have seen had a deterministic nature. However, implicitly through 
the computation of the mean and covariance matrix of the data, one assumed that the data followed 
a distribution that could be parameterized through these two parameters. A distribution 
parameterized with this is the Gaussian distribution.  
 
Here we will see how the standard PCA procedure can be extended with a probabilistic model. This 
rewriting will provide a first step toward introducing a series of methods based on so-called latent 
variables, which will see later on. 
 
Latent variables correspond to unobserved variables. They offer a lower dimensional 
representation of the data and their dependencies. Fewer dimensions result in more parsimonious 
models. Probabilistic PCA (PPCA) is then PCA through projection on a latent space. 
 
 
Formalism: 

Asssume a N-dimenionsal data set  X Î N
.  X  corresponds to the observations. Probabilistic 

PCA starts with the assumption that the data  X  were generated by a Gaussian latent variable 
model of the form: 

  x =Wz + m +e  (2.16) 

 

   

where z Î q  are the q-dimensional Latent Variable,

W  is a N ´ q matrix

m Î N  is a vector of parameters

e  Î N  is the noise and follows a zero mean Gaussian distribution e = N 0,å
e( )   

 

 
Probabilistic PCA hence differs from PCA by assuming that a) the linear transformation through the 

matrix  W  goes from the latent variables to the observables; b) the transformation is no longer 
deterministic and is affected by random noise. 
 
Note that the noise is a random variable with zero mean and fixed covariance. If one further 

assumes that the covariance matrix of the noise å
e
 is diagonal, i.e. that the noise along each 

dimension is uncorrelated to the noise along the other dimensions, this leads to a conditional 
independence on the observables given the latent variables. In other words, the latent variables  z  
encapsulate the correlations across the variables. Such conditional independence on the 
observables is advantageous for further processing, e.g. to proceed to an estimation of the 
likelihood of the model given the data. In this case, one can then simply take the product of the 
likelihood of the data for each dimension separately. 
 
Probabilistic PCA consists then in estimating the density of the latent variable  z . PPCA does so 
through maximum likelihood. 
 
 
 
 
 
 
 
 
Algorithm: 



 

©  A.G.Billard 2004         –         Last Update October 2024 

27 

 
If one further assumes that the noise follows an isotropic Gaussian distribution of the form

 
N (0,s

e

2I) , i.e. that its variance 
 
s

e

2
is constant along all dimensions. The conditional probability 

of the observables X given the latent variables 
  p(x | z)is given by: 

 
  
p(x | z) = N Wz + m,s

e

2I( ) (2.17) 

 
The marginal distribution can then be computed by integrating out the latent variable and one 
obtains: 

 
  
p

z
x( ) = N m,WW T +s

e

2I( )  (2.18) 

  
If we set B=WWT +s

e

2I ,  one can then compute the log-likelihood: 

 

  
L B,s

e
,m( ) = -

M

2
N ln 2p( ) + ln B + tr B-1C( ){ } (2.19) 

 

  

where C =
1

M
x i - m( )

i=1

M

å x i - m( )
T

 is the covariance matrix of the complete set of 

M datapoints X= x 1 ,..., x M{ }.

 

 

The parameters 
  
B,  m and s

e
can then be computed through maximum likelihood, i.e. by 

maximizing the quantity
  
L B,s

e
,m( )using expectation-maximization.  Unsurprisingly, the 

maximum estimate of m turns out to be the mean of the dataset. 

 

  

The maximum-likelihood estimates of B and s
Î

2  are then:

B* = W
q

L
q
-s

e

2I( )
1

2 R

s
Î

*( )
2

=
1

N - q
l

j
j=q+1

N

å          (this is also called the residual)

where W
q
 is the matrix of eigenvectors of C and the l

j
 are the associated eigenvalues.

 

 
As in PCA, the dimension N of the original dataset, i.e. the observable X, is reduced by fixing the 

dimension  q < N  of the latent variable. The conditional distribution of the latent variable given the 

observable is: 

 
  
p z | x( ) = N B-1W x - m( ), B-1s

e

2( )  (2.20) 

  
where B = W( )

T

W +s
e

2I . 

 
Finally note that, in the absence of noise, one recovers standard PCA. Simply observe that: 

  
W( )

T

W( )
-1

W x - m( ) is an orthonormal projection of the zero mean dataset, and hence if one 

sets 

  
A = W( )

T

W( )
-1

W , one recovers the standard PCA transformation. 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

28 

 
 

2.3 Canonical Correlation Analysis 
Adapted from Hardoon, Szedmak & Shawe-Taylor, Neural Computation, 16:12, p. 2639-2664, 2004 

 

Canonical Correlation Analysis (CCA) is a technique for dimensionality reduction designed for data that are 
described in different modalities. An example of such multi-modal dataset is illustrated in Figure 2-6. Each 
datapoint is described by an image and an audio file, each of which lives in a high-dimensional space.  

 

Figure 2-6 Example of a bimodal 2 datapoints dataset. Each datapoint is described by an image and an audio 
file, each of which lives in a high-dimensional space.  

CCA can be used to find a projection in image and audio space separately. CCA uses the data labels to 
enforce that the data in each projected space correlate with one another. This preserves consistency across 
the projections. Data with similar labels will grouped similarly in each space. 

 
Imagine that you want to develop a biometric system that can identify different people based on 
audio recordings of the persons’ voices and sets of video recordings of each person’s face when 
talking. Audio and video recordings are recorded simultaneously and hence when taken as a pair 
they may reveal some more information than taking each of these individually. CCA will aim at 
extracting the features in each dataset (audio and visual) that correlate best for each person 
individually. CCA can be seen as a generalized version of PCA for two or more multi-dimensional 
datasets. In each space (audio and video), CCA would find one or more projections that maximize 
correlation across pair of first, second, third eigenvectors in each basis. In other words, CCA tries 
to find a linear combination of audio features and a linear combination of video features that 
correlate best. Data once projected in each of these separate sets of eigenvectors would then be 
most representative of a person and hence can be used to best discriminate afterwards (e.g. by 
using the projected data in a classifier afterwards). 
 
While PCA works with a single dataset and maximizes the variance of the projections of the data 
onto a set of eigenvectors forming a basis of this dataset, CCA works with a pair of random vectors 
determined in each basis separately and maximizes correlation between sets of projections. In 
other words, while PCA leads to an eigenvector problem, CCA leads to a generalized eigenvector 
problem.  
 
 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

29 

2.3.1.1 Formalism: 

Consider a pair of multivariate datasets    
1 1
, yi x i

MM NN

i i
X x Y y

= =
=  =  of which we 

measure a sample of M instances pairs 

  
x i , y i( ){ }

i=1

M

.  CCA consists in determining a set of 

projection vectors  and w  x yw for  X  and  Y  such that the correlation   between the projections 

   and   T T

x x y yz w X z w Y= =
 (the canonical variates) is maximized. 

 

 ( )
 T T

x y x y

T T T, ,
x y x y

,

w w w w
max max  corr z ,z max  max  

w w w wx y x y

T

xy

x y Tw w w wx y
xx x yy y

w w

E XY C

X Y C w C w
 = == =     

(2.21) 
 

Where
  
C

xy
,C

xx
,C

xy
are respectively the inter-set and within sets covariance matrices. 

 is ,   is  and  .xy x y xx x x xy y yC N N C N N C N N    

 
Note that, for the above computation, we have assumed that both X and Y are zero-mean. This is 
a pre-processing step, which we already did for PCA and that simplifies the computation of the 
correlation, by removing the expectation terms on X and Y. 
 

Given that the correlation is not affected by rescaling the norm of the vectors ,x yw w , we can set 

that: 
  

 
  
w

x

TC
xx

w
x

= w
y

TC
yy

w
y

= 1 (2.22) 

 
 

The above constraints bound the norm of  and x yw w . 

This rescaling is equivalent to forcing the vectors to point 
on an ellipse with axes aligned with the eigenvectors of 

the covariance matrices  and Cxx yyC . The lengths of the 

ellipse’s axes are given by the inverse of the square root 
of the eigenvalue of the associated eigenvectors. 
Applying this constraint amounts to scaling the norm of 

the vectors  and x yw w so that they touch the ellipsoid 

isoline of value 1. It does not change the direction of the 

vectors  and x yw w and hence does not change the 

relative correlation across pairs of vectors, as illustrated 
on the figure on the right. 
 
 
The CCA algorithm consists thus in finding the optimum of  under the above two constraints. This 

again can be resolved through Lagrange and gives: 
 

( ) ( ) ( ), , , = 1 1T T T

x y x y x xy y x x xx x y y yy yL w w w C w w C w w C w   − − − −  



 

©  A.G.Billard 2004         –         Last Update October 2024 

30 

with ,x y  the Lagrange multiplier of the constraint. 

 

Taking the partial derivatives over ,  and setting : / 2, we  get :x y x yw w   = =  

 

1 2

0     0
                                                                                          

0       0

Which can be rewritten as 

xy x xx x

y yy yyx

xy yy yx x xx

C w C w

w C wC

C C C w C



−

     
=      

     

 = xw

 (2.23) 
 

This is a generalized eigenproblem of the form Ax = lBx . If xxC is invertible (which is the case if 

all the columns of X are independent), then the above problem reduces to a single symmetric 

eigenvector problem of the form
1 2

yx xx xy y yy yC C C w C w− = , and conversely for .xw  

 

2.3.2 CCA for more than two variables 

Given sets of K random variables ( ) 1,...,kX k K=  with dimension 
kM n (note that while each 

variate can have different dimensions
kn , they must all have the same number of observed 

instances M). The generalized CCA problem consists then in determining the set of projection 

vectors 

  
W k = w

i

k{ }
i=1... p

, with 1..mink K kp n== , such that:  

 

 

  

min
W

  X kW k - X lW l

l¹k ,k ,l=1,...,Kå
F

s.t.                    W k( )
T

C
kk

W k = I ,   "k = 1,.., K ,

                        w
i

kC
kl
w

j

l = 0,  "i, j = 1,..., p,i ¹ j.

 (2.24) 

 

Where 
F

is the Frobenius norm (Euclidean distance for matrices). The above consists of K 

minimization under constraint problems. Unfolding the objective function, we have the sum of the 
squared Euclidean distances between all of the pairs of the column vectors of the matrices

  X
kW k ,k =1,..., K . This problem can be solved by using singular value decomposition for 

arbitrary K. 
 

2.3.3 Limitations 

 

CCA is dependent on the coordinate system in which the variables are described, so even if there 
is a very strong linear relationship between two sets of multidimensional variables, depending on 
the coordinate system used, this relationship might not be visible as a correlation. Kernel CCA has 
been proposed as an extension to CCA, where data are first projected into a higher dimensional 
representation. KCCA is covered in Section 5.4 of these Lecture Notes. 

 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

31 

2.4 Independent Component Analysis 
 
Adapted from Independent Component Analysis, A. Hyvarinen, J. Karhunen and E. Oja, Wiley 
Inter-Sciences. 2001 

 

Similarly to PCA, ICA is a linear transformation that projects the dataset on a sub-manifold, that 
best represent the data at hand. While PCA looks for the principal components, ICA looks for the 
directions along which statistical dependence of the data is minimal.  

ICA is particularly useful in order to decorrelate and denoise data. ICA is very closely related to the 
method called blind source separation (BSS) or blind signal separation. The ̀ `source'' is the original 
signal, i.e. the independent components, (e.g. the speaker in a cocktail party). ``Blind'' means that 
neither the mixing matrix nor the independent components are known to start with. ICA is one 
method, perhaps the most widely used, for performing blind source separation.  It has been used 
successfully in a wide range of signal processing applications, e.g. for de-correlating multiple sound 
sources or extracting invariant features in image processing.  

 

2.4.1 Illustration of ICA  

,  
To illustrate the idea of ICA, consider that you have observed four instances of a two-dimensional 
distribution S of independent components s1 and s2 and that the four instances form the four corners 
of a rectangle, as shown in Figure 2-7: 
 

 

Figure 2-7; Distribution of two independent components 

 
 
 
Note that the range of values for these data was chosen so as to make the mean zero and the 
variance equal to one, an important constraint of ICA. Now let us mix these two independent 

components, using the mixing matrix
1  1

1  1
A

 
=  

 
. This gives us two mixed variables, x1 and x2. 

1 1

2 2

x s
A

x s

   
=    

   
 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

32 

 

Figure 2-8: Mixture of variables 

 
Note that the random variables x1 and x2 are not independent any more, see Figure 2-8; an easy 
way to see this is to consider, whether it is possible to predict the value of one of them, say x2, from 
the value of the other. Clearly it is the case, as they line up along a line of slope 1. 
 
The problem of estimating the data model of ICA is now to estimate the mixing matrix A using only 
information contained in the mixtures x1 and x2. In the above example, it is easy to estimate A by 
simply solving the inverse for each of the four data points, assuming that we have at least four 
points. The problem is less trivial, once we consider a mixture of two arbitrary continuous 
distributions.  
 
 
 
Let us now assume that s1 and s2   were generated by the following uniform distribution: 
 

 ( )
1

    if 3
  2 3

0          otherwise

i

i

s
p s




= 



 (2.25) 

 

 

Figure 2-9: joint distributions of S1 and S2 



 

©  A.G.Billard 2004         –         Last Update October 2024 

33 

 

If we now mix those two distributions according to 
2  3

2  1
A

 
=  

 
, we have: 

 

 

Figure 2-10: Joint distribution of the two observables X1 and X2 

 

The edges of the parallelogram are in the directions of the columns of A . This means that we could, 
in principle, estimate the ICA model by first estimating the joint density of x1 and x2, and then 
locating the edges. So, the problem seems to have a solution.  
 
In practice, however, this can serve solely as an intuition. Determining the edges explicitly works 
with variables that either follow uniform distributions or are sufficiently low dimensional that one can 
sample and observe the entire distribution. What we need is a method that works for any distribution 
of the independent components and works fast and reliably. Ideally, this should be a method that 
can be expressed as an optimization to automatically identify the sources and mixing matix. 
 

 

Figure 2-11: ICA can be applied to separate signals that have been mixed together (e.g. one image bleeding 
into another during wireless transmission of a video signal). [DEMOS\ICA\ICA_IMAGE_MIX.M] 

 

2.4.2 Why Gaussian variables are forbidden  

 
As mentioned above, a fundamental restriction of ICA is that the independent components must be 
non-Gaussian for ICA to be possible. To see why Gaussian variables make ICA impossible, 



 

©  A.G.Billard 2004         –         Last Update October 2024 

34 

assume that the mixing matrix is orthogonal and the si are Gaussian. Then x1 and x2 are Gaussian, 
uncorrelated, and of unit variance. Their joint density is given by: 
 

 ( )
1 2 

2

1 2

1
,

2

x x

p x x e


+ 
− 

 =  (2.26) 

 
This distribution is illustrated in Figure 2-12. The Figure shows that the density is completely 
symmetric. Therefore, it does not contain any information on the directions of the columns of the 
mixing matrix A. This is why A cannot be estimated.  
 

 

Figure 2-12: The multivariate distribution of two independent Gaussian variables 

    
More rigorously, one can prove that the distribution of any orthogonal transformation of the 
Gaussian (x1,x2) has exactly the same distribution as (x1,x2), and that x1 and x2 are independent. 
Thus, in the case of Gaussian variables, we can only estimate the ICA model up to an orthogonal 

transformation. In other words, the matrix A  is not identifiable for Gaussian independent 
components. Note that if just one of the independent components is Gaussian, the ICA model can 
still be estimated. 
 

2.4.3 Definition of ICA 

 

Let 1{ ,..., }Nx x x=  be a N-dimensional random vector of observables.  

 

ICA consists of finding a linear transform s Wx=  so that the projections 1,..., qs s of x through W  

are linearly independent. 
 
To proceed, one builds a general linear model of the form:  
 

x A s =  +      

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

35 

Where A is a q N  ‘mixing’ matrix, 1,..., qs s  the set of independent components and  a N-

dimensional random noise vector1. The independent components are latent variables, meaning that 
they cannot be directly observed. 
 
This formulation reduces the ICA problem to ordinary estimation of a latent variable model. 
Because the estimation of the latent variable in the noisy case can be very tricky, the majority of 
ICA research has concentrated on the noise-free ICA model, where: 
 

 x A s=   (2.27) 

    

 
1

q

i ij j

j

x a s
=

=   (2.28) 

 

The matrix W is then the inverse of A, i.e. 
1W A−=  (this is possible only if A is invertible; to this 

end, one can ensure that A is full rank by reducing its dimension to that of the independent 
component, see below)..   
 
Hypotheses of ICA:  
 
The starting point for ICA is the following assumptions: 
 

• Without loss of generality, we can assume that, both the mixture variables x  and the 

independent components s  have zero mean. Observe that the observable variables x can 

always be centered by subtracting the sample mean, i.e.  ' 'x x E x= − . Consequently, 

the independent component have also zero mean, since    1E s A E x−= .  

• The components si are statistically independent. Statistical independence is rigorously 
defined in Section 7.2.8. It is a stronger constraint than uncorrelatedness (which is ensured 
through PCA). Hence, ICA decomposition results usually in different estimates from that 
found through PCA decomposition.  

 

• As discussed before, we must also assume that the independent components have non-
Gaussian distributions. Usually, assuming that the data follow a Gaussian distribution is 
handy and is done in many other techniques we will see in this course (see e.g. PPCA or 
GMM). Gaussian distributions are so-called parametric distribution that is the distribution 
is fully determined once its parameters have been defined. Hence, assuming a Gaussian 
distribution simplifies the estimation of the density as one must solely estimates the 
parameters of the Gaussian (or mixture of Gaussians, as in GMM). Since ICA does not 
make any assumption regarding the form of the distribution of the independent component, 
it looks as if ICA would estimate the full density of s. This is a very difficult problem. ICA 
will overcome this difficulty by not estimating explicitly the density of s. Rather; the density 
of s can be recovered by sampling through x and using the inverse transformation.  

 

• In our general definition of the ICA model given previously, we have assumed that A was 

a q N  matrix. Here, we will focus on a simplified version of ICA whereby one assumes 

that the unknown mixing matrix A is square, i.e. that the number of independent 
components is equal to the number of observed mixtures and thus A is. q q  (note that 

this assumption can be sometimes relaxed (see extensions proposed in Hyvarinen et al 

 
1 Note the similarity between this model and that introduced in PPCA, see Section 2.2.52.2.5; the difference 

here lies in the optimization method whereby ICA optimizes for statistical independence and PCA optimizes 
for maximal variance. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

36 

2001). This can be done for instance by performing first PCA on the original dataset and 
then use a reduced set of q dimensions obtained by PCA for ICA. If A is square, then, after 

estimating the matrix A , one can compute its inverse, 
1W A−= , and obtain the 

independent component simply by:  

 
1s Wx A x−= =  (2.29) 

 

• The data is white, i.e. each datapoint is uncorrelated and the variance of the dataset is 
equal to unity. This will be a basic preprocessing step in ICA, as we will discuss next.  

 

2.4.4 Whitening  

 
A useful preprocessing strategy in ICA is to first whiten the observed variables. This means that 
before the application of the ICA algorithm (and after centering), we transform the observed vector 

x  linearly so that we obtain a new vector x , which is white, i.e. its components are uncorrelated 

and its variance equal unity. In other words, the covariance matrix of x equals the identity matrix:  

  TE xx I=  (2.30) 

 
The whitening transformation is always possible. One popular method for whitening is to use the 

eigen-value decomposition of the covariance matrix  T TE xx UDU= , where U is the orthogonal 

matrix of eigenvectors of the basis of x and D is the diagonal matrix of its eigenvalues, 

( )1,..., nD diag  = . Note that  TE xx is the empirical means, i.e. it is estimated from the 

available data samples. Whitening can now be done by computing: 
 

 

1

2 Tx UD U x
−

=  (2.31)  

 

The matrix 

1

2D
−

is computed by a simple component-wise operation, such that: 
 

1 1 1

2 2 2
1 ,..., nD diag d d

− − − 
=  

 
. 

 

It is easy to check that now { }TE xx I= .  

 

Whitening transforms the mixing matrix into a new one, A :  
 

 

1

2 Tx UD U As As
−

= =  (2.32) 

 

The utility of whitening resides in the fact that the new mixing matrix A is orthogonal. This can be 
seen from  

    T T T TE xx AE ss A AA I= = =  (2.33) 

 
 
Here we see that whitening reduces the number of parameters to be estimated. Instead of having 

to estimate the 
2N  parameters that are the elements of the original matrix A , we only need to 



 

©  A.G.Billard 2004         –         Last Update October 2024 

37 

estimate the new, orthogonal mixing matrix A . An orthogonal matrix has ( )1 / 2N N −  degrees of 

freedom. For example, in two dimensions, an orthogonal transformation is determined by a single 
angle parameter. In larger dimensions, an orthogonal matrix contains only about half of the number 
of parameters of an arbitrary matrix. Thus one can say that whitening solves half of the problem of 
ICA. Because whitening is a very simple and standard procedure, much simpler than any ICA 
algorithms, it is a good idea to reduce the complexity of the problem this way.  
 
It may also be quite useful to reduce the dimension of the data at the same time as we do the 

whitening. For instance, one can look at the eigenvalues of { }TE xx  and discard those that are too 

small, as is often done in the statistical technique of principal component analysis. This has often 
the effect of reducing noise. Moreover, dimension reduction prevents overlearning, which can 
sometimes be observed in ICA  
 
A graphical illustration of the effect of whitening can be seen in Figure 2-13, in which the data in 
Figure 2-10 has been whitened. The square defining the distribution is now clearly a rotated version 
of the original square in Figure 2-9. All that is left is the estimation of a single angle that gives the 
rotation.  
 
 
    

 

Figure 2-13: The joint distribution of the whitened 
mixtures 

 
 
In the rest of this chapter, we assume that the data has been preprocessed by centering and 
whitening. For simplicity of notation, we denote the preprocessed data just by x , and the 

transformed mixing matrix by A , omitting the tildes.  
 

2.4.5 ICA Ambiguities  

 
We cannot determine the variances of the independent components. The reason is that, both s
and A being unknown, any scalar multiplier in one of the sources si could always be cancelled by 

dividing the corresponding column ia of A by the same scalar, say i . 



 

©  A.G.Billard 2004         –         Last Update October 2024 

38 

 ( )
1

i i i

i i

x a s 


 
=  

 
  (2.34) 

 
As a consequence, we may as well fix the magnitudes of the independent components; as they are 
random variables. The most natural way to do this is to assume that each component has unit 

variance, i.e.  2 1iE s = . Then the matrix A will be adapted in the ICA solution methods to take into 

account this restriction. Note that this still leaves the ambiguity of the sign: we could multiply any of 
the independent components by -1 without affecting the model. This ambiguity is, fortunately, 
insignificant in most applications.  
 
We cannot determine the order of the independent components.  
The reason is that, again both s  and A being unknown, we can freely change the order of the terms 

in the sum in (2.28) and call any of the independent components the first one. Formally, a 

permutation matrix P and its inverse can be substituted in the model to give 
1x AP Ps−= . The 

elements of Ps  are the original independent variables sj, but in another order. The matrix 
1AP−
is 

just a new unknown mixing matrix, to be solved by the ICA algorithms.  
 
ICA properties are: 
 

• Redundancy reduction: reducing redundancy in a dataset has numerous advantages. When 
the data show no redundancy any longer, the correlations across the data is null. In other 
words, each data point is significant and encapsulates a relevant characteristic of the dataset. 
Moreover, such a dataset is noise-free, because noise affects all data similarly. The brain 
seems to rely particularly on redundancy reduction. As we will see in later on in these lecture 
notes, the capacity of Neural Networks based on Hebbian Learning is maximal with non-
redundant datasets.  

 

• Project pursuit: In a noise-free or non-redundant dataset, there might still be a number of 
features irrelevant to the task. Project pursuit is a method for determining the relevant 
directions along which lie the data. 

 

2.4.6 ICA by maximizing non-gaussianity 

 
A simple and intuitive way of estimating ICA is done through the FastICA method. FastICA is based 
on a fixed-point iteration scheme for finding a maximum of a measure of nongaussianity. We 
present this solution here. Note that other objective functions have been proposed in the literature 
to solve ICA, such as minimizing mutual information or maximizing the likelihood. We will not review 
these here. In Section Error! Reference source not found., we will offer another solution to ICA 
using Artificial Neural Networks.  

2.4.6.1 Negentropy  

 
To obtain a measure of non-Gaussianity that is zero for a Gaussian variable and always 
nonnegative, one often uses a slightly modified version of the definition of differential entropy, called 
the negentropy. The negentropy J  is defined as follows  
 

 ( ) ( ) ( )gaussJ y H y H y= −  (2.35) 

where gaussy is a Gaussian random variable of the same covariance matrix as y  to the above-

mentioned properties. The negentropy is always non-negative, and it is zero if and only if y has a 
Gaussian distribution. Negentropy is invariant for invertible linear transformations. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

39 

 
The advantage of using negentropy, or, equivalently, differential entropy, as a measure of 
nongaussianity is that it is well justified by statistical theory. In fact, negentropy is in some sense 
the optimal estimator of nongaussianity, as far as statistical properties are concerned. The problem 
in using negentropy is, however, that it is computationally very difficult. Estimating negentropy using 
the above definition would require an estimate (possibly nonparametric) of the pdf of the 
independent component. Therefore, simpler approximations of negentropy are very useful. For 
instance, Hyvarinen et al 2001 propose to use the following approximation. For a given non-linear 
quadratic function G, then: 

 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

2

2

 

Gauss

T

Gauss

J y E G y E G y

J y E G w x E G y

  − 

  −
 

 (2.36) 

 
 

2.4.6.2 FastICA for one unit  

 
To begin with, we shall show the one-unit version of FastICA. By a "unit" we refer to a computational 
unit. As we will see in Section Error! Reference source not found., this can also be considered 
as the output of a neuron.   

 

The FastICA learning rule determines a direction, i.e. a unit vector w such that the projection 
Tw x  

maximizes nongaussianity. Nongaussianity is here measured by the approximation of the empirical 

measure of Negentropy on the projection, i.e. ( )TJ w x . 

Recall that the variance of
Tw x must here be constrained to unity; for whitened data this is 

equivalent to constraining the norm of w to be unity.  

 
The FastICA is based on a fixed-point iteration scheme for finding a maximum of the nongaussianity 

of 
Tw x . It can be also derived as an approximative Newton iteration, minimizing for the derivative 

of the Negentropy, i.e. 
( )TdJ y w x

dw

=
. Hyvarinen et al 2001 propose to use either of the two 

following quadratic functions: 
 

( ) ( )( )

( )
2

1

1

2
2

1
log cosh ,       1 a 2

y

G y a y
a

G y e
−

=   

= −

 

 
Denote by g the derivative of the above two functions, we have: 

   

( ) ( )

( )

2

1 1

2

2

tanh

u

g u a u

g u ue

 
−  

 

=

=

   

 
 

where 11 2a  is some suitable constant, often taken as a1=1. These function are monotonic and 

hence particularly well suited for performing gradient descent.  



 

©  A.G.Billard 2004         –         Last Update October 2024 

40 

 
The basic form of the FastICA algorithm is as follows:  

   
1.  Choose an initial (e.g. random) weight vector W.  
 

2.   Compute the quantity  ( )  ( ) T Tw E xg w x E g w x w+ = −   

3.  Proceed to a normalization of the weight vector: 
w

w
w

+

+
=   

4.   If the weights have not converged, i.e. ( ) ( )1 1w t w t−   , go back to step 2. 

  
Note that it is not necessary that the vector converge to a single point, since w and -w define the 
same direction. Recall also that it is here assumed that the data have been whitened.  
 

2.4.6.3 FastICA for several units  

 
The one-unit algorithm of the preceding subsection estimates just one of the independent 
components, or one projection pursuit direction. To estimate several independent components, we 
need to run the one-unit FastICA algorithm using several units (e.g. neurons) with weight vectors 

1,..., qw w .  

 
To prevent different vectors from converging to the same maxima we must decorrelate the outputs 

1 ,...,T T

qw w at each iteration. We present here three methods for achieving this.  

 
A simple way of achieving decorrelation is a deflation scheme based on a Gram-Schmidt-like 
decorrelation. This means that we estimate the independent components one by one. When we 

have estimated p independent components, or p vectors 1,..., pw w , we run the one-unit fixed-point 

algorithm for 1pw + , and after every iteration step subtract from 1pw +  the ``projections'' 

1 ,    1,...T

p j jw w w j p+ = of the previously estimated p vectors, and then renormalize 1pw + :  

1 1 1

1

1 1 1 1

1. Let  

2. Let  /

p
T

p p p j j

j

T

p p p p

w w w w w

w w w w

+ + +

=

+ + + +

= −

=


      (2.37) 

 
 
In certain applications, however, it may be desired to use a symmetric decorrelation, in which no 
vectors are ``privileged'' over others. This can be accomplished, e.g., by the classical method 
involving matrix square roots,  
 

 ( )
1/2

Let  TW WW W
−

=  (2.38) 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

41 

where W is the matrix ( )1,...,
T

qw w of the vectors, and the inverse square root ( )
1

2TWW
−

 is 

obtained from the eigenvalue decomposition of 
T TWW F F=   as ( )

11

22T TWW F F
−−

=  . A 

simpler alternative is the following iterative algorithm: 
 

 

1. Let  /

Repeat 2. until convergence

3 3
2. Let  

2 2

T

T

W W WW

W W WW W

=

= −

 (2.39) 

 
The norm in step 1 can be almost any ordinary matrix norm, e.g., the 2-norm or the largest absolute 
row (or column) sum (but not the Frobenius norm).   
 

2.4.7 Further Readings 

 
In this chapter, we have focused only on the linear version of ICA, and, on one method for solving 
ICA, namely fast ICA. Note that there exist also methods for non-linear ICA and for time-dependent 
ICA. The reader can refer to [Hyvarien et al, 2003] for further readings on ICA and its applications.  
 
 

  



 

©  A.G.Billard 2004         –         Last Update October 2024 

42 

3 Clustering and Classification 
 

This chapter will present a series of methods to perform clustering and classification.  
 

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-
classes, called clusters. A cluster is a collection of data objects that are “similar” to one 
another and thus can be treated collectively as one group. 

 
Classification consists of modeling and categorizing data belonging to the same class.  

 
Clustering is oftern referred to as unsupervised classification. In contrast, classification relates to 
supervised classification. The notion of supervision/unsupervision in clustering and classification 
relates to the fact that in classification, we are provided with the class labels, whereas in clustering 
we do not have the class labels. This is illustrated in the schematic example below. A dataset of 6 
objects are in one case already categorized by the user who attributed them class labels, grouping 
the objects according to their color. In the second case, the objects do not have a class label and 
one is left to infer what would be an adequate way of grouping the data. There are at least two 
different ways in which one could group these data. One could either group them according to their 
color (ending up with the same grouping as in the classification case) or one could group them 
according to shapes (ending up with only two groups with a mix of color). 
 

 
 

Clustering is hard as we do not know the true class label and that there are many ways in which 
one could group data. Also, in real life, datapoints are never identical and they all resemble each 
other somehow, as illustrated in the schematic below: 
 

 
 
The type of clusters you will create depends on the metric of similarity you choose for grouping 
your datapoints. If you choose to pre-process your data by applying PCA, for instance, then the 
choice of projection will highlight some features (correlations across the datapoints). This implicitely 



 

©  A.G.Billard 2004         –         Last Update October 2024 

43 

will extract some measure of similarity across datapoints, as in some projections some datapoints 
will look closer to one another than in other projections, see example below: 

 

Figure 3-1: A database of images from two persons composed of 4 classes highlighted in colors is projected 
onto eigenvectors 1 and 3. When projecting onto e1 and e3, we can separate the image of the first person 
with and without glasses, as the eigenvector e3 embeds features distinctive of person1 primarily. 

In this projection, it becomes easier to find clusters denoting the glasses versus non-glasses 
images of the first person. Do not forget that in clustering you do not have the class labels. Hence, 
the colors in the plot above would not be an information at your disposal and the real challenge 
would look like the figure below, where groups of points appear in the space without labels (colors): 

 
 

3.1.1 Semi-supervised clustering  

Since clustering is very hard job for lack of labels, whenever possible, one will try to gather labels. 
However, gathering labels may be much more time consuming than gathering the data. For 
instance, imagine that you are a company selling on-line a set of products such as movies, books 
and musics. To increase your sale, you may want to propose to your customer a set of items which 
you think “they may like”. To select which product you will propose, you need to get a representation 
of how items group with one another according to types of customers’ tastes.  However, you do not 
know how many groups of customers and of products exists. To get a better idea of how many 
potential groups exists, you may pay a few customers to labels the items they find “similar”. While 
you may have thousands of customers on a yearly basis visit your website, only a small subset of 
them will be paid to provide their labels. You hence end up with a partial labeling of the data. To 
cluster the rest of your data, you will use this partial set of labeled data. Clustering methods that 



 

©  A.G.Billard 2004         –         Last Update October 2024 

44 

use partially labeled dataset are referred to as semi-supervised clustering. The schematic below 
illustrates the difference between clustering, semi-supervised clustering and classification in a 
binary classification problem. 
 

 
 
 

3.2 Types of Clustering Techniques 
 

There exist many types of clustering techniques. In these lecture notes, we cover some examples 
that illustrate distinctive features across clustering techniques. 
 
One important feature of a clustering technique is the type of clusters it creates. 
 
 

 

Figure 3-2: Example of a dataset that form 3 clusters 

 
There are many ways to shape clusters. Clusters can be either globular (convex) such that any line 
you can draw between two cluster members stays inside the boundaries of the cluster, or non-
globular (concave), i.e. taking any shape. Globular clusters, such as those produced by the K-
means clustering technique we will see next, are advantageous in that they require few parameters 
to describe the cluster. A ball shape is described by its centroid and the radius to its centroid. 
However, a convex envelope is limiting and may not encapsulate well groups of points that are 
distributed along a non-convex shape. Non-globular clusters, such as those generated by the 



 

©  A.G.Billard 2004         –         Last Update October 2024 

45 

DBSCAN technique, are advantageous in that they can produce tight boundaries of arbitrary 
shapes around the data. However, this comes at a price, with a large increase in computational 
cost, as we will discuss later on. 
  
Clusters can contain an equal number of data, or be of equal size (distance between the data).  
Central to all of the goals of cluster analysis is the notion of degree of similarity (or dissimilarity) 
between the individual objects being clustered. This notion determines the type of clusters that will 
be formed. 
 
In this chapter, we will see different methods of clustering that belong to two major classes of 
clustering algorithms, namely hierarchical clustering and partitioning algorithms. We will 
discuss the limitation of such methods. In particular, we will look at a generalization of K-means 
clustering, namely soft k-means and mixture of Gaussians that enable to overcome some but 
no all limitations of simple K-means.  
 
While hierarchical algorithms build clusters gradually (as crystals are grown), partitioning algorithms 
learn clusters directly. In doing so, they either try to discover clusters by iteratively relocating points 
between subsets, or try to identify clusters as areas highly populated with data. Algorithms of the 
first kind are surveyed in the section Partitioning Relocation Methods. They are further categorized 
into k-means methods (different schemes, initialization, optimization, harmonic means, 
extensions) and probabilistic clustering or density-Based Partitioning (E.g. soft-K-means and 
Mixture of Gaussians). Such methods concentrate on how well points fit into their clusters and tend 
to build clusters of proper convex shapes. 
 
When reading the following section, keep in mind that the major properties one is concerned with 
when designing a clustering methods include: 
 

• Type of attributes algorithm can handle 

• Scalability to large datasets 

• Ability to work with high dimensional data 

• Ability to find clusters of irregular shape 

• Handling outliers 

• Time complexity (when there is no confusion, we use the term complexity) 

• Data order dependency 

• Labeling or assignment (hard or strict vs. soft of fuzzy) 

• Reliance on a priori knowledge and user defined parameters 

• Interpretability of results 
 

3.2.1 Hierarchical Clustering 

 
In hierarchical clustering, the data is partitioned iteratively, by either agglomerating the data or by 
dividing the data.  The result of such an algorithm can be best represented by a dendrogram.  



 

©  A.G.Billard 2004         –         Last Update October 2024 

46 

 

Figure 3-3: Dendogram 

 
An agglomerative clustering starts with one-point (singleton) clusters and recursively merges two 
or more most appropriate clusters. A divisive clustering starts with one cluster of all data points and 
recursively splits the most appropriate cluster. The process continues until a stopping criterion 
(frequently, the requested number k of clusters) is achieved. 
 
To merge or split subsets of points rather than individual points, the distance between individual 
points has to be generalized to the distance between subsets. Such derived proximity measure is 
called a linkage metric. The type of the linkage metric used significantly affects hierarchical 
algorithms, since it reflects the particular concept of closeness and connectivity. Major inter-cluster 
linkage metrics include single link, average link, and complete link. The underlying dissimilarity 
measure (usually, distance) is computed for every pair of points with one point in the first set and 
another point in the second set. A specific operation such as minimum (single link), average 
(average link), or maximum (complete link) is applied to pair-wise dissimilarity measures: 
 

( ) ( ) 1 2 1 2, , | ,d c c operation d x y x c y c=    

 
 
An agglomerative method proceeds as follows: 
 

1. Initialization: To each of the N data points pi, {i=1,..,N} associate one cluster ci. You, thus, 
start with N clusters. 

 
2. Find the closest clusters according to a distancemetric d(ci, cj). The distance between groups 

can either be: 
 

• Single Linkage Clustering: The distance between the closest pair of data points  
d(ci,, cj) = Min { d(pi, pj,) : Where data point piis in cluster ci and data point pj,is cluster cj} 
 

• Complete Linkage Clustering: The distance between the farthest pair of data 
points 



 

©  A.G.Billard 2004         –         Last Update October 2024 

47 

d(ci,, cj) = Max { d(pi, pj,) : Where data point piis in cluster ci and data point pj,is cluster cj} 
 

• Average Linkage Clustering: The average distance between all pairs of data 
points 

d(ci,, cj) = Mean { d(pi, pj,) : Where data point piis in cluster ci and data point pj,is cluster cj} 
 

3. Merge the two clusters into one single cluster taking, e.g., either the mean or the median 
across the two clusters.  

 
4. Repeat step 2 and 3 until some criterion is achieved, such as, for instance, when the minimal 

number of clusters or the maximal distance between two clusters has been reached.  
 
 
The divisive hierarchical clustering methods work the other way around. They start by considering 
all data points as belonging to one cluster and divide iteratively the clusters, according to the 
points furthest apart. 

 

Figure 3-4: Example of distance measurement in hierarchical clustering methods 

 
It is clear that the number and type of clusters will strongly depend on the choice of the distance 
metric and on the method used to merge the clusters. A typical measure of distance between two 
N-dimensional data points ,x y  takes the general form:  

1

( , )
N

pp p
i i

i

d x y x y
=

= − (3.1) 

 
The 1-norm distance, i.e. p=1, sometimes referred to as the Manhattan distance, because it is the 
distance a car would drive in a city laid out in square blocks (if there are no one-way streets). The 
2-norm distance is the classical Euclidean distance.  
 
Figure 3-5 shows examples of data sets in which such nearest neighbor technique would fail. 
Failure to converge to a correct solution might occur, for instance, when the data points within a 
dataset are further apart than the two clusters. An even worse situation occurs when the clusters 
contain one another, as shown in Figure 3-5 right. In other words such a simple clustering technique 
works well only when the clusters are linearly separable. A solution to such a situation is to change 
coordinate system, e.g. using polar coordinates. However, determining the appropriate coordinate 
system remains a challenge in itself.  
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

48 

 

Figure 3-5: Example of pairs of clusters, easy to see but awkward to extract for standard clustering algorithms 

3.2.2 K-means clustering 

 

K-Means clustering generates a number K of disjoint, flat (non-hierarchical) clusters
kC , 1,... ,k K=

so as to minimize the sum-of-squares criterion  

 ( )1

1 1

,... ( , )       and          ( , )
k

K N
pp p p

K i i

k ii C

J d x y d x y x y 
= =

= = −   (3.2) 

where ix is a vector representing the ith data point, usually p=2 (norm-2)  and k is the geometric 

centroid of the data points associated tocluster 
kC .  

 
The objective function minimizes the distance of all datapoints to the centroid of each cluster. In 
other words, it asks that the points to be well grouped around the centroids.  By using norm-2, it 
builds a ball around each centroid and groups points within this ball.  
 
The K-Means method is numerical, unsupervised, non-deterministic and iterative. We summarize 
the steps of K-means next.  
 
 
K-Means Algorithm: 

 

1 Initialization: Pick K arbitrary centroids and set their geometric means 1,..., K  to 

random values. 
 

2 Calculate the distance ( , )i kd x  from each data point i  to each centroid k . 

 

3 Assignment Step: Assign the responsibility
i

kr of each data point i  to its “closest” 

centroid ik (E-Step). If a tie happens (i.e. two centroids are equidistant to a data 

point, one assigns the data point to the smallest winning centroid). 
 

( ) arg min ,i i k
k

k d x =  (3.3) 

i1     if  k

0    otherwise

k

i

k
r

 =
= 


 

 
4 Update Step: Adjust the centroids to be the means of all data points assigned to 

them (M-Step) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

49 

 

k

i i

i
k k

i

i

r x

r
 =




 (3.4) 

 

5 Go back to step 2 and repeat the process until a complete pass through all the data 
points results in no data point moving from one cluster to another. At this point the 
clusters are stable and the clustering process ends. 

 
 
We illustrate below an example of K-means clustering for 3 clusters. At initialization the clusters 
are not well split, as two of the centroids are initialized in the same cluster (top-right). After one 
iteration, we see how the centroid move toward each of their clusters. The algorithms converge in 
two iterations in the correct solution. 
 

   

                                     Initialization                                    iteration 1                         iteration 2 - convergence 

 
K-means generates globular clusters with isotropic distances in all dimensions. The boundaries 
between the clusters are linear if we use norm-2 as distance metric (classical K-means version). 
One can however use other metrics, such as norm-1, norm-p or infinite norm. The effect on the 
boundaries are illustrated in the example below. 

 
 

 
Using other norms than the Euclidean norms allows K-means to produce non-linear boundaries 
and hence to move away from the globular clustering it is known for. Yet, these non-linear 



 

©  A.G.Billard 2004         –         Last Update October 2024 

50 

boundaries remain quite limited in their power of structure and the equidistance across clusters 
remains a strong limitation which forces clusters to be balanced in both their spread and their 
relative distance to one another. 
 
K-means clustering is a particular case of Gaussian Mixture Model estimation with EM 
(expectation maximization) where the covariance matrices are fixed (these are actually diagonal 
and isotropic), see Section 3.2.4. 

 
The properties of K-means algorithm can be summarized as follows: There are always K clusters. 
There is always at least one item in each cluster. The clusters are non-hierarchical and they do not 
overlap. Every member of a cluster is closer to its cluster than any other cluster because closeness 
does not always involve the 'center' of clusters. 

 
The algorithm is guaranteed to converge in a finite number of iterations.  

But it converges to a local optimum 
 

 
Advantages of K-means: 
With a large number of variables, K-Means may be computationally faster than other clustering 
techniques, such as hierarchical clustering or non-parametric clustering. Its computational costs 
grow linearly with both the number of datapoints and of the number of clusters, i.e. O(MK). K-Means 
may produce tighter clusters, especially if the clusters are globular.  K-mean is guaranteed to 
converge 

 
Drawbacks of K-means: 
K-mean clustering suffers from several drawbacks. The choice of initial partition can greatly affect 
the final clusters that result, in terms of inter-cluster and intra-cluster distances and cohesion. 
Hence, one might find it difficult to compare the quality of the clusters produced (e.g. for different 
initial partitions or values of K affect outcome).  
 
Below we show the solution found by K-means for the same 3 cluster clustering problem shown 
previously but with another initialization. There, the algorithm stopped even thought it had split one 
cluster in half and grouped two very distant clusters. This is an illustration of the sensitivity of the 
clustering technique to initialization and of the drawback of the hard assignment of the datapoints 
to one one cluster. A softer assignment as in soft-K-means would not get stuck in this local minimum 
as it allows all points to influence the update step, as we will see next and as illustrated below. 

  

 
Left: Solution with K-means; Right: Solution with soft K-means 

 
 
Moreover, K-means assumes a fixed number K of clusters, which is difficult to estimate off-hands. 
It does not work well with non-globular clusters.  Different initial partitions can result in different final 
clusters see below:  

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

51 

 

Figure 3-6: The random initialization of K-Means can lead to different clustering results, (in this case using 3 
clusters) [DEMOS\CLUSTERING\KMEANS-RANDOM_INITIALIZATIONS.ML] 

 
It is, therefore, good practice to run the algorithm several times using different K values, to 
determine the optimal number of clusters. 
 
Cases where K-means might be viewed as failing: 
 
Unbalanced clusters: 
The K-means algorithm takes into account only the distance between the means and data points; 
it has no representation of the weight and breadth of each cluster. Consequently, data points 
belonging to unbalanced clusters (clusters with unbalanced number of points, spread with a smaller 
breadth) will be incorrectly assigned. 

 
 

Elongated clusters: 
The K-means algorithm has no way to represent the shape of a cluster. Hence, a simple measure 
of distance would be unable to separate two elongated clusters as shown in Figure 3-7.   

 

 
 

Figure 3-7: Typical examples for which K-means is ill-suited: unbalanced clusters (left) and elongated clusters 
(right). In both cases the algorithm fails to separate the two clusters. 
[DEMOS\CLUSTERING\KMEANS-UNBALANCED.ML]  [DEMOS\CLUSTERING\KMEANS-ELONGATED.ML] 

 

3.2.3 Soft K-means 

 
`Soft K-means algorithm' was offered as an alternative to K-means in order to “soften” the 

assignment of variables. Each data point ix is given a soft `degree of assignment' to each of the 



 

©  A.G.Billard 2004         –         Last Update October 2024 

52 

means. The degree to which ix is assigned to cluster k is the responsibility 
i

kr of cluster k for point 

i  and is a real value comprised between 0 and 1. 

 
( )( )

( )( )'

,

,

'

k i

k i

d x

k

i d x

k

e
r

e

 

 

− 

− 
=


 (3.5) 

 

  is the stiffness and determines the binding between clusters. The larger  , the bigger the 

distance across two clusters. A measure of the disparity across clusters is given by 
1




 , the 

radius of the circle that surrounds the means of the K clusters. 
 

The sum of the K responsibilities for the ith point is 1, i.e. 1k

i

k

r =  

 
Update step. The model parameters, i.e. the means, are adjusted to match the sample means of 
the data points that they are responsible for. 

 
k

i i
k i

k

i

i

r x

r




=



 

 
The update algorithm of the soft K-means is identical to that of the hard K-means, apart for the fact 
that the responsibilities to a particular cluster are now real numbers varying between 0 and 1. 

 
 

 

Figure 3-8: Soft K-means algorithm with a small (left), medium (center) and large(right)  
[DEMOS\CLUSTERING\SOFT-KMEANS-SIGMA.ML] 



 

©  A.G.Billard 2004         –         Last Update October 2024 

53 

 

Figure 3-9: Iterations of the Soft K-means algorithm from the random initialization (left) to convergence (right). 

Computed with = 10. [DEMOS\CLUSTERING\SOFT-KMEANS-ITERATIONS.ML] 

 

3.2.4 Density Based Spatial Clustering of Applications with Noise (DBSCAN)  

 
DBSCAN is a simple clustering algorithm which offers an interesting alternative to K-means. It 
provided non-globular clusters (concave). Most importantly, it can detect outliers and remove these 
from clustering.  
Like K-means, it proceeds iteratively. It has two hyperparameters (parameters fixed by the user). 

These are the minimal size of a cluster  and the minimum number of datapoints in a cluster mdata. 
These two parameters determine minimal bounds on noise/outlier determination. They must be 
chosen with care and as a function of the dataset.  
 
The algorithms is summarized below: 
 

1. Pick a first datapoint at random  

2. Compute number of datapoints within  around the datapoint 
3. If this number is < mdata, set this datapoint as an outlier 

otherwise, for each point found within  around the first datapoint, assign it to the same 
cluster as the first datapoint.  

4. If there is a cluster within , merge with this cluster. 
 
Below, we illustrate the main steps of the algorithm in a schematic: 

 

Figure 3-10: Illustration of the step of DBSCAN. Left: a point is identified as an outlier as it has no datapoint 

within an  neighbourhood. Right: two newly created cluster of datapoints are merged as the two clusters are 

within  from one another. 

 
DBSCAN can cluster correctly elongated clusters (which K-means cannot cluster correctly), see 
example below: 



 

©  A.G.Billard 2004         –         Last Update October 2024 

54 

 

Figure 3-11: Clustering obtained with DBSCAN illustrating the ability of the algorithm to generate non-globular 
clusters (left) and that it can separate the double elongated clusters which K-means cannot (right).  

 
DBSCAN is computationally intensive, as one must swipe the data several times to test the 
neighbourhood and then to merge the clusters. Its computational costs grow quadratically with M. 
There exists methods to speed up computation, but at best it grows with O(M log(M)). 
 

3.2.5 Clustering with Mixtures of Gaussians 

 

An extension of the soft K-means algorithm consists of fitting the data with a Mixture of Gaussians 
(not to be confused with Gaussian Mixture Model (GMM))) which we will review later on. Instead of 
simply attaching a responsibility factor to each cluster, one attaches a density of probability 
measuring how well each cluster represents the distribution of the data. The method is bound to 
converge to a state that maximizes the likelihood of each point to belong to each distribution.  

 
Soft-Clustering methods are part of model-based approaches to clustering. In clustering with 
mixture of Gaussians, the model is naturally a Gaussian. Other model-based methods use, for 
instance, the Poisson or the Normal distributions. 

 
The main advantages of model-based clustering are: 

• It can make use of well-studied statistical inference techniques;  

• Its flexibility in choosing the component distribution;  

• It obtains a density estimation for each cluster;  

• It is a “soft” means of classification.  
 

Clusters with mixtures of Gaussian places K distributions, whose barycentres are located on the 
cluster means, as in Figure 3-13.  

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

55 

 

Figure 3-12: Examples of clustering with Mixtures of Gaussians (the grey circles represent the first and second 
variances of the distributions).[DEMOS\CLUSTERING\GMM-CLUSTERING-SIMPLE.ML] 

 
 

Algorithm 
 

Assignment Step (E-step):  The responsibilities are  

 
( )

( )

( )

( )

2

'2
'

1
,

1
,

'

'
'

1

2

1

2

k i

k

k i

k

d x

k N

kk

i
d x

k N
k

k

e

r

e













 
−  

 
 

 
−  

 
 

=



 (3.6) 

 
 

where M is the number ofdatapoints, i.e.  x={x1, x2,..., xM}, ( ),d x y is a distance measure, e.g. the 

Euclidean distance.   
 

Update Step (M-step):  Each cluster’s parameters ,   and k k k    are adjusted to match the 

data points for which the cluster is responsible: 
 

 

k

i i

i
k k

i

i

r x

r
 =




 (3.7) 

 

( )
2

2

k

i i k

i
k k

i

i

r x

N r





−

=





 (3.8) 

 

k

i

i
k k

i

k i

r

r
 =




 (3.9) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

56 

The 
k represents a measure of the likelihood that the Gaussian k (or cluster k)generated the 

whole dataset. 
 

This fits a mixture of spherical Gaussians. “Spherical” means that the variance of the Gaussians is 
the same in all directions. In other words, in the case of multidimensional dataset, the covariance 
matrix of the Gaussian is diagonal and isotropic (i.e. all the elements on the diagonal are equal and 
all elements on the off-diagonal are zero). This algorithm is still not good at modeling datasets 
spread along two elongated clusters, as shown in Figure 3-7. If we wish to model the clusters by 
axis-aligned Gaussians, we replace the assignment rule given by Equations (3.6) and (3.8) with 
the following: 

 

 

( )

( )

( )

( )

( )

( )

2

2
1

2

'

2
1

,

2

1

,

2

''

1

1

2

1

2

N
k i

k
i i

N
k i

k
i i

d x

k N
k

i
k i

i
d x

k N
kk
i

i

e

r

e

















=

=

 
 

− 
 
 

=

 
 

− 
 
 

=



=








 (3.10) 

 

 

,

k

i i j
k i
j k

i

i

r x

r
 =




 (3.11) 

 

 ( )
( )

2

,
2

k k

i i j j
k i
j k

i

i

r x

N r





−

=





 (3.12) 

 

 

k

i

i
k k

i

k i

r

r
 =




 (3.13) 

 
Soft K-means and the mixture of Gaussians are two examples of maximum likelihood algorithm.  



 

©  A.G.Billard 2004         –         Last Update October 2024 

57 

 

Figure 3-13: Examples of clustering with Mixtures of Gaussians using spherical Gaussians (left) and non-
spherical Gaussians (i.e. with full covariance matrix) (right). Notice how the clusters become elongated along 
the direction of the clusters (the grey circles represent the first and second variances of the distributions). 

[DEMOS\CLUSTERING\GMM-ELONGATED.ML] 
 
 

A fatal flaw of maximum likelihood (KABOOM!): 
The major drawback of maximizing the likelihood (people tend to actually minimize the –log of the 
likelihood) is that there is no actual maximum. Indeed, the pdf is a positive but unbounded function. 
As a result, one may observe the so-called KABOOM effect.  

 
When the mean of one of the Gaussian is located on a particular data point, and, if the variance is 

already very small
2 1  , then 

2 will become even smaller.  This is a fatal flaw of soft k-means 

algorithms: very small clusters can be formed that satisfy only a few data points. If the variance 
goes to zero, you will obtain an arbitrary large likelihood (kaboom). This is a general flaw of 
maximum likelihood methods that can find highly tuned models that fit only part of the data, but 
perfectly. This phenomenon is known as over fitting. 
 

3.2.6 Gaussian Mixture Models 

 
While Gaussian Mixture Models (GMM) are often presented alongside other parametric or non-
parametric density estimation methods (e.g. such as Gaussian Process which we here present in 
the regression method section), we felt that in the framework of these lecture notes it was preferable 
to introduceGMM here as its notation follows naturally from that introduced in the soft-K-means 
methods.  

 
The estimation of Mixture of Gaussians we reviewed in the previous section assumed a diagonal 
covariance matrix for each Gaussian. This is rather restrictive as it forces the Gaussians to have 
their axes aligned with the original axes of the data, seeFigure 3-14.  As a result, they are ill-suited 
for estimating highly non-linear densities that have local correlations. 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

58 

 
Figure 3-14: A spherical Mixture of Gaussian Model can only fit Gaussians whose axes are 
aligned with the data axes. It may require far more local models to account for local 
correlations across the dimensions of the data X. 

 

 
Figure 3-15: In contrast, a Gaussian Mixture Model can exploit local correlations and adapt 
the covariance matrix of each Gaussian so that it aligns with the local direction of 
correlation. 
 
 

Gaussian Mixture Model is a generic method that fits a mixture of Gaussians with full covariance 
matrices. Each Gaussian serves as a local linear model and in effect performs a local PCA on the 
data. By mixing the effect of all these local models, one can obtain a very complex density estimate, 
see as an illustration the schematics in Figure 3-14 and Figure 3-15. 

 

Let suppose that we have at our disposal  
1,...

1,...

j M
j

i i N
X x

=

=
= the set ofMN-dimensional data points 

whose density we wish to estimate. We consider that these are observed instances of the variable

x . The probability distribution function or density of x  is further assumed to be composed of a 

mixture of  k 1,.., K= Gaussians with mean k  and covariance matrix
k , i.e. 

( ) ( ) ( ) ( )
1

| , ,           with  | , ,
K

k k k k k k

k k k

k

p x p x p x N   
=

=    =   (3.14) 

 
 

The k are the so-called mixing coefficients. Their sum is 1, i.e. 
1

1
K

k

k


=

= . These coefficients are 

usually estimated together with the estimation of the parameters of the Gaussians (i.e. the means 
and covariance matrices). In some cases, they can however be set to a constant,for instance to 

give equal weight to each Gaussian (in this case, 1      1,...k k K
K

 =  = ). When the coefficients 



 

©  A.G.Billard 2004         –         Last Update October 2024 

59 

are estimated, they end up representing a measure of the proportion of data points that belong 
most to that particular Gaussian (this is similar to the definition of the seen in the case of Mixture 

of Gaussians in the previous section). In a probabilistic sense, these coefficientsrepresent the prior 
probability with which each Gaussian may have generated the whole dataset and can hence be 

written ( ) ( )
1

|
M

j

k

j

p k p k x
=

= =  .  

 
Learning of GMM requiresdetermining the means and covariance matrices and prior probabilities 
of the K Gaussians. The most popular method relies on Expectation-Maximization (E-M). We 
advise the reader to take a detour here and read the tutorial by Gilmes provided in the annexes of 
these lectures notes for a full derivation of GMM parameters estimation through E-M.We briefly 
summarize the principle next. 

 
We want to maximize the likelihood of the model’s parameters 

 1 1 1,..... , ,..... , ,..... ,K K K    =    given the data, that is: 

 

 ( ) ( )max  | max  |L X p X
 

 =   (3.15) 

 

Assuming that the set of M datapoints  
1

M
j

j
X x

=
= is identically and independently distributed 

(iid), we get:   

 ( ) ( )
11

max  | max  | ,
M K

j k k

k

kj

p X p x 
 

==

 =    (3.16) 

 
Taking the log of the likelihood is often a good approach as it simplifies the computation. Using the 

fact that the optimum
*x of a function ( )f x is also an optimum of ( )log f x , one can compute: 

 

( ) ( )

( ) ( )
1 1 11

max  | max  log |

max  log | , max  log | ,
M K M K

j k k j k k

k k

k j kj

p X p X

p x p x   

 

 
= = ==

 = 

 
  =   

 
  

 (3.17) 

 
The log of a sum is difficult to compute and one is led to proceed iteratively by calculating an 
approximation at each step (EM), see Sections 7.3.2.The final update procedure runs as follows: 
 

 
 
 
 
 

Initialization of the parameters: 
 

Initialize all parameters to a value to start with. The 1,.., Kp p can for instance be initialized with a 

uniform prior, while the means can be initialized by running K-Means first. The complete set of 
parameters is then given by: 

 
 

( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 0

0 1 1 1,..., , ,..., , ,...,K K K    =    



 

©  A.G.Billard 2004         –         Last Update October 2024 

60 

 
 
 

E-step: 
 

At each step t, estimate, for each Gaussiank, the probability that this Gaussian is being 
responsible for generating each point of the dataset by computing: 

 

( ) ( )( )
( ) ( )( ) ( )

( )( ) ( )

| ,
|

| ,

                               

i

t

i

t k t tk

k kt

k t tk

k j

j

p x
p k

p x j

 


 

 
=  =

  (3.18) 

 
 

M-step: 
 

Recompute the means, Covariances and prior probabilities so as to maximize the log-likelihood of 

the current estimate: 
( )( )( )log |tL X  and using current estimate of the probabilities ( )( )| tp k 

: 
 

 
( )

( )( )
( )( )

1

| ,

| ,

tj

tj

j

t jk

j

p k x x

p k x


+

 

=





 (3.19) 

 

 
( )

( )( ) ( )( ) ( )( )
( )( )

1 1

1

| ,

| ,

T
t k t k tj j j

k t j

ti

i

p k x x x

p k x

 
+ +

+

 − −

 =





 (3.20) 

 

 
( )

( )( )
1

| ,j

t

k

t

j

P k x

M


+



=


 (3.21) 

 
 

 
 

Note finally that we have not discussed how to choose the optimal number of states K. There are 
various techniques based on determining a tradeoff between increasing the number of states and 
hence the number of parameters (increasing greatly the computation required to estimate such a 
large set of parameters) and the improvement that such an increase brings to the computation of 
the likelihood. Such a tradeoff can be measured by either of the BIC, DIC or AIC criteria, see the 
slides of the class. 

 
Figure 3-16 shows an example of clustering using a 3 GMM model with full covariance matrix and 
illustrates how a poor initialization can result in poor clustering.   

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

61 

 

Figure 3-16: Clustering with 3 Gaussians using full covariance matrix. Original data (top left), superposed 
Gaussians (top right), regions associated to each Gaussian using Bayes rule for determining the separation 
(bottom right); effect of a poor initialization on the clustering (bottom right). 

 

3.2.7 Metrics for evaluating clustering techniques 

 
One major issue with clustering is the fact that we do not have access to the ground truth, as we 
do not have the true class labels. Moreover, we do not even know how many classes (clusters) 
there are. One must hence rely on other criteria to evaluate how good the clustering is. We here 
present three metrics to help you assess how good your clustering is and help you to derermine 
the optimal number of clusters. These metrics are usually referred to as internal measures,  by 
opposition to external measures, which we will see with semi-supervised clustering. 
 

3.2.7.1 The RSS measure 

The residual sum of square (RSS) measure computes the distance (in norm-2) of each datapoint 
from its centroid for all clusters. 

2

1

RSS=
k

K
k

k x C

x 
= 

− 
 

It hence measures how close the datapoints are to the center of the cluster. The closer, the smaller 
the measure. This measure is identical to the objective function that is minimized in K-means. K-
means solution is hence optimal according to RSS. However, since K-means is quite sensitive to 
initialization, different initialization may lead to different clustering and the goodness of one solution 
over another solution can be assessed with RSS. DBSCAN tends also to group datapoints close 
to one another and would hence fare well on the RSS measure.  
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

62 

 

Figure 3-17: (From left to right:) Clustering of two elongated clusters with K-means, DBSCAN with 

large/medium/small , respectively. The RSS, AIC and BIC measures give different results, with optimum for 
different solutions. If one looks for the model for which all 3 metrics give a low value, then DBSCAN with 

medium  is the best solution. 

 
In Figure 2-1, we show an example of clustering on the difficult case of clustering two elongated 
clusters. We contrast the value obtained on the RSS measure for K-means, and DBSCAN with 

different values of . The RSS measures does not allow one to determine that K-means is doing 

poorly nor to determine that DBSCAN with a tiny value of  is not doing a good job. This is normal 
since the RSS measure is optimal for K-means and it values tight clusters. In fact, the RSS measure 
is optimal when one places one cluster on any single datapoint! This is illustrated below for K-

means and this is what we observed already above for small values of  in DBSCAN. 
 

 

Figure 3-18: Example of application of K-means on a dataset with as many clusters as datapoints. This yields 
an optimum on RSS with RSS=0. 

 
Although the RSS measure is optimal is the degenerated case where one places one cluster on 
everysingle datapoint, it can still be used to help one to determine the correct number of clusters K 
in K-means. In the previous example, we see that when incrementing the number of cluster and 
computing the RSS measure, we can determine correctly that the optimal number of clusters is 4, 
see below. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

63 

 
 
The same can be done also for determining the correct value of the two hyperpameters of 
DBSCAN, although the RSS measure may sometimes not show the desired plateau. 

 

3.2.7.2 AIC and BIC criteria 

 
The Aikaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) determine 
how good the model fits the dataset in a probabilistic sense. It takes a measure of how likely it is 
that the model fits well the underlying (unknown) distribution of the data. The measure is balanced 
by how many parameters are needed to get a good fit. 
 

( )

where L is the maximum likelihood of the model,  the number of free parameters and  the number of datapoints.

AIC= 2ln 2

2ln ln

B M

L B

BIC L B M

− +

= − +  

 
While AIC penalizes only for an increase in the number of parameters of the model, BIC penalizes 
takes into account the number of datapoints. The larger the number of datapoints, the larger the 
necessary increment in likelihood needed to counterbalance the penalty. In other words, for large 
dataset, BIC will tend to penalize harder models with low gains in likelihood. This avoids overfitting 
and tends to favor sparse but highly representative models. It is particularly suited to fit GMM and 
would lead to models with few Gaussians but well tunes means and covariance matrices so as to 
maximize coverage of the data with the model. This is illustrated below: 

  

Figure 3-19: Fit with a GMM with 2 (left) and 3 (right) full covariance models. BIC yields a value of 29 and 22 
respectively, hence favoring the model with more parameters but better statistical coverage of the data. 

As we see in Figure 3-17, AIC and BIC yield both very different values when comparing the 
solutions found with K-means and DBSCAN on the two elongated clusters. While each metric 



 

©  A.G.Billard 2004         –         Last Update October 2024 

64 

cannot be used to determine the correct solution, when we compare the solutions we see that the 
solution that finds a compromise across all metrics is the optimal choice, namely DBSCAN with 

medium  

3.2.7.3 F1-measure for semi-supervised clustering 

As we have seen previously, one of the main difficulties in evaluating clustering is the fact that we 
do not have the ground truth and know neither the true class labels nor the true number of classes.  
Whenever possible, one may help clustering by providing a subset of the trues class labels. This is 
known as semi-supervised clustering. In this case a fraction of the data receives a class label. The 
higher the fraction, the more information at our disposal. In real life, this fraction of labeled data can 
be very low, ranging from 10% to 1% of all data. The reason for such a low number is that it is very 
time consuming to label data and it may in some cases simply be impossible to label all possible 
data. Typically, semi-supervised clustering may be used when one wants to group products sold 
on on-line shopping websites (amazon, itunes), one will pay a few willing customers to provide their 
grouping and use their labeling to help clustering. 
 
To evaluate the clustering, we can use the F1-measure, given below: 
 

 
This metric looks at each class and measures how well each class is clustered. It then balances 
two factors, the recall and the precision.  
 
▪ Recall measures if all datapoints for which we have the class label have been clustered in the 

same cluster. It is 1 when all points of the same class are grouped together and zero when the 
cluster contains no labelled datapoints.  

▪ Since the number of points with class labels is low, recall is balanced by precision. Precision 
measures how many labeled points are contained in the cluster compared to the total number 
of datapoints. A cluster with a large number of unlabeled points compared to the number of 
datapoints correctly classified would receive a low value of precision.  
 

Finally, the F1-measure sums the F1-values of each class and balances their contribution 
according to the fraction of labelled datapoints from this class. Classes with few datapoints will 
have less impact on the total F1-measure. 
 
The F1-measure is comprised between 0 and 1. It is 1 when all datapoints are perfectly classified 
and the clusters contain only correctly classified datapoints. In semi-supervised clustering, the F1-
measure can never be 1, since only part of the data are labelled, and henceforth the precision will 
always be lower than 1. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

65 

Below is a schematic example of the result yielded by the F1-measure. The two clusters have 
perfect recall, as they both grouped correctly all labelled datapoints of class 1 and 2 within the same 
cluster. Their respective F-measure will however be penalized by having a low value for the 
precision. Precision measures the fraction of labelled points over all points within the cluster. The 
first cluster is more penalized than the second one, as only two datapoints over a total of 6 are 
labelled. 

 
 
 
The total F1-measure sums the result of the best F1- measure for each cluster and weights their 
influence by the fraction of points labelled over all points with labels. In other words, clusters that 
would have a perfect F1-measure but include only a low number of labelled point would be 
penalized for this. In the schematic example above, this would yield the following F1-measure: 

 
The cluster one is penalized further by the fact that it represents only 2 out of the 6 labelled 
datapoints. The total F1-measure is 0.7. 
  

3.3 Classification 
 

 

3.3.1 Bayes Classifier 

 
The simplest means to perform binary classification in probabilistic models is to use the so-called 

Bayes Classifier. Assume a binary labeling  1, 1iy  − +  of a set of 1....i M= datapoints
ix . 

Assume that you have built twoprobabilistic models ( ) ( )|  and |p y x p y x+ −  that predict the 

probability that the data point x had associated label +1 and -1 respectively.A Bayes classifier will 

decide on the correct labeling simply by comparing the relative probabilities of each model, i.e.: 
 

 
( ) ( )If |  | ,  then y=+1.

Otherwise y=-1.

p y x p y x+ −
 (3.22) 

 
 
Take for example a two classification problem where you have modeled each class with a single 
Gauss distribution. The likelihood of each class is given by: 



 

©  A.G.Billard 2004         –         Last Update October 2024 

66 

( ) ( )
( )

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

1
1 1 1

1

1
2 2 2

1

1/2/2 1

2 2

1/2/2 2

1
| 1 ~ ,

2

1
| 1 ~ ,

2

T

T

x x

N

x x

N

p x y N e

p x y N e

 

 







−

−

− −  −

− −  −

= +  =


= −  =


 

 
To determine to which of the two classes one point belongs, one applies the Bayes’ rule to 

compute for each class label i, ( )|p y i x= , 

( )
( ) ( )

( )

 |
| ,   1.

p x y i p y i
p y i x i

p x

= =
= = =   

This numerator of this equation simplifies if one assumes that the likelihood of observing class +1 
is equal to the likelihood of observing class label -1. To determine if a point belongs to either class 
+ 1 or class -1 is equivalent to requesting that the ratio between the two likelihood be greated than 
1, i.e.: 

( )

( )

| 1
1

| 1

p x y

p x y

=


= −
 

Given that the distribution follow two Gauss distributions, we can take the log and we obtain an 
explicitly rule: 
 

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 1 1 2 2 2 2

| 1 | 1
1 ln 0

| 1 | 1

 log log
T T

p x y p x y

p x y p x y

x x x x   
− −

 = =
    = − = − 

 −  − +   −  − + 

 

 

  

Figure 3-20: Example of binary classification using Bayes rule on two classes modelled by (left) isotropic 
Gaussian distributions and (right) full covariance Gaussian distributions. 

 
Note that Bayes classification can easily be extended to multiclass classification. Assume that you 

wish to classify a set of datapoints  
1

M
i

i
X x

=
=  into K classes

1,...., KC C . Each label 
iy associated 

to each datapoint ,  1.... ,ix i M= can then take any value
1,...., KC C . One can then compute the 

posterior probability of each class, using: 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

67 

 ( )
( ) ( )

( ) ( )
1

|
|

|

i i

i

K
k k

k

p y C p x y C
p y C x

p y C p x y C
=

= =
= =

= =
 (3.23) 

 
 
For a multi-class classification problem with K Gaussian functions, one for each class, to 
determine the class label the discriminant rule becomes: 

( ) ( ) ( ) 1

( ) arg min log
T

k k k k k

k

C x x x 
−

= −  − +   

 
 
 
While powerful, the Bayes classifier remains a very simplistic model and is bound to make 
erroneous predictions far from the data, as it does not take into account the absolute value of the 
likelihood associated with each mode (only their relative importance). If both classifiers are 
predicting the labelof x with a very low likelihood (which happens when the data point x is very far 

from the training points or when the two classes overlap heavily in that region) then, deciding on 

one class label over the other is usually no better than random. Besides, when  and p p+ − are two 

arbitrary densities, comparing these may be dangerous if one did not make sure that the quantities 
are comparable. Since a pdf is a positive, but unbounded (above), function, its likelihood may grow 
arbitrarily. It usually grows with the numer of parameters. A good precaution is then to make sure 
that the two classifiers have the same number of parameters and are trained on the same number 
of datapoints. The latter means that one must have at its disposal as many examples of the positive 
class as that of the negative class. If this can not be ensured, then one may apply some 
normalization term on the likelihood of each classifier or one may use a threshold on the likelihood 
of both models to determine when inference is warranted. Despite these caveats, Bayes classifiers 
remain quite popular, in part because of their extreme simplicity, but also because they yield very 
good performance in practice.  
 
We see next how this can be used when using Gaussian Mixture Models.  

 

3.4 Bayes classification with Gaussian Mixture Models 
 

The Gaussian Mixture Model, introduced in Section 3.2.6, can be used in conjunction with the 
Bayes classifier to perform binary classification. For two knows classes of datapoints, one can train 
two separate GMM-s, one for each class of datapoints and use the Bayes classifier to determine 

the labeling of any given datapoint. In other word, each GMM yields a density  and p p+ − which can 

then be used to determine the label of a new training point using (3.22). 
 
 
To ensure that the two models are comparable, one should train two GMM with same number of 
Gaussians, using the same modeling (with full, diagonal or isotropic covariance matrix in each 
case), and using similar number of training points for each GMM. Figure 3-21 shows one example 
of such classification using two GMM-s with 8 Gaussians each.  

 
 
 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

68 

 
 
 

 

Figure 3-21: Bayes classification using a two GMMs with 8 Gaussians each and full covariance matrix. From 
left to right top to bottom: i) original datapoint (in dark, datapoints belonging to class +1, empty circles denote 
datapoints belonging to class -1), ii) result of the classification; all datapoints are correctly classified in their 
respective class; iii) the 16 Gaussians superimposed on the datapoints; iv) the region associated to each class 
using Bayes classification.  

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

69 

 

3.5 Performance Measures for Clasification 
 

3.5.1 ROC 

Graphical representations such as the Receiver Operating Characteristic, so called ROC curve 
provide an interesting way to quickly compare algorithms independently of the choice of 
parameters. 
 
The ROC curve is used in binary classification problems. It balances the number of true positives 
(TP), i.e. number of instances when the algorithm classified correctly a datapoint of the 1st class to 
the 1st class again the numbe of false positives (FP), i.e. number of instances when the algorithm 
classified incorrectly datapoints of the 2nd class to the 1st class.  
 
The ROC curve plots the fraction of true positives (TP) and false positives (FP) over the total 
number of samples of the 1st class in the dataset. Each point on the curve corresponds to a 
different value of the classifier’s parameter (usually a threshold; e.g. a threshold on Bayes’ 
classification). A typical ROC curve is drawn below. 
 

 
 

As you may have noticed, the ROC curve tends to measure only classification performance with 
respect to one class, the 1st class. This is due to the fact that one often cares about achieving 
excellent classification on one class against the rest (the non-class), e.g. recognizing human faces 
versus any other image which is not a human face. 

 
If, however, one cares about computing performance on both classes, one will also compute the 
number of false negatives (FN), namely the number of instances when the algorithm classified a 
datapoint of the 2nd class to the 1st class. 
 
Below you can find a schematic illustrating the notion of FP, TP and FN in a binary classification 
example. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

70 

 
 

3.6 Further Readings 
 
There exist numerous methods to cluster or classify data. This chapter dealt only with some 
of the major algorithms for clustering and classification from which most of state-of-the-art 
methods are derived. In this manuscript, we will also see two other techniques for 
classification as part of the Artificial Neural Networks chapter. These are the perceptron 
and the backpropagation algorithm.  
 
In part-II of this manuscript, we will also consider other techniques for classification, such 
as Support Vector Machine and Support Vector Clustering that exploit non-linear 
transformation of the data through kernel projection.  
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

71 

4 Regression Techniques 
 

There is a growing interest in machine learning to design powerful algorithms for performing non-
linear regression. We will here consider a few of these. The principle behind the technique we will 
present here is the same as the one used in most other variants we find in the literature and hence 
this offers a good background for an interested reader. 

 

Consider a multi-dimensional (zero-mean) variable
Nx and a one-dimensional variable y

, regression techniques aim at approximating a relationship f between y and x by building a model 
of the form: 

 

 ( )y f x=  (4.1) 

 

4.1 Linear Regression 
 

The most classical technique that the reader will probably be familiar with is the linear regressive 

model, whereby one assumes that f is a linear function parametrized by
Nw , that is: 

 

 ( ), Ty f x w x w= =  (4.2) 

 
For a given instance of the pair x and y  one can solve explicitly for w . Consider now the case 

where we are provided with a set of M observed instances  
1

i
M

i
X x

=
= and  

1

i
M

i
Y y

=
=  of the 

variables x  and y such that the observation of y has been corrupted by some noise which may 

or not be a function of x, i.e. ( )x : 

 ( )Ty x w x= +  (4.3) 

 
Classical means to estimate the parameters w is through mean-square, which we review next. 

 
 

4.2 Gaussian Mixture Regression 
Adapted from Hsi Guang Sung, Gaussian Mixture Regression and Classification, PhD thesis, Rice University, 
2004. 

 

In Section 3.2.6, we introduced Gaussian Mixture Models (GMM). Assume
Nz  a multi-

dimensional variable GMM builds a model of ( ) ( )1,..., Np z p z z= of the joint distribution of x  

using a mixture of  k 1,.., K= Gaussians ( ) ( )| , ,k k
k

k kp z N   =    with mean k N   

and covariance matrix
k N N  , i.e. 

 

 ( ) ( ) ( ) ( ) ( )( )1

1 1 2

1
| , exp

2

k
k

K K
T

k k k k

k k N
k k k

p z p z z z    



−

= =

=   =  −  −



   (4.4) 

 

The mixing coefficients k satisfy
1

1
K

k

k


=

= . 



 

©  A.G.Billard 2004         –         Last Update October 2024 

72 

 
 
Gaussian Mixture Regression (GMR) exploits the joint density to construct its estimate using the 
expectation on the conditional of the variable onto which we wish to make a prediction. If for 

instance, we wish to predict 1z from knowing all other entries 2 ,... Nz z , then we can compute: 

 

 ( )  ( )1 1 2 1 1 2 1
ˆ | ,..., | ,...,N Nz E p z z z z p z z z dz= =    (4.5) 

 
 
 
When applying Bayes’ theorem, we get: 

 

 
( )

( )

1 1 2 1

1

1 2 1

, ,...,

, ,...,

N

N

z p z z z dz
z

p z z z dz

 
=






 (4.6) 

 
 
 
In contrast to most regression techniques, GMR also allows to make prediction on multi-

dimensional output in one swipe. So, if we set  1 2 3, ,y z z z= and  4 ,..., Nx z z= , then we can 

compute: 
 

 ( )  ( ) 1 2 3 4 5
ˆ | , , | , ,..., Ny E p y x E p z z z z z z= =  (4.7) 

 
 
 
 

4.2.1 One Gaussian Case 

 

Let us first consider first the case where the joint density ( ) ( ),p z p y x= follows a single 

Gaussian distribution (and not a mixture). Using the fact that, if the joint distribution of two 
variables is Gaussian then each conditional distribution is also Gaussian, see Figure 7-3 for an 

illustration,we can compute the conditional density ( )|p y x which is given by: 

 

 ( ) ( ) ( ) ( )( )1 1
| ,y YX XX x YX YX XX XYp y x N x 

− −
= +   −  −    (4.8) 

 

where Y and X are the means of the variable y and x respectively and have thus the 

dimensions of y and x , which we shall call ,Y XN N . XX the covariance matrix of the input 

variable x has dimension 
X XN N and the cross-covariances matrices ,YX XY  have 

dimension ,Y X X YN N N N  respectively. 

 
In predictive regression, we are interested in computing the expectation and uncertainty of the 
predictive regressive model at a given query point. When the conditional density is Gaussian, this 

is easy to obtain and we thus have for a query point
*x , the estimated output: 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

73 

 ( )  ( ) ( )
1* *ˆ | Y YX XX Xy E p y x x 

−
= = +   −  (4.9) 

 
 
with associated uncertainty: 

 ( )( ) ( )
1

var | YX YX XX XYp y x
−

=  −    (4.10) 

 
 

4.2.2 Multi-Gaussian Case 

 

It is easy to extend the previous result to a mixture of Gaussians, where ( ),p x y is given by 

Equation(4.4). Recall that each joint density ( ), ,  1,..kp y x k K=  can be decomposed as

( ) ( ) ( ), |k k kp y x p y x p x=   (Bayes’ Theorem), then the joint density of the complete mixture 

is given by: 

 ( ) ( )( ) ( )
1

, | , , | , XX

K
k k k k

k k k X

k

p y x p y x x p x  
=

=      (4.11) 

 

( ) ( ) ( ) ( )
1 1

with  and 
Y YX XX X YX YX XX XY

k k k k k k k k k kx x  
− −

= +   −  =  −    . 

 
 
The marginal density of x  is given by: 

 ( ) ( )
1

| , | ,
K

k k k k

k k

k

p x p x 
=

 =   (4.12) 

 
Replacing (4.12) in (4.11), we can express the conditional probability of y given x : 

 ( ) ( ) ( )
1

| |
K

k k

k

p y x w x p y x
=

=   (4.13) 

 

where 
( )

( )
1

| ,

| ,

k k

k k

k K
j j

j j

j

p x
w

p x

 

 
=


=


. 

Equation (4.13) forms the core of the GMR model. One can then compute explicitly the 
expectation and variance on the above conditional, similarly to what we did for the probabilistic 
regression.  

 ( )  ( ) ( ) ( ) ( ) ( )( )
1

1 1

|
Y YX XX X

K K
k k k k k

k k

k k

E p y x w x x w x x  
−

= =

=  =  +   −   (4.14) 

 
The expectation is thus a non-linear combination of the expectation of each local component. In 
effect, the regression signal from GMR is the result of a non-linear weighting of local linear 
regressions.  



 

©  A.G.Billard 2004         –         Last Update October 2024 

74 

 

( )  ( ) ( )( ) ( )( ) ( ) ( )( )

( )

2 2

1 1

1

var |

yy yx xx xy

K K
k k k

k k

k k

k k k k k

p y x w x x w x x 
= =

−

=  +  − 

 =  −   

 
 (4.15) 

 
The variance of GMR is no longer a simple function increasing with the amplitude of the input x  

(as in probabilistic regression). Rather it is modulated by the variance of each component locally 
and hence carries across a notion of local variance. 
 
A schematic of these variables is shown in Figure 4-1. 
 
 

 

Figure 4-1: Two-dimensional illustration of a) left: a Gaussian Mixture Model with 3 Gaussians (in violet) 
superposed to the original set of pairs (x,y) of datapoints (in grey), b) the Gaussian Mixture Regression model 

resulting from the GMM. The dark line is the regression signal, i.e. ( ) |E p Y X . The blue envelope around 

it is one standard devitation computed from ( ) var |p Y X . 

 

 
Figure 4-2: Gaussian Mixture Model (top row) and Regression (bottom row) with different amounts 
of Gaussians in the mixture. The center line shows the regression mean, while the two thinner 
lines display respectively one and two sigmas. The regression function becomes more detailed 
when the data is modeled by more Gaussians, and represents better the modulation of its 
variance.[DEMOS\REGRESSION\GMR-THINNING.ML] 



 

©  A.G.Billard 2004         –         Last Update October 2024 

75 

5 Kernel Methods 
 

These lecture notes have sofar covered linear methods for performing a variety of computation, 
ranging from dimensionality reduction, clustering and classification to regression. The term linear 
refers to the assumptions that all of these transformations could be expressed as linear 

transformation of the form y Ax= (where  and y x are given and A is the unknown transformation).   

 
Kernel methods relax the assumption of a linear transformation, so as to perform non-linear 
regression, classification, etc. Kernel methods proceed by first projecting the data through a non-
linear transformation into a feature space and then perform the same type of computation (e.g. 
classification or regression), as in the linear case, in the feature space. This principle is illustrated 
in Figure 5-1. 

 

 
Figure 5-1: Illustration of the principle of non-linear classification through Support Vector Machine. 

The data are first projected from input space to a feature space via a non-linear map  . Linear 

separation is then performed in the feature space.  Figure from "Learning with Kernels" by B. 
Scholkopf and A. Smola, MIT Press 2002. 

 
In these lecture notes, we cover a subset of existing Kernel methods. We focus on kernel methods 
that extend the algorithms we presented previously for dimensionality reduction (from PCA, CCA, 
ICA to kernel PCA, kernel ICA, kernel CCA), for clustering (from K-Means to kernel K-means), for 
classification (from linear classifier to support vector machine) and for regression (from probabilistic 
regression to Gaussian Process Regression). 

 
 

5.1 The kernel trick 
 

All kernel methods we will see here are based on the so-called kernel trick. The kernel trick stems 
from a variety of fundamental mathematical principles which we will skip here, focusing solely on 
explaining its basic principle. 
 

If  
1

M
i

i
X x

=
= is the set of our M observations, we can construct a projection of X onto the feature 

space H through a non-linear mapping :  

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

76 

 
( )

:

.

X H

x x





→

→
 (5.1) 

 

Note that if the dimension of X is N , then the dimension of the feature space may be greater than 

N . 

 

Finding the appropriate non-linear transformation  is difficult in practice. The kernel trick relates 

to the observation that most methods rely on computing an inner product ,i jx x across pairs of 

observations ,i jx x X  (e.g., recall that in order to perform PCA, we needed to compute the 

covariance matrix on X , which is given by the dot product on all the data points, i.e.
TXX ; similarly 

when performing linear regression, we had to multiply by the inverse of the covariance on X). 
 
Hence, determining an expression for this inner product in feature space may save us from having 

to compute explicitly the mapping . This inner product in feature space is expressed through the 

kernel function (or simply the kernel) ( ).,.k .  

 
All the kernel methods we will see in these lecture notes assume that the feature space H into 

which the data are sent through the non-linear function  is a Reproducing Kernel Hilbert Space 

(RKHS).H is hence a space ( ) ( ) 1 2. , . ,...h hH := of functions from 
N

 to . In this space, 

( ) ( )., ,  .,  ,i j i jx x x x X    defines a set of functions indexed by x . The “reproducing 

property" of the kernel ensures that taking the inner product between a pair of functions in H yields 

a new function in H . Hence setting ( ) ( )., : .,k x x= yields the following kernel: 

 

 ( ) ( ) ( ) ( ) ( ), ., , ., , , ,i j i j i jk x x x x z x z x dz   


−

= =   (5.2) 

 
The kernel in (5.2) is the dot product in feature space. Most techniques covered in these lecture 
notes will be based on this kernel. 
 

Note that, in the literature, people tend to omit the open parameter on ( )., ix and write simply

( )ix . We will follow this notation in the remainder of this document.  

  
For proper use in the algorithms we will see next, the kernel must satisfy a number of properties 
that follow the Mercer’s theorem. Among these, we will retain that kis a symmetric continuous 
positive function that maps: 
 

 
( ) ( ) ( )

:

, ,i j i j

k X X

k x x x x 

 →

→
 (5.3) 

 
The kernel kprovides a metric of similarity across datapoints. Using k may allow extracting features 
common to all training datapoints. These features are some non-linear correlations not visible in 
the original space.  
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

77 

 
Classical kernels one finds in the literature are: 

• Homogeneous Polynomial Kernels: ( ), ' , ' ,    ;
p

k x x x x p=   

• Inhomogeneous Polynomial Kernels: ( ) ( ), ' , ' ,    ,  0;
p

k x x x x c p c= +    

• Hyperbolic Tangent Kernel (similar to the sigmoid function): 

( ) ( ), ' tanh , ' ,   ;k x x x x = +   

• Gaussian Kernel (translation-invariant): ( )
2

'

2, ' ,   .

x x

k x x e  

−
−

=   

 
The most popular kernel is the Gaussian kernel. 

 

5.1.1 Stationary and non-stationary kernels 

A kernel is stationary if the kernel depends only on the distance between two points. The Gaussian 
kernel is stationary. The other three kernels listed above are non-stationary as they depend on the 
coordinatre of the points. 
 

 
 

5.2 Which kernel, when? 
 

A recurrent question we often hear in class is “how does one choose the kernel”. A number of 
recent works have addressed this problem by offering techniques to learn the kernel. This often 
amounts to building esimators that rely on mixture of kernels. One then learns how to combine 
these kernels to find the optimal mixture. There is however unfortunately no good recipe to 
determine which kernel to use when. One may either try different kernel in an iterative manner and 
look at which provides the best result for a given technique. For instance, if you perform 
classification, you may want to compare the performance obtained on both training and testing sets 
after crossvalidation when doing so with either Gaussian kernel or Polynomial kernel. You may 
then pick the kernel that yields to best performance. 

 
While choosing the kernel is already an issue, once a kernel is chosen, one is left with the problem 
of chosing the hyperparameter of the kernel. These are, for instance, the variance  in the 

Gaussian kernel or the order of the polynome p in the polynomial kernels. There again, there is no 

good recipe. When using a Gaussian kernel, a number of approaches, known under the term of 
kernel polarization, have been proposed whereby one learns the optimal covariance parameters. 
Most of these approaches however are iterative by nature and rely on a discrete sampling of values 
taken by the parameters, using some heuristics or boosting techniques to optimize the search 
through these parameter values. 

 
 

5.3 Kernel PCA 
 
We start our review of kernel methods with kernel PCA, a non-linear extension to Principal 
Component Analysis (PCA).  
 
To recall, PCA is a powerful technique for extracting structure from high-dimensional data. In 
Section 2.2.1, of these lecture notes, we had reviewed two ways of computing PCA. We can either 
do it through an analytical decomposition into eigenvalues and eigenvectors of the data space, or 
through an iterative decomposition using Hebbian Learning in multiple input-output networks. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

78 

A key assumption of PCA was that the transformation applied on the data was linear. Kernel PCA 
is a generalization of the standard PCA, in that it considers any linear or non-linear transformation 
of the data.  
 

 

Figure 5-2: (RIGHT:) Example of a two-class dataset (red and white classes) in original space. (LEFT☺ Data 
becomes linearly separable when using a rbf kernel and projecting onto first 2 PC-s of kernel PCA. 

 

We first start by reintroducing the PCA notation and then show how we can go from linear PCA to 
non-linear PCA. 
 
 
Linear PCA: 
 

1

=0

Assume that the dataset is composed of a set of vectors x , 1... . Assume further that the

dataset is zero mean, i.e. .

PCA finds an orthonormal basis such that the projections along each a

M
i

i

x

i N i M

=

 =



xis maximize the variance 

of the data. To do so, PCA proceeds by diagonalizing the covariance matrix of the dataset C=XX .T

 

C is positive definite and can thus be diagonalized with non-negative eigenvalues. 

The principal components are then all the vectors , 1..., ,  solution of:iv i N=
 

 

 C i i

iv v=  (5.4) 

 

where  is a scalar and corresponds to the eigenvalue associated to the eigenvector .iv
i

  

 
Non-Linear Case: 
 
Observe first that one can rewrite the eigenvalue decomposition problem of linear PCA in terms of 

dot product across pairs of the training datapoints. Indeed, each principal component 
iv can be 

expressed as a linear combination of the datapoints. Using ( )
1

1
C=

M
T

j j

j

x x
M =

 and replacing in 

(5.4), we obtain:  
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

79 

 ( )
1

1
=      

M
T

i j j i i

i

j

Cv x x v v
M


=

=  (5.5) 

 
which allows us to express each eigenvector as follows: 
 

 

( )

( )( )
1

1

1
  

1
    

M
T

i j j i

ji

M
T

j i j

ji

v x x v
M

x v x
M





=

=

=

=




 (5.6) 

 
 

( )( )Introducing a set of scalars =  for each data point  (these correspond to the value of the 

projection of  onto the eigenvector vector . 

Then each eigenvector  with non-zero eigenvalue 

j

T
i j i j

j i

i

x v x

x v

v




1

 lies in the space spanned 

by the input vectors ,...., :

i

Mx x

 

 
1

1
 .j

M
i i j

i
j

v x
M


 =

=   (5.7) 

 
 

Assuming now that the data are projected into a feature space through a non-linear map  and 

that these are centered in feature space, i.e. 
 

 ( )
1

0,
M

i

i

x
=

=  (5.8) 

 
the Correlation matrix in the feature space is then given by: 
 

 
1 TC FF
M

 =  (5.9) 

 

where each 1,...,i M= columns of F are composed of the projections ( )ix . 

 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

80 

As in the original space, in feature space, the correlation matrix C  can be diagonalized and we 

have now to find the eigenvalues 0,  1... ,i i M  =  satisfying: 

 
 

 

( ) ( ), , ,  , 1,...

i i

i

j i j i

i

C v v

x C v x v i j M







  

=

 =  =
 (5.10) 

 
 

( ) ( )

1

1

Each eigenvector ,...,  can be expressed as a linear combination of  the images of the 

datapoints.

Rewriting PCA in terms of dot products:

1
Using   =            with     

we

M

M
T

i j j i i i

i

j

v v

C v x x v C v v
M

   
=

=

( ) ( )
1

1
 obtain,   

M
T

i j j i

ji
i
j

v x x v
M



 
 =

= 

 

 

All solutions v with 0   lie in the span of the 1(x ), , (x )M  and we can thus write: 

 

 ( )
1

1
.j

M
i i j

ji

v x
M

 
 =

=   (5.11) 

 
 
Developping the left hand-side 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

1

2
1

2
1 1

1
, ,

1
,

1
,

1
, ,

j

M
j i j i j

ji

M
i j l

l

li

M
i j T l

l

li

M M
i j j j l

l

l ji

x C v x C x
M

x C x
M

x FF x
M

x x x x
M

 



   


  


  


    


=

=

=

= =

=

=

=

=







 

 

 
 
Replacing the latter expression in the definition of the correlation matrix, one gets: 
 

 ( ) ( ) ( ) ( ) ( ) ( )2
1 1 1

1 1
, ,  ,

M M M
j k i k l i j l

l l

k l li

x x x x x x
M M

       
 = = =

=    (5.12) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

81 

 
 

Using the kernel trick, one can define the Gram Matrix K , whose elements are composed of the 

dot product between each pair of datapoints projected in feature space, i.e. ( ) ( ), .i j

ijK x x =  
Beware that K is M M , where M is the number of data points.  
 
We can finally rewrite the expression given in (5.12) as an eigenvalue problem of the form: 
 
 

 

2 ,       1...i i

i

i i

i

K M K i M

K M

  

 

= =

=
 (5.13) 

 

This is the dual eigenvalue problem of finding the eigenvectors 
iv  of C. 

 
1

1

The solutions to the dual eigenvalue problem are given by all the eigenvectors ,...,  with 

non-zero eigenvalues ,..., .

Asking that the eigenvectors  of  be normalized,  i.e. , 1    1,.

M

M

i iv C v v i

 

 

=  =

1

..,

is equivalent to asking that the dual eigenvectors ,...,  be such that 1/ .M i

i

M

   =

  

One can now compute the projections of a given query point x onto the eigenvectors  using: iv  

 ( ) ( ) ( ) ( )
1 1

, , ,
M M

i i j i j

j j

j j

v x x x k x x    
= =

= =   (5.14) 

 
 
Note that the solution of kernel PCA yields M eigenvectors, whereas the solution to linear PCA 
yielded N eigenvectors, where N  is the dimensionality of the dataset and M is the number of 

datapoints. Usually, M is much larger than N , hence kernel PCA corresponds to a lifting into a 

higher-dimensional space, whereas linear PCA was a projection into a space of lower dimension 
than the original space. By lifting the data, kernel PCA aims at extracting features that are common 
to subsets of datapoints. In some way, this is close to a clustering technique.  Datapoints that bear 
some similarity will be close to one another along some particular projection.If the data points have 
really no regularity, then they will be distributed homogeneously along all projections. 
 
Figure 5-3 illustrates the principle of PCA on a dataset that forms approximatively three clusters. 
By looking at the regions with equal projection value on the first or second eigenvector, we see that 
some subgroups of datapoints tend to group in the same region.  When the kernel width is large, 
the two clusters on the right-handside of the figure are encapsulated onto a single contour line in 
the first projection. The datapoints of the cluster on the far left are closely grouped together. As a 
result, the contour lines form ellipsoids that match the dispersion of the data. When the datapoints 
are more loosely grouped, as it is the case for the two groups at the center and far right, one 
observes some non-linear deformations of the contour lines that reflect the deflections due to the 
absence of the datapoints. Using a smaller kernel width allows for encapsulating finer features and 
allows us to separate the groups. A very small kernel width will however lead to one datapoint per 
projection.  
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

82 

-

 

Figure 5-3: Example of clustering done with kernel PCA with a Gaussian Kernel and kernel width 0.1 = (top) 

and 0.04 = (bottom). Reconstruction in the original dataspace of the projections onto the first two 

eigenvectors. The contour lines represent regions with equal projection value.  

  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5
Eigenvector=1; Eigenvalue=0.246

X1

X
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5
Eigenvector=2; Eigenvalue=0.232

X1

X
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5
Eigenvector=1; Eigenvalue=0.160

X1

X
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5
Eigenvector=2; Eigenvalue=0.149

X1

X
2



 

©  A.G.Billard 2004         –         Last Update October 2024 

83 

5.4 Kernel CCA 
 
The linear version of CCA was treated in Section 2.3. Here we consider its extension to non-linear 
projections to find each pair of eigenvectors. We start with a brief recall of CCA.  
 

Consider a pair of zero-mean multivariate datasets    
1 1
, yi x i

MM NN

i i
X x Y y

= =
=  =  of 

which we measure a sample of M instances ( ) 
1

,i i

M

i
x y

=
.  CCA consists in determining a set of 

projection vectors  and  x yw w for X and Y such that the correlation  between the projections 

   and   T T

x x y yz w X z w Y= =
 (the canonical variates) is maximized: 

 

 ( )
 T T

x y x y

T T T, ,
x y x y

,

w w w w
max max  corr z ,z max  max  

w w w wx y x y

T

xy

x y Tw w w wx y
xx x yy y

w w

E XY C

X Y C w C w
 = == =

 (5.15) 
 

Where , ,xy xx xyC C C are respectively the inter-set and within sets covariance matrices. 

    is , =E : ,   =E : T T

xy x y xx x x yy y yC N N C XX N N C YY N N    

 
 
Non-linear Case: 
 
 
Kernel CCA extends this notion to non-linear projections. As for kernel PCA, let us assume that 

both sets of data have been projected into a feature space through a non-linear map ,  x y  , such 

that we have now the two sets ( )  ( ) 
1 1
  and   i i

M M

x y
i i

x y 
= =

. Let us further assume that the data 

are centered in feature space, i.e. ( ) ( )
1 1

0 and 0i i

M M

x y

i i

x y 
= =

= =   (if the data are not centered 

in feature space, one can find a Gram matrix that ensures that these are centered, as done for 
kernel PCA, see exercise session). Kernel canonical correlation analysis aims at maximizing the 
correlation between the data in their corresponding projection space. Similarly to kernel PCA, we 

can construct the two kernel matrices ,  T T

x x x y y yK F F K F F= = , where  and x yF F are two 

M M matrices, whose columns are composed of the projections ( )  ( ) 
1 1
 and  i i

M M

x y
i i

x y 
= =

, respectively.   
 

The weights ,  x yw w can be expressed as a linear combination of the training examples in feature 

space, i.e.  and x x x y y yw F w F = = . Substituting into the equation for linear CCA yields the 

following optimization: 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

84 

T

x y

,

T T

x y

In kernel CCA, we solve for:   

                                                      max       

                                     u.c.    1

Replacin

x y

T T

x x y y

w w

T T T T

x x x x x y y y y y

F F F F

F F F F F F F F

 

   = =

( ) ( )
1/2 1/2

2 2, ,

g ,    ,  we obtain:

                                                 max  max
x y x y

T T

x x x y y y

x x y y

x x x y y y

F F K F F K

K K

K K   

 


   

= =

=

  

 
 (5.16) 

 
Then, as done for linear CCA, see Section 2.3, one can express this optimization as a generalized 
eigenvalue problem of the form: 
 

 

2

2

   0               0

        0  0       

x y x x x

y yy x y

K K K

K K K

 


 

     
=         

      

 (5.17) 

 
 
A first difficulty that arises when solving the above problem is the fact that its solution is usually 

always 1 = , irrespective of the kernel. This is due to the fact that the intersection between the 

spaces spanned by the columns of  and x yK K  is usually non-zero2. In this case, there exist two 

vectors  and x y  such that x x y yK K = , that are solution of (5.17). Finding a solution to (5.17) 

will hence yield different projections depending on the kernel, but all of these will have maximal 
correlation. This hence cannot serve as a means to determine which non-linear transformation K 
is most appropriate.  
 
A second difficulty when solving (5.17) is that it requires inverting the Gram matrices. These may 
not always be invertible, especially as these are not full rank (because of the constraint of zero 
mean in feature space). 
 
To counter this effect, one may use a regularization parameter (also called ridge parameter)   on 

the norm of the transformation yielded by ,x yK K  and end up with the following regularized 

problem: 

 

   

   0         K
x
K

y

 K
y
K

x
       0

æ

è
ç

ö

ø
÷

A

a
x

a
y

æ

è
ç

ö

ø
÷

a

= r

K
x
+

Mk

2
I  

æ

èç
ö

ø÷

2

               0

 0                        K
y
+

Mk

2
I  

æ

èç
ö

ø÷

2

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

B

a
x

a
y

æ

è
ç

ö

ø
÷

Û Aa = rBa

 (5.18) 

 
2 

xK and 
yK are centered and are hence at most of dimensions 1M − . The dimension of the 

intersection between the spaces spanned by the column vectors of these matrices is 

( ) ( )( ) ( )( ) ( )( )dim , dim dimx y x yC K C K C K C K M + − . If M>2, i.e. if we have more than two 

datapoints, then the space spanned by the two canonical basis intersect. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

85 

 
Thanks to the regularization term, when M is very large, the right-handside matrix becomes PSD 
(which is usually the case as the number of datapoints M>>N, the dimension of the dataset; if this 
is not the case, then one makes  very large). In this case, the matrix B can be decomposed into

TB C C= . Replacing, this yields a classical eigenvalue problem of the form: 

  
CT( )

-1

AC-1b = rb ,  with b = Ca. 

 
Note that the solution to this eigenvalue problem neither shows the geometry of the kernel 
canonical vectors nor gives an optimal correlation of the variates. On the other hand, the additional 
ridge parameter induces a beneficial control of over-fitting and enhances the numerical stability of 
the solutions. (Bach & Jordan, 2002) report that, in many experiments, the solution of this 
regularized problem show better generalization abilities than the kernel canonical vectors, in the 
sense of giving higher correlated scores for new objects.  
 
 
Generalizing to multiple multi-dimensional datasets: 
 
As in linear CCA, one can extend this to comparison across several multidimensional datasets. If 

1,...., LX X are the L datasets, each of which are composed of M observations. Each dataset may 

however have different dimensions 1 ,.... LN N  and hence :i iX N M . As in the two-dimensional 

case, one can construct a set of L Gram matrices 1,....., LK K and the solution to this kernel CCA 

problem is given by solving: 

 

2

2

1

1 2 1 1

2 1 2 2

1 2

+ I                  0
   0              .......    2

        0         ........  

    .  . .......

    .  .

          .......   

L

L

L L L L L

M
K

K K K K

K K K K

K K K K K K











 
 

    
  
  
   =
  
  
  
  

1

2

2

2

.........................................  . .

 .

 0                       + I  
2

L

L

M
K







 
 

  
  
  
  
  
  
    

  
  

 (5.19) 

  
When using a Gaussian kernel, one can see that as the kernel width increases, the correlation will 
also increase as an effect of the overlap created across the mapping between the two Gaussian 
functions.  
 
 
Further Readings: 
 
For a good overview of kernel CCA, see M. Kuss and T, Graepel ,The Geometry Of Kernel 

Canonical Correlation Analysis Tech. Report  



 

©  A.G.Billard 2004         –         Last Update October 2024 

86 

5.5 Kernel ICA 
 

Adapted from Kernel Independent Component Analysis, F. Bach and M.I. Jordan, Journal of Machine Learning 
Research 3 (2002) 1-48 

 
In Section 2.4, we covered the linear version of Independent Component Analysis. We first here 
revisit ICA, presenting an alternative approach based on minimization of mutual information. We 
then extend this approach to non-linear ICA, also known as kernel ICA.  
 
 
Linear ICA 
 

ICA assumes that the set of M observations  
1...

1,...

i M
i

j
j N

X x
=

=
= was generated by a set of statistically 

independent sources  1,.... ,  with qS s s q N=   through a linear transformation A : 

 

   

A : q ® N

       s ®  x = As

where A: is an unknown N ´ q mixing matrix.

 

 
 
ICA consists then in estimating both A and S knowing only X . 

 
ICA bears important similarity with Probabilistic PCA, see Section 2.2.5. The sources S are latent 

random variables, i.e. each source 1,..., qs s was generated by an independent random process and 

hence as an associated distribution
is

p . ICA differs from PPCA in that it requires that the sources 

be statistically independent. PCA in contrast requires solely that the projections be uncorrelated. 
Statistical independence is a stronger constraint than un-correlatedness, see definitions in 
Annexes, Sections 7.2.8 and 7.2.9. 
 
To solve for ICA would require doing a multi-dimensional density estimation to estimate each of the 

densities
1
,.... .

qs sp p This is impractical and hence ICA is usually solved by approximation 

techniques. In Section 2.4, we saw one method to solve ICA using a measure of non-gaussianity. 
The intuition behind this approach was that the distribution of the mixture of independent sources 
becomes closer to a Gaussian distribution than the distribution of each source independently. This, 
of course, assumed that the distribution of each source is non-gaussian. This idea is illustrated in 
Figure 5-4. A measure of non-gaussianity was proposed based on the Negentropy 

( ) ( ) ( )GaussJ y H y H y= − . The negentropy measures by how much the entropy ( )H y  of the 

current estimate ~y s  of the distribution of the sources differs from the entropy ( )GaussH y of a 

Gaussian distribution with the same mean and covariance as that of the distribution of y . In 

information theory, the entropy is a measure of the uncertainty attached to the information 
contained in the observation of a given variable. The more entropy, the more uncertain the event 
is, see Section Error! Reference source not found.. The notion of entropy can be extended to 
joint and conditional distributions. When observing two variables, the joint entropy is a measure of 
the information conveyed by the observation of one variable onto the other variable. It is hence 
tightly linked to the notion of information. Unsurprisingly, ICA can hence also be formulated in terms 
of mutual information, as we will see next. 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

87 

 

 

Figure 5-4: TOP: Marginal (left) and joint (right) distributions of two statistically independent sources, a 
Gaussian distribution and a uniform distribution. BOTTOM: The marginal distributions after whitening are 

closer to that of a Gaussian distribution. 

 
 
ICA by minimization of mutual information 
 
ICA searches statistically independent sources. These sources must therefore have minimal 
mutual information. A measure of the mutual information across the q sources is given by: 
 

 ( ) ( ) ( ) ( )1

1

1

s ,... log det
q

q i

i

I s h s h x A−

=

= − −  (5.20) 

 

where ( )h x is the entropy of the distribution of the observations.  

 

To recall, ICA started with the assumption that the data was centered and white, i.e. ( )~ 0,x N I . 

In practice, this requires to first substract the mean of the data and then to proceed to a 
decorrelation through PCA, followed by a normalization, see Section Error! Reference source not 

found.. By extension if ( )~ 0,x N I then the sources are also centered and white and hence: 

 

    ( )1 1
T

T TI E ss A E xx A− −= =  (5.21) 

 

Given that ( )det =1I , we have: 

 

 ( )( )
( )  ( ) ( )( )

1 1

1 1

det =1

det det det =1. 

T
T

T
T

A E xx A

A E xx A

− −

− −

 (5.22) 

 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

88 

This implies that ( )1det A−
is a constant (and is equal to 1  in the particular case of whitenend 

mixtures). 
 
Assuming then that the data is zero-mean and white, that the number of sources equal the 
dimension of the data, i.e. N , and replacing in (5.20), one can see that maximizing the negentropy 

is equivalent to minimizing mutual information, as the two quantities differ only by a constant factor, 
i.e. 
 

 ( ) ( )1

1

s ,... . .
N

N i

i

I s cst J x
=

= −  (5.23) 

 
Given that the mutual information of a random vector is nonnegative, and zero if and only if the 
components of the vector are independent, minimization of mutual information for ICA is interesting 
in that it has a single global minimum. Unfortunately, the mutual information is difficult to 
approximate and optimize on the basis of a finite sample of datapoints, and much research on ICA 
has focused on alternative contrast functions. The earliest approach that optimizes for the 
negentropy using the fast-ICA algorithm, see Section Error! Reference source not found., relies 
on an adhoc set of non-linear functions. While not very generic, this approach remains 
advantageous in that it allows estimating each component separately and in that it does the 
estimation only on uncorrelated patterns. 
 
 
Non-linear Case 
 
We will here assume that the sources and the original datapoints have the same dimension and 
these are zero-mean and white. In practice this can be achieved by performing first PCA and then 
reducing to the smallest set of eigenvectors with best representation. Hence, given a set of 

observation vectors  
1,...

1,...

j M
j

i i N
X x

=

=
= , we will look for the sources 1,.... Ns s , such that: 

1 and  .i is Wx W A−= =  As in linear ICA, we do not compute A and then its inverse, but rather 

estimate directly its inverse by computing the columns of W.   
 
While the fast-ICA method in linear ICA relied on chosing one or two predefined non-linear functions 
for the transformation, Kernel ICA solves ICA by considering not just a single non-linear function, 

but an entire function space ( ) ( ) 1 2. , . ,...  := of candidate nonlinearities. The hope is that 

using a function space makes it possible to adapt to a variety of sources and thus would make the 

algorithms more robust to varying source distributions. Each function 1 2, ,...  goes from 

  
N ® . We can hence determine a set of N transformations  

1...

: ,  1,...
j M

j

i ix i N
=

→  =

with associated kernels ( ) ( ). , . ,  1,...i i iK i N = = . Beware that we are here comparing the 

projections of the datapoints along the dimensions 1,...i N= of the original dataset, which is 

thought to be the same dimension as that of the sources. Each matrix iK is then M M . 

 
In Section 5.4, when considering kernel CCA, we saw that one can determine the projections that 

maximize the correlation across the variables using different sets of projections 1 2, ,...  . This is 

measured by ( )1,.... NK K .  This quantity is comprised between zero and one. While CCA aimed 

at finding the maximal correlation, kernel ICA will try to find the projections that maximize statistical 
independence.  We define a measure of this independence through



 

©  A.G.Billard 2004         –         Last Update October 2024 

89 

( ) ( )1 1,.... 1 ,....N NK K K K = − . This quantity is also comprised between 0 and 1 and is equal 

to 1 if the variables 1,..., NX X  are pairwise independent. Optimizing for independence can be 

done by maximizing ( )1,.... NK K . This is equivalent to minimizing the following objective function:  

 

 ( ) ( )1 1,.... log ,....N NJ K K K K= −  (5.24) 

 
This optimization problem is solved in an iterative method. One starts with an initial guess for W 
and then iterates by gradient descent on J. Details can be found in Bach & Jordan 2002. 
Interestingly, an implementation of Kernel-ICA, whose computational complexity is linear in the 
number of data points, is proposed there. This reduces importantly the computational costs. 

 
 
  



 

©  A.G.Billard 2004         –         Last Update October 2024 

90 

 
5.6 Kernel K-Means 
 
Kernel K-Means is one attempt at using the kernel trick to improve the properties of one of the 
simplest clustering techiques to date, the so-called K-means clustering technique, see Section 
3.2.2.  
 

K-means builds partition the data into a finite set of K clusters ,  1.. ,kC k K=  (here, do not confuse 

the scalar K with the Gram matrix seen previously). K-means relies on a measure of distance across 
datapoint, usually the Euclidean distance. It proceeds iteratively by updating, at each iteration, the 

centers
1,...., K   of the clusters until no update is required. Given a set of M datapoints 

 
1

M

i i
X x

=
= , the K-means processus consists in minimizing the following objective function: 

 

 ( )
2

1

1

,....,                      with 
j i

j k

j

K
K j k x C

i

k x C i

x

J x
m

    

= 

= − =


   (5.25) 

 

Where  is the number of datapoints in cluster .iim C  

 
Since each cluster relies on a common distance measure, each cluster is separated from the other 
by a linear hyperplane, as illustrated below: 

 

 
 
 
To counter this disadvantage, kernel K-means first maps the datapoints onto a higher-dimensional 

feature space through a non-linear map . It then proceeds as classical K-means and search for 

hyperplanes in the feature space. To do this, kernel K-means exploits once more the kernel trick 

and sets the kernel ( ) ( ) ( ), ' , 'k x x x x = as the dot product in feature space. Using the 

observation that kernel K-means objective function can be expanded into a sum of inner product 

across datapoints, i.e. ( )k  =

( )
j k

j

x C

k

x

m





yields: 

 

2 

*3 



 

©  A.G.Billard 2004         –         Last Update October 2024 

91 

 

 

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )

( )
( ) ( )

( )

2

1

1

,

2
1

,

2
1

,....,  

2

                      =

,2 ,

                     = ,

j k

j l il i

j i

j l ij i

j i

K
K j k

k x C

j ll j

K
x x Cj j x C

i x C i i

j li j

K
x x Ci i x C

i x C i i

J x

x xx x

x x
m m

k x xk x x

k x x
m m

    

  

 

= 



= 



= 

= −

 
 

− + 
 
 

 
 

− + 
 
 

 


 




 (5.26) 

 
 
In kernel K-Means, the iteration stops when the change in J is sufficiently small. The kernel K-
means algorithm reads then as follows: 
 

 
 
As for all kernel methods, a clear bottleneck of kernel K-Means is that each iteration steps requires

( )2O M computation step. Smilarly to classical K-means, kernel K-Means is also very sensitive to 

the initialization of the centers and may lead to poor partiotioning with a poor initialization, as shown 
in Figure 5-5.   
 
 

   

Figure 5-5: A difficult clustering problem. Standard K-Means (left) is unable to correctly separate the three 
clusters. Using a Gaussian kernel (gamma = 0.01) Kernel K-Means (right) successfully separates the three 

clusters. [DEMOS\CLUSTERING\KERNEL-KMEANS.ML] 



 

©  A.G.Billard 2004         –         Last Update October 2024 

92 

  



 

©  A.G.Billard 2004         –         Last Update October 2024 

93 

 

5.7 Support Vector Machines 
Adapted from "Learning with Kernels" by B. Scholkopf and A. Smola, MIT Press 2002, and "A Tutorial on Support 
Vector Machines for Pattern Recognition", by C.J.C. Burges, Data Mining and Knowledge Discovery, 2, 1998. 

 
Support vector machine (SVM) is probably one of the most popular applications of kernel methods. 
SVM exploits the kernel trick to extend classical linear classification to non-linear classification. It 
has been shown to be very powerful at separating highly intertwined data. Its simplicity of use and 
the large number of available software makes it easy to implement. We will here very briefly review 
the principle and the derivation of the algorithm. We will highlight on the sensivity to some 
hyperparameter so as to guide the potential user and ensure optimal use of the algorithm. 
 
 
Linear Case 
 
Let us first start by considering a very simple classification problem which illustrates well the 
reasoning behind using Kernel methods for classification. Suppose we are given two classes of 
objects. We are then faced with a new object, and we have to assign it to one of the two classes. 
This problem can be formalized as follows: 
 

Consider a training set composed of M input-output pairs where each input  
1...i M

i Nx
=

   is 

associated with a label 
1...i M

iy
=

.  The label
iy denotes the class to which the pattern 

ix belongs. 

In SVM, we consider solely binary classification problems, i.e.: 
 

    
1...

, 1
i M

i ix y X
=

    (5.27) 

 
Note that there exist extensions to multiclass SVM. We will here focus first on the binary 
classification case. 
 
Given this training set, we wish to build a model of the relationships across the input points and 
their associated class label that would be a good predictor of the class to which each pattern 
belongs and would allow us to do inference: that is, given a new pattern x , we could estimate the 

class to which this new pattern belongs. In some sense, for a given new pattern x , we would choose 

a corresponding y, so that the pair  ,x y is somewhat similar to the training examples. To this 

end,we need a notion of similarity in X and in 1 . 

 

Similarity Measures: Characterizing the similarity of the outputs  1 is easy. In binary 

classification, only two situations occur: two labels can either be identical or different. The choice 
of the similarity measure for the inputs, on the other hand, is more complex and is tighly linked to 

the idea of kernel. As we have seen previously in these lecture notes, the kernel ( ), 'k x x gives a 

measure of similarity across two datapoints  and x'x . A natural choice for the kernel when 

considering the simple linear classification problem outlined above is to take the dot product, i.e.: 
 

 ( )
1

, ' , ' '
N

i i

i

k x x x x x x
=

= =   (5.28) 

 
The geometrical interpretation of the canonical dot product is that it computes the cosine of the 

angle between the vectors x and 'x , provided they are normalized with length 1. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

94 

 
 
 
A simple pattern recognition algorithm 
 
We now have all the tools to derive a simple classification algorithm. 
It is now possible, using the canonical dot product as a similarity measure in our dot product space 

H to design a simple pattern recognition algorithm that will separate our input space into two 
classes. The algorithm proceeds as follows: 
 

1. Assign each point randomly to one of the two classes 
2.  Compute the means of the two classes in the feature space: 

 

 
| 1

| 1

1

1

i

i

i

i

i y

i y

c x
m

c x
m

+

=++

−

=−−

=

=





 (5.29) 

Where m+ and m− are the number of examples with positive and negative labels, 

respectively. We assume that both classes are non-empty. 
 
3. Reassign each point to the class whose mean is closest. 

 
 

This geometric construction can be formulated in terms of the dot product , 'x x . Halfway between 

c+ and c− lies the point ( ) / 2c c c+ −= + . We compute the class to which the point x belongs by 

checking whether the vector connecting x c− encloses an angle smaller than / 2  with the vector 

w c c+ −= − connectingthe class means. This leads to: 

 

 

( )

( )( )

( )

sgn ,

   = sgn / 2,

   = sgn , , .

y x c w

x c c c c

x c x c b

+ − + −

+ −

= −

− + +

− +

 (5.30) 

 

with offset ( )2 21
: .

2
b c c− += −  

The decision boundary indicated by the dotted line is a hyperplane, orthogonal to w, seeFigure 5-6. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

95 

 
Figure 5-6: A simple geometrical classification algorithm. The decision boundary indicated by the dotted 

line is a hyperplane orthogonal to w. (From Scholkopf & Smola 2002) 
 

Let us now rewrite this result in terms of the input patterns
ix , using thekernel k(.,.) to compute the 

dot product. We get the decision function: 

 

| 1 | 1

1 1
sgn , ,i i

i ii y i y

y x x x x b
m m= =+ = =++ −

 
= − +  

 
   (5.31) 

 ( ) ( )
| 1 | 1

1 1
  sgn , ,i i

i ii y i y

k x x k x x b
m m= =+ = =++ −

 
= − +  

 
   (5.32) 

If 0b = , i.e. the two classes' means are equidistant to the origin, then k can beviewed as a 
probability density when one of its arguments is fixed. By this, wemean that it is positive and has 
unit integral, 

( ), 1   
X

k x x dx x X =    

In this case, y takes the form of the so-called Bayes classifier separating the twoclasses, subject 
to the assumption that the two classes of patterns were generatedby sampling from two probability 
distributions that are correctly estimated bythe Parzen Windows estimator of the two class 
densities, 

( )
| 1

1
: , i

ii y

p k x x
m

+

=++

= 
 

and 

( )
| 1

1
: , i

ii y

p k x x
m

−

=−−

=   

where x X . 

 

Thus, given some point x, the class label is computed by checking which of thetwo values 
p+ or

p− is larger. This is the best decision one can take if one hasno prior information on the data 
distribution. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

96 

 

5.7.1 Support Vector Machine for Linearly Separable Datasets 

SVM consists of determining a hyperplane that determines a decision boundaryin a binary 
classification problem. We consider first the linear case and then move to the non-linear case. 

 

Linear Support Vector Machines 

Let us assume for a moment that our datapoints Xlive in a feature space H. The class of 
hyperplanesin the dot product spaceH is given by: 

 , 0w x b+ = , where ,w H b   (5.33) 

with the corresponding decision functions 

 ( ) ( ),f x sign w x b= +  (5.34) 

We can now define a learning algorithm for linearly separable problems. First, observe that 
amongall hyperplanes separating the data, there exists a unique optimal hyperplane,distinguished 
by the maximum margin of separation between any training pointand the hyperplane, defined by: 

 

  ,maximize min , , , 0,  1,...,i

w H b x x x H w x b i M  −  + = =  (5.35) 

 

While in the simple classification problem we had presented earlier on, it wassufficient to simply 
compute the distance between the two cluster’ means todefine the normal vector and so the 
hyperplane, here, the problem of findingthe normal vector that leads to the largest margin is slightly 
more complex. 

 

To construct the optimal hyperplane, we have to solve for the objective function
( )w

: 

 ( )
2

,

1
minimize

2
w H b ww  =  (5.36) 

subject to the inequality constraints: 

 ( ), 1,    i=1,...Mi iy w x b+    (5.37) 

Consider the points for which the equality in (5.37)holds (requiringthat there exists such a point is 
equivalent to choosing a scale for w and b).These points lie on two hyperplanes 

( )1 , 1iH w x b+ =
and 

( )2 , 1iH w x b+ = −
with normal w and perpendicular distance from the 

origin
1 /b w−

. Hence
1/d d w+ −= =

and the margin is simply
2 / w

. Note that 1H
and 2H

areparallel (they have the same normal) and that no training points fall betweenthem. Thus we can 

find the pair of hyperplanes which gives the maximummargin by minimizing

2
w

, subject to 

constraints (5.37) that ensures that the class label for a given
ix will be +1, if

1iy +=
, and-1,for

1iy −=
. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

97 

Let us now rephrase the minimization under constraint problem given by (5.36) and (5.37) in terms 

ofthe Lagrange multipliers
,  1,...,i i l =

, one for each of the inequality constraints in (5.37). Recall 

that the rule is that for constraints of the form
0ic 

,the constraint equations are multiplied by 
positive Lagrange multipliers andsubtracted from the objective function, in (5.36), to form the 
Lagrangian. Forequality constraints, the Lagrange multipliers are unconstrained. This gives 
theLagrangian: 

 ( ) ( )2

1 1

1
, , , .

2
i i

l l

P i i

i i

L w b w y w x b  
= =

 − + +   (5.38) 

We must now minimize PL
with respect tow, b, and simultaneously requirethat the derivatives of 

PL
with respect to all the i

vanish, all subject to theconstraints
0i 

. This is a convex quadratic 
programming problem, since theobjective function is itself convex, and those points which satisfy 
the constraintsalso form a convex set (any linear constraint defines a convex set, and a set of N 
simultaneous linear constraints defines the intersection of N convex sets, whichis also a convex 

set). This means that we can equivalently solve the followingdual problem: maximize PL
, subject 

to the constraints that the gradient of PL
with respect to w and b vanish, and subject also to the 

constraints that the
0i 

. 

Requesting that the gradient of PL
with respect to w and b vanish  

 

 

,     j=1,....Ni

j

i

P j i

ijw
L w y x




= −

 (5.39) 

  

 0i

P i

ib
L y




= − =  (5.40) 

gives theconditions: 

 
1

i i

M

i

i

w y x
=

=   (5.41) 

 
1

0.i

M

i

i

y
=

=  (5.42) 

Since these are equality constraints in the dual formulation, we can substitutethem into(5.38) to 
give: 

 ( )
,

1
, .

2

j ji i i

D i i j

i i j

L y y y x x   = −   (5.43) 

Note that we have now given the Lagrangian different labels (P for primal,D for dual) to emphasize 

that the two formulations are different: pL
and DL

arise from the same objective function but with 

diferent constraints; and thesolution is found either by minimizing pL
or by maximizing DL

. Note 
also that if weformulate the problem with b=0, which amounts to requiring that all hyper-planes 
contain the origin (this is a mild restriction for high dimensional spaces,since it amounts to reducing 
the number of degrees of freedom by one), supportvector training (for the separable, linear case) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

98 

then amounts to maximizing DL
with respect to the i

, subject to constraints (5.42) and positivity 

of the i
, withsolution given by (5.41). Notice that there is a Lagrange multiplier i

 for everytraining 

point. In the solution, those points for which
0i 

are called thesupportvectors and lie on one of 

the hyperplanes 1 2,H H
. All other training points have

0i =
, and lie on either side of 1H

or 2H
, 

such that thestrict inequality in(5.37) is satisfied. 

 

For these machines, the support vectors are the critical elements of the training set. They lie closest 
to the decision boundary; if all other training pointswere removed (or moved around, but so as not 

to cross 1H
or 2H

), and trainingwas repeated, the same separating hyperplane would be found. 

 
 

 
Figure 5-7: A binary classification toy problem: separate dark balls from white balls. The optimal hyperplane 

is shown as the solid line. The problem being separable, there exists a weight vector w  and an offset b  such 

that ( ), 0i iy w x b+  ( )1,...,i m= : Rescaling w  and b such that the points closest to the hyperplane 

satisfy , 1iw x b+ = , we obtain a canonical form ( ),w b  of the hyperplane, satisfying

( ), 1i iy w x b+  . Note that, in this case, the margin (the distance to the closest point to the hyperplane) 

equals1/ w . This can be seen by considering two points 1 2,x x  on opposite sides of the margin, that is,

1, 1w x b+ = , 2, 1w x b+ = − , and projecting them onto the hyperplane normal vector /w w . The 

support vectors are the points on the margin (encircled in the drawing). 

 
 

The generic minimization problem when one does not assume that the hyperplanegoes through 

the origin (i.e. 0b  ) can be found by solving the so-called KKT(Karush-Kuhn-Tucker) conditions. 
These state that, at each point of the solution, the product between the dual variables and constraints has to 
vanish, i.e.: 

  

 ( ), 1 0,   1,..,i iy w x b i M+ −  =  (5.44) 

 0,    1,...i i M   =  (5.45) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

99 

 ( )( ), 1 0,   1,...i i

i y w x b i M + − =  =  (5.46) 

 

The KKT conditions are necessary for , ,w b  to be a solution.  

 

With all of the above, we now can determine the variables of the SVM problem. w is explicitly 
determined by(5.41). The threshold b is determinedby solving the KKT "complementarity" condition 

given by(5.46): by choosing any ifor which
0i 

, one can computeb (note that it is numerically 
safer to take themean value of b resulting from all such equations). 

 
Figure 5-8:Linear separating hyperplanes for the non-separable case. 

 

5.7.2 Support Vector Machine for Non-linearly Separable Datasets 

The above algorithm for separable data, when applied to non-separable data,will find no feasible 
solution: this will be evidenced by the objective function (i.e.the dual Lagrangian) growing arbitrarily 
large. In order to handle non-separabledata, one must relax the constraints(5.37). This can be done 

by introducing positiveslack variables
, 1,...,i i M =

, in the constraints, which then become: 

 1iT

ixw b +  + −   for 
1iy = +

 (5.47) 

 1iT

ixw b +  − +   for 1iy = −  (5.48) 

 0i  i  (5.49) 

Thus, for an error to occur the corresponding i
must exceed unity, so

ii


 is an upper bound on 
the number of training errors. Hence a natural way toassign an extra cost for errors is to change 
the objective function to be minimizedto include a cost function, such as 

2

, 1

min ,
M

i

w i

C
w

M


=

 
+ 

 


 

Where C is a parameter to be chosen by the user, a larger C corresponding toassigning a higher 
penalty to errors. As it stands, this is a convex programmingproblem and the Wolfe dual 
problembecomes:  



 

©  A.G.Billard 2004         –         Last Update October 2024 

100 

 ( )
,

max
1

,
2

j ji i

D i i j

i i j

L y y x x


    −   (5.50) 

subject to: 

 0 i

C

M
   (5.51) 

 0i

i

i

y =  (5.52) 

The solution is again given by: 

 
1

s

i i

N

i

i

w y x
=

=   (5.53) 

where sN
 is the number of support vectors (to recall, the support vectors areall the points ix

 for 

which the corresponding Lagrange multiplier
0i 

; thesepoints lie exactly on the margin). Thus 

the only diference from the optimalhyperplane case is that the i
nowhave an upper bound with 

.
C

M  

Once again, we must use the KKT conditions to solve the primal minimization of PL
 and the KKT 

complementary conditions to find b. 

 

5.7.3 Non-Linear Support Vector Machines 

 

Let us now consider an extension of the linear type of classifier we consideredbefore to tackle non-
linear classification problem, such as the one highlighted inFigure 5-9. 

 
Figure 5-9: Degree 3 polynomial kernel. The background colour shows the shape of the decision surface. 

 

 

Figure 5-10: Classification using a polynomial kernel with different degrees (SVM). The data is not linearly 
separable (left). By increasing the degree of the polynomial, the separation plane becomes non-linear and is 

able to correctly separate the data.[DEMOS\CLASSIFICATION\SVM-POLY.ML] 



 

©  A.G.Billard 2004         –         Last Update October 2024 

101 

 

Following the same rational as presented earlier on, let us first map the dataonto an Euclidean 

space H, using a mapping


: 

 
( )

:

     

X H

x x




 (5.54) 

Assume that the training problem is in the form of dot products
( ), j ji i T

x xx x=
. Inthis case, 

the training algorithm in the mapped space would only depend on thedata through dot products 

inH, i.e. on functions of the form
( ) ( ), jix x 

. Ifwe can define a "kernel function" k suchthat

( ) ( ) ( ), ,j ji ik x x x x =
, thentraining depends only on knowing k and would not require to 

know


. 

The optimization problem consists then to maximize the following quantity: 

 ( )( ) ( ) ( ) ( )
, 1 1 1

1
,

2

ji i

M M M

i i i i i i i i

i j i i

k x x y        
= = =

−   − − − − + −    (5.55) 

subject to
( )1

0
l

i ii
 

=
− =

and
 , 0,

i i
A   

,   . In this case, the classlabel is computed 
as follows: 

 ( )sgn , j

M

i

i

y k x x b
 

= + 
 
  (5.56) 

 

Each expansion corresponds to a separating hyperplane in a feature space. Inthis sense, the i

can be considered a dual representation of the hyperplane'snormal vector. A test point isclassified 
by comparing it to all the trainingpoints with non-zero weight. 

 

5.7.4 Nu-SVM 

 

Chosing the right parameter C may be difficult in practice. nu-SVM is an alternative that 

optimizes for the best tradeoff between model complexity (the largest margin) and penalty on the 

error automatically. To this end, it introduces two other parameters   and  . 0  is an open 

parameter while  will be optimized for. The objective function becomes: 

 

 

( )

2

, 1

1
min ,

subject to   y ,

         and   0,  0.

M

i

w i

i i

i

i

w
M

w x b



 

 

 

=

 
− + 

 

+  −

 



 (5.57) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

102 

 
 
To understand the role of  , observe first that when the points are well classified, the margin has 

now been changed to 2 / w . The larger  the larger the margin. Since points within the margin 

may be misclassified, one can compute the margin error, i.e. the number of points that are within 
the margin while misclassified.   varies the effect of this increase in the margin error while 

optimizing for a large value of  . One can show that: 

•  is an upper bound on the fraction of margin error (i.e. the number of datapoints 

misclassified in the margin) 

•  is a lower bound on the number of support vectors   



 

©  A.G.Billard 2004         –         Last Update October 2024 

103 

 

5.8 Support Vector Regression 
 

In SVM, we have consider a mapping from the input data X onto a binary output 1.y =  Support 

Vector regression (SVR) extends the principle of SVM to allow a mapping f to a real value output: 

 

 
( )

:f X

x y f x

→

→ =
 (5.58) 

 
SVR starts from the standard linear regression model and applies it in feature space. Assume a 

projection of the data into a feature space ( )X X H→  . Then, SVR seeks a linear mapping in 

feature space of the form: 
 

 ( ) ( ), ,      ,  f x w x b w H b= +    (5.59) 

 
 
To recall, SVM approximates the classification problem by choosing a subset of data points, the 
support vectors, to support the decision function. This sparsification of the training dataset is the 
key strength of the algorithm. When considering non-separable datasets, SVM introduced a slack 
variable to give room for imprecise classification. SVR proceeds similarly and tries to find the 
optimal number of support vector while allowing for imprecise fitting. The allowed imprecision of 

the fitting through f is measured by a parameter 0  and is measured through an -loss function:  

 

 ( ) ( ) max 0, ,y f x y f x


− = − −  (5.60) 

 
 
Points with a non-zero -loss function lie outside the -insensitive tube that surrounds the function

f , seeFigure 5-11. 

 

 

Figure 5-11: Effect of a non-linear regression through SVR. The tightness of the -insensitive tube around the 
regression signal varies along the state space as an effect of the distance in feature space between the 
support vectors (the support vector are plain circles). Datapoints within the -insensitive tube do not influence 
the regression model and are indicated with un-filled circles.   

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

104 

In SVM, we found that minimizing w was interesting as it allowed a better separation of the two 

classes. Scholkopf and Smola argue that, in SVR, minimizing w is also interesting albeit for a 

different geometrical reason. They start by computing the -margin given by:  
 

 ( ) ( ) ( ) ( ) ( ) : inf ' ,  , ',  s.t. ' 2m f x x x x f x f x   = −  −   (5.61) 

 
 

 

Figure 5-12: Minimizing the  -margin in SVR is equivalent to maximizing the slope of the function f. 

 
 
Similarly to the margin in SVM, the -margin is a function of the projection vector w . As illustrated 

inFigure 5-12, the flatter the slope w of the function f, the larger the margin. Conversely, the steeper 

the slope is, the larger the width of the -insensitive tube. Hence to maximize the margin, we must 

minimize w (minimizing each projection of w will flatten the slope). The linear illustration in Figure 

5-12 holds in feature space as we will proceed to a linear fit in feature space.  
 

Finding the optimal estimate of f can now be formulated as an optimization problem of the form: 

 

  
21

min
2w

w C R f 
+  

 
 (5.62) 

 

Where  R f
is a regularized risk function that gives a measure of the e-insensitive error: 

 

   ( )
1

1 M
i i

i

R f y f x
M




=

= −  (5.63) 

 

C  in (5.62)is a constant and hence a free parameter that determines a tradeoff between minimizing 

the increase in the error and optimizing for the complexity of the fit. This procedure is called -
SVR.  
 

 

 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

105 

 

Formalism: 
 
The optimization problem given by(5.62) can be rephrased as an optimization under constraint 
problem of the form:  
 

 ( )

( )

21
minimize  

2

,
subject to           1,...

,

i

i

i

i

w

w x b y
i M

y w x b

 

 

 + − 


 =
− − 



 (5.64) 

 
Minimizing for the norm of w , we ensure a) that the optimization problem at stake is convex (hence 

easier to solve) and b) that the conditions given in  (5.64) are easier to satisfy (for a small value of 

w , the left handside of each condition is more likely to be bounded above by  ).  

 
Note that satisfying the conditions of(5.64)may be difficult (or impossible)for an arbitrary small , 

one can once more introduce the set of slack variables
* and  ( 1... )i i i M  = for each datapoint, 

to denote whether the datapoint is on the left or righthandside of the function f 3. The slack 

variables measure by how much each datapoint is incorrectly fitted.  This yields the following 
optimization problem: 
 

 

( )

( )

( )

2 *

1

*

*

1 C
minimize  + 

2

,

subject to ,

0,   0

i

i

M

i i

i

i

i

i

i

i i

w
M

w x b y

y w x b

 

  

  

 

=

+

 + −  +



− −  +


 




 (5.65) 

 
 
Again, one can solve this quadratic problem through Lagrange. Introducing a set of Lagrange 

multipliers , 0i i   for each of our inequalities constraints and writing the Lagrangian: 

 

 

( ) ( ) ( )

( )( )

( )( )

2 * * *

1 1

1

* *

1

1 C C
L , , *, =  +  

2

                     ,

                     ,

i

i
i

i

i

M M

i i i i i

i i

M
i

i

i

M
i

i

i

w b w
M M

y w x b

y w x b

       

   

   

= =

=

=

+ − +

− + + − −

− + − + +

 





 (5.66) 

 

 

3 We will use the shorthand
( )*

 i when the notation applies to both
*  and .i i   



 

©  A.G.Billard 2004         –         Last Update October 2024 

106 

Solving for each of the partial derivatives: 
( )*

L L L
0;  0;  0

b w 

  
= = =

  
 

 ( )*

1

L
0;i

M

i

ib
 

=


= − =


  (5.67) 

 ( ) ( )*

1

L
0;i

M
i

i

i

w x
w

  
=


= − − =


  (5.68) 

 
( )

( ) ( )* *

*

L
0i ii

C

M
 




= − − =


 (5.69) 

Substituting in (5.66) yields the dual optimization under constraint problem: 
 

 

( )( ) ( )

( ) ( )

( )

*

* *

, 1

* *,

1 1

* *

1

1
,

2
max

 

subject to 0  and  , 0,

i

i i

i i

M
i j

i j j

i j

M M
i

i i

i i

M
i

i i

i

k x x

y

C

M

 

   

    

   

=

= =

=


− − − 



 − + + +


 
− =   

 



 



 (5.70) 

 

Solving for the above optimization problem will yield solutions for the Lagrange multipliers 
*,  . 

These can then be used to construct our estimate of the best projection vector w by replacing 

in(5.68): 
 

 ( ) ( )*

1

i

M
i

i

i

w x  
=

= −  (5.71) 

 
 

To determine the value of the offset b , one must further solve for the Karush-Kuhn-Tucker (KKT) 

conditions: 

 

( )( )
( )( )* *

* *

, 0,

, 0,

and

0,

0.

i
i

i

i

i i

i

i

i

i

i i

y w x b

y w x b

C

M

C

M

   

   

 

 

+ + − − =

+ − + + =

 
− = 

 

 
− = 

 

 (5.72) 

 
The above optimization problem can be solved using interior-point optimization, see (Scholkopf & 
Smola, 2002). 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

107 

It is worth spending a little bit of time looking at the geometrical implication of conditions (5.72). The 

last two conditions show that, when the Lagrange multipliers take value
(*)

i

C

M
 = , the 

corresponding slack variable
(*)

i can take arbitrary value and hence the corresponding points can 

be anywhere, including outside the -insensitive tube. Vice-versa, when
(*)

0,i

C

M


 
  

 
, we have

(*)

0i = . These become the support vectors. 

 

Note that since we never have the projections ( )ix , we cannot compute explicitly w  in (5.71). We 

can however once more exploit the kernel trick to compute f . Using 

 

( ) ( ) ( ) ( )

( ) ( )

*

1

*

1

,

              , ,

i

i

M
i

i

i

M
i

i

i

w x x x

k x x

    

 

=

=

= −

= −




 

 
we can compute an estimate of our regression function through: 

 

 ( ) ( ) ( )*

1

,i

M
i

i

i

f x k x x b 
=

= − +  (5.73) 

 

Observe that the computation costs for the regression function grow linearly with the number M
of datapoints. As for SVM, computation can be reduced importantly if one reduces the number of 
datapoints for which the elements in the sum are non-zero, the so-called support vectors.This is 

the case when ( )* 0ii − = . Note that for all points within the -insensitive tube
* 0ii = = (so 

as to satisfy the KKT conditions given in (5.72). 
 
  



 

©  A.G.Billard 2004         –         Last Update October 2024 

108 

Examples: 
 
Figure 5-13 illustrates the application of SVR on the same dataset (these data were generated 
using MLdemos). When using a linear kernel with a large , one can completely encapsulate the 
datapoints, while still yielding a very poor fit. Using a Gaussian kernel allows to fit better the non-
linearities. This is however very sensitive to the choice of penalty given to poor fit through parameter 
C. A high penalty will result in a smoother fit. 

 

 

Figure 5-13: Example of -SVR on a two-dimensional datasets. Datapoints are shown in plain dot. The 
regression signal is in solid line. The boundaries around the -insensitite tube are drawn in light grey lines. 
using a linear kernel (top) and a Gaussian kernel (bottom). TOP: effect of the increasing the -tube with 

=0.02 (left) and =0.1 (right). BOTTOM: effect of increasing parameter C (from left to right, C=10, 100 and 
1000) that penalies for poorly fit datapoints. 

 
 
SVR as all other regression techniques remain very sensitive also the choice of hyperparameter 
for the kernel. This is illustrated in Figure 5-14. Too small a kernel width will lead to overfitting of 
the data. Too large may lead to very poor performance. The latter effect can be compensated by 
choosing appropriate value for the hyperparameters of the optimization function, namely C and , 
see Figure 5-15. The small kernel width that had led to a poor fit in Figure 5-14 is compensated by 
relaxing the constraints using a large and smaller C. We also see that reducing the constraints 
and widening  decreases the number of support vectors. While the very tight fit in Figure 5-14 
used almost all datapoints as support vector, the looser fit in Figure 5-15 used much less. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

109 

 

 

Figure 5-14: Effect of the kernel width on the fit. Here fit using C=1000, =0.01, kernel width=0.01 (top), 0.1 
(bottom). The points encircled represent the support vectors. 

 

 

Figure 5-15: Reduction of the effect of the kernel width on the fit by choosing appropriate hyperparameters. 
Gaussian SVR fit using C=100, =0.03, kernel width=0.1. 

 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

110 

5.8.1 Nu-SVR 

 
The parameter in -SVR determines the desired accuracy of the approximation. Determining a 
good  may be difficult in practice. SVR is an alternative method that suppresses the need topre-
specifying the free parameter C in (5.65), by introducing (yet another!) parameter The idea if 
that this new parameter will make it easier to estimate as one finds a tradeoff between model 
complexity and slack variables. 
 

By introducing a penalty through 0  , the optimization of (5.65) becomes: 

 

 

( )( ) ( )

( )

( )

2* *

1

*

*

1 1
minimize L , ,  + C

2

,

subject to ,

0,   0, 0

i

i

M

i i

i

i

i

i

i

i i

w w
M

w x b y

y w x b

    

  

  

  

=

 
+ + 

 

 + −  +



− −  +


  




 (5.74) 

 
Notice that we now optimize also for the value of The term   in the objective function is now 

a weighting term that balances a growth of   and the effect this has on the increase of the poorly 

fit datapoints (last term of the objective function).  
 
This last new equality constraint on  yields a new Lagrange solution with associated Lagrange 

multiplier  . One can then proceed to the same steps as done when solving -SVM, i.e. write the 

Lagrangian, take the partial derivatives, write the dual and the solution to KKT conditions (see 
Scholkopf & Smola 2002 for details). This yields the following SVR optimization problem: 
 

 

( )

( ) ( )( ) ( )

( )

( )

( )

*

* * *

1 , 1

*

, 1

*

*

, 1

For  0, C>0

1
max , ,

2

subject to  0,

                0, ,

                .

i i

M

i

i

M M
i i j

i i j j

i i j

M

i

i j

i

M

i

i j

y k x x

C

M

C





     

 



  

= =

=

=



 
− − − − 

 

− =

 
  

 

+ 

 





 (5.75) 

 
The regression estimate then takes the same form as before and is expressed as a linear 

combination of the kernel estimated on each of the data point with non zero 
( )*

i (the support 

vectors), i.e.: 

 ( ) ( ) ( )*

, 1

, .i

M
i

i

i j

f x k x x b 
=

= − +  (5.76) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

111 

 

As we did before solely for, we can now also find  and b   by solving the KKT conditions. 

 

To better understand the effect that  has on the optimization observe first that if 1  then the 

second and third conditions in (5.75) are redundant and hence all values of  greater than 1 will 
have the same effect on the optimization. One should then work solely with values ranging between

0 1  .  

 
Interestingly, a number of properties can be derived: 

• is an upper bound on the fraction of error (i.e. the proportion of datapoints with 
( )*

0  ), 

• is a lower bound on the fraction of support vectors. 
 
These two properties are illustrated in Figure 5-17.  
 
In summary, -SVR is advantageous over -SVM in that it allows one to automatically adjust the 
sensitivity of the algorithm through the automatic computation of . To some extent, this is 
equivalent to fitting a model of the noise on the data (assuming a uniform noise model). This is 
illustrated in Figure 5-16. 

 

Figure 5-16: Effect of the automatic adaptation of  using -SVR. (Top) Data with no noise. (Bottom) Same 

dataset with a white noise. In both plots, -SVR was fitted with C=100, =0.05, and a Gaussian kernel with 
kernel width=0.021. 



 

©  A.G.Billard 2004         –         Last Update October 2024 

112 

 

 

 

 

Figure 5-17: Increase of the number of support vectors and of the proportion of datapoints outside the -

sensitive tube when increasing . From top to bottom, takes value 0.08, 0.1 and 0.9. -SVR was fitted with 
C=50 and a Gaussian kernel with kernel width=0.021. 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

113 

 

5.9 Gaussian Process Regression 
Adapted from C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine 
Learning, the MIT Press, 2006. 

 
 
In Section Error! Reference source not found., we introduced probabilistic regression, a method 

by which the standard linear regressive model ( )20,Ty w x N = + was extended to building a 

probabilistic estimate of the conditional distribution ( )|p y x . Then for a new query point x*, one 

could compute an estimate y* by taking the expectation of y  given x , ( ) ˆ |y E p y x= . Further, 

using the assumption that all training points are i.i.d. and using a Gaussian prior with variance w  

on the distribution of the parameters w  of the model, we found that the predictive distribution is 

also Gaussian and is given by:  
 

 ( )* * * * *

2

1
| , , ,T T

w wp y x X y N x Xy x x


 
=   

 
 (5.77) 

 

where X is N M  and y is 1 N  are the matrix and vector of input-output training points. Next, 

we see how this probabilistic linear regressive model can be extended to allow non-linear 
regression, exploiting once more the kernel trick. 
 

  
Non-linear Case 

Assuming a non-linear transformation into feature space through the function ( )x , that maps each 

N-dimensional datapoint x into a D-dimensional feature space, and substituting everywhere in the 
linear model, the predictive distribution for the non-linear model becomes: 
  
 

             
( ) ( ) ( ) ( ) ( )

( ) ( )

*
* * * 1 * 1 *

2

2 1

1
| , , ,

with 

T T

T

w

p y x X y N x A X y x A x

A X X

  




− −

− −

 
=  

 

=   + 

           (5.78) 

 

( )X is a matrix whose columns are composed of each projection ( )x of each training point

x X . While the expression of this density is quite simple, in practice computing the inverse of 

the matrix A may be very difficult as its dimension is proportional to the dimension of the feature 
space that may be quite large.  
 

5.9.1 What is a Gaussian Process 

The baysian regression model given by (5.78) is one example of Gaussian Process.  
 
In its generic definition, a “Gaussian process is a collection of random variables, any finite number 
of which have a joint Gaussian distribution”.  
 

Assume that the real process you wish to describe is regulated by the function ( )f x , where x

spans the data space. Then, a Gaussian Process (GP) estimate of the function f is entirely defined 



 

©  A.G.Billard 2004         –         Last Update October 2024 

114 

by its mean ( )m x and covariance function ( ), 'k x x (k is defined for each pair of point x, x’ that 

span the data space): 

 
( ) ( ) 

( ) ( ) ( )( ) ( ) ( )( ) , '

m x f x

k x x f x m x f x m x

= 

=  − −
 (5.79) 

  

For simplicity, most GP assume a zero-mean process, i.e. ( ) 0m x = . While the above description 

may be multidimensional, most regression techniques on GP assume that the output ( )f x is 

unidimensional. This is a limitation in the application of the process for regression as it allows 

making inference solely on a single dimension, say
   
y = f x( ),  y Î . For multi-dimensional 

inference, one may run one GP per output variable.  
 
 
Using (5.79) and (5.78) and assuming zero-mean distribution, the baysian regression model can 
be rewritten as a Gaussian process defined by: 

 

 

  

E f x( ){ } = f x( )
T

E w{ } = 0,

k x,x '( ) = E f x( ) f x '( ){ } = f x( )
T

E wwT{ }f x '( ) = f x( )
T

S
w
f x '( )

 (5.80) 

 
We are now endowed with a probabilistic representation of our real process f. The value taken by 

f at any given pair of input x, x’ is jointly Gaussian with zero mean and covariance given by ( ), 'k x x

.  This means that the estimate of f can be drawn only from looking conjointly at the distribution of 
f across two or more input variables. In practice, to visualize the process, one may sample a set 

*X  of M* of data points  
* *

1

* i

M

i

X x
=

= and compute f* a M*-dimensional vector of estimates of f, 

such that: 
  

  (5.81) 

 

Where ( )*, *K X X  is a * *M M covariance matrx, whose elements are computed using

( ) ( )*, * , ,  , 1.... *ji

ij
K X X k x x i j M=  = . Note that if *M D , i.e. the number of datapoints 

exceed the dimension of the feature space, the matrix is singular as the rank of K is D. 
 
Generating such a vector is called drawing from the prior distribution of f as it uses solely 
information on the query datapoints themselves and the prior assumption that the underlying 
process if jointly Gaussian and zero mean, as given by (5.81). A better inference can be made if 
one can make use of prior information in terms of a set of training points. Consider the set 

 
1

i
M

i
X x

=
=  as the training datapoints, one can then express the joint distribution of the estimates 

f and f* associated with the training and testing points respectively as: 
 

  (5.82) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

115 

 
 
One can then use the above expression of the joint distribution over f and f* to compute the posterior 

distribution of f* given the training and testing sets X, *X  and our prior on f  

which yields: 
 

  (5.83) 

  
 
One can then simply sample from this posterior distribution by evaluating the mean and covariance 
matrix from (5.83) and generating samples as done previously for the prior distribution on f. 
 
Figure 5-18 shows three examples of such sampling. In all three plots the shaded area represents 
the pointwise mean plus and plus/minus the standard deviation for each input value (corresponding 
to the ~97% confidence region), for the posterior distribution. We used the square exponential 

covariance function given by ( )
21

, ' exp '
2

k x x x x
 

= − − 
 

. We plot in light grey the area around 

the regression signal that corresponds to +/- one standard deviation (using the covariance given 
by (5.83)). This gives a measure of the uncertainty of the inference of the model. Areas with large 
uncertainty are due to lack of training points covering that space. From left to right, we see the 
effect of adding one new point (in red) in areas where previously there were no training points on 
decreasing locally the variance.  
 
  
 

 
Figure 5-18: The confidence of a Gaussian Process is dependent on the amount of data present in a specific 
region of space (left). Regions of low data density have lower confidence. By adding points in those regions, 
the confidence increases (center), but the regression function will change to adapt to the new data (right). 

[DEMOS\REGRESSION\GPR-CONFIDENCE.ML] 
 
 
 
The previous model assumed that the process f was noise free. However, when modeling real data, it is usual 
to assume some noise superposition. As in the case of the linear regression mode, we can assume that the 
noisy version of our non-linear regression model follows: 

 
( )

( )~ 0,

y f x

N



 

= +
 (5.84) 

 
Where the noise   follows a zero mean Gaussian distribution.  



 

©  A.G.Billard 2004         –         Last Update October 2024 

116 

 

In this case the covariance of the prior becomes: 
  
yyT = cov f X( )+ e( ) = K X , X( ) +s 2I , where y is 

a matrix whose columns iy , i=1….M, correspond to the projection of the associated training point ix through 

(5.84).  
 
As done previously, we can express the joint distribution of the prior y (now including noise in the estimate of 
prior on the training datapoints) and the testing points given through f*: 
 

  (5.85) 

 
 
Again, one can compute the conditional distribution of f* given the pair of training datapoints X, 
the testing datapoints X* and the noisy prior y. 
 
 

  (5.86) 

 
 

We are usually interested in computing solely the response of the model to one query point *x . 

In this case, the estimate of the associated output *y is given by the following: 

 

 
  
y* ~ f * = E f * | x*, X , y{ } = k x*, X( )

T

K X , X( ) +s 2Ié
ë

ù
û

-1

y  (5.87) 

( ) ( )*,  is the vector of covariance *,  between the query point and the

 training data points ,  1... .

i

i

k x X k x x

M x i M=

 

 

Since all the training pairs ( ), ,  1...i ix y i M= are given, these can be treated as parameters to 

the system and hence the prediction on *y  from Equation (5.87) can be expressed as a linear 

combination of kernel functions ( )*, ik x x : 

  

 

  

y* ~ f * = E f * | x*, X , y{ } = a
i

i=1

M

å k x*,x i( )

with a = K X , X( ) +s 2Ié
ë

ù
û

-1

y

 (5.88) 

 

We have M kernel functions for each of the M training points ix . 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

117 

5.9.2 Equivalence of Gaussian Process Regression and Gaussian Mixture Regression 

 
The expression found in Equation (5.88) is somewhat very similar to that found for Gaussian 

Mixture Regression, see Section 4.2.2 and Equation(4.14). The non-linear term ( )*, ik x x is 

equivalent to the non-linear weights ( )*iw x  in Equation (4.14), whereas the parameters i  

somewhat correspond to the linear terms stemming from local PCA projections through the Cross-

covariance matrices of each Gaussian in GMM  (given by ( ) ( )
1

Y YX XX X

i i i ix 
−

+   −  in Equation 

(4.14)).  
 
The difference between GPR and GMR lies primarily in the fact that GP uses all the datapoints to 
do inference, whereas GMM performs some local clustering and uses a much smaller number of 
points (the centers of the Gaussians) to do inference. However, the two methods may become 
equivalent under certain conditions. 

Assume a normalized Gaussian kernel for the function ( )*, ik x x and a noise free model, i.e. 0 =

. Let us further assume that for a well chosen kernel width, ( ),j ik x x  is non-zero only for data 

points deemed close to one another according to the metric k(.,.) and is (almost) zero for all other 
pairs. As a result, the matrix K is sparse. We can hence define a partitioning of the datapoints 

through a set of m M  (not necessarily disjoint) clusters 

( ) : ,  . . , ,   l 1...i i llC x X s t k x x m  = , centered on m datapoints lx X . 0   is an 

arbitrary threshold that determines the closenest of the datapoints. How to choose the m datapoints 
is core to the problematic of most clustering techniques and we refer to reader to Chapter 3.2 for a 
discussion of these techniques. 
 
Rearranging the ordering of the datapoints so that points belonging to each cluster are located on 
adjacent columns and duplicating each column of datapoints for points that belong to more than 
one cluster one can create the following block diagonal Gram matrix: 
 

 

  

K =

K1é
ë

ù
û    0  ............. 0

...............................

0  .................. K mé
ë

ù
û

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 (5.89) 

 

where the elements 
  
K ij

l = k x l ,i ,x l , j( )of the  K
l
matrix are composed of the kernel function applied 

on each pair of datapoints 
  

x l ,i ,x l , j( )  belonging to the associated cluster. 

 
Using properties for the inverse of a block diagonal matrix, we obtain a simplified expression for: 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

118 

 

  

a ~
1

K i

i=1

m

Õ

K1( )
-1é

ëê
ù

ûú
   0  ............. 0

...............................

0  .................. K m( )
-1é

ëê
ù

ûú

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

y1

.

.

ym

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

a l =
1

K i

i=1

m

Õ
K lé
ë

ù
û

-1

y l ,      l = 1...m

 (5.90) 

 

Where  y
l
 is composed of the output value associated to the datapoints

lX . 

 
 

For each cluster
lC , one can then compute the centroid  ,l

x

l l

y  = of the cluster and a measure 

of the dispersion of the datapoints associated to this cluster around the centroid, given by the 

covariance matrix ( )( ) xx x x

T
j l l l lE X I X I  = − − of the matrix

lX  of datapoints associated to 

the cluster. Further, for each set of datapoints
lX , one can use the associated set of output value

 y
l
 nd compute the crosscovariance matrix

  
S

yx

l = y l( )
T

- m y

l I
æ
è

ö
ø

X l - m x

l I( )
T

.  

 
 
If we further assume that each of local kernel Matrix is approximatively a measure of the covariance, 

i.e. 

  
K lé

ë
ù
û

-1

~ X l - m x

l I( )
T

X l - m x

l I( )é

ëê
ù

ûú

-1

and ( ) ( )*, ~ *x

T T
l l lk x X X I x− . 

Replacing in Equation  (5.88) yields: 
 

 

  

f * =
1

K i

i=1

m

å
K lé

ë
ù
û

-1

y lk(x*, X l )
l=1

m

å  (5.91) 

  
 
Observe that our prediction is now a non-linear combination of m linear projections of the datapoints 

through
  

K lé
ë

ù
û

-1

y l . If the number of cluster m is composed of a single datapoint, we obtain a 

degenerate Gaussian Mixture Model with a unitary covariance matrix for each Gaussian. 
 

Similarly when the clusters are disjoints, the prediction *f can be expressed as the product of the 

conditional on each cluster separately and the equivalence with GMM is immediate. In the more 
general case, when the clusters contain an arbitrary number of datapoints and are not disjoints, the 
full Gaussian Process takes into account influence from all datapoints. In a GMM the interactions 
across all datapoints are conveyed in part through the weighting of the effect of each Gaussian. 
Note also that the centers of the Gaussians are chosen so as to best balance the effect of the 
different datapoints through E-M. 
 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

119 

 
 

5.9.3 Curse of dimensionality, choice of hyperparameters 

 
The above showed that when considering particular condition on the form of the kernel matrix for 
GP, GPR and GMR become equivalent. In its generic form, however, GP is not equivalent to GMM 
and offers a more powerful tool for inference.  
 
Unfortunately, this is done at the expense of being prohibitive in its computation steps. Indeed, 
Gaussian Process is a very expensive method as inference grows with the number of datapoints 

with ( )3O M . Advances in the field investigate sparsifying techniques to decrease in a clever 

manner the number of training points. Unfortunately, most methods are based on some heuristics 
to determine which points are deemed better than others. As a result the gain of doing a full GP 
inference with heuristic-driven sparsification over GMM is no longer obvious.  
 
Another drawback lies in the choice of the kernel function and in particular of the kernel width. This 
is illustrated in Figure 5-19. Too small a kernel width may lead to poor generalization as it allows 
solely points very close to one another to influence inference. On the other hand too large a kernel 
width may smooth out local irregularities. In this respect, GMM is a more powerful tool to provide 
generalization outside areas not covered by the datapoints, while still encapsulating the local non-
linearities. I  
 

 

 

Figure 5-19: Effect of the width of a gaussian kernel on a classification task (SVM, top) and regression (GPR, 
bottom). When the kernel width (gamma) is very small, the generalization becomes very poor (i.e. the system 
overfits the data and is unable to estimate correctly on samples that have never been seen). Choosing 
appropriate parameters for the kernel depends on the data and is one of the main challenges in kernel 
methods. 

[DEMOS\CLASSIFICATION\SVM-KERNEL-WIDTH.ML] [DEMOS\REGRESSION\GPR-KERNEL-WIDTH.ML] 
 
  



 

©  A.G.Billard 2004         –         Last Update October 2024 

120 

5.10 Gaussian Process Classification 
 
 
Generative versus Discriminative Approaches 
 
To recall, there are two approaches to classification. One can either follow a so-called generative 

approach whereby one first learns the joint distribution ( ),p X Y that associates the set of datapoints 

 1,.... MX x x=  to a set of labels  1,..., MY y y= , where each class label denotes the associated 

class numbering. Using the joint distribution, one can then compute the conditional distribution 

( )|p Y X  to predict the class label for each datapoint. Alternatively, one can follow a discriminative 

approach in which one estimates directly the conditional distribution ( )|p Y X .  In the previous 

section, we showed how to perform regression using a Gaussian Process, it seems hence intuitive 
to extend this to classification and to this end to take a discriminative approach.  
 

 
Given that there are the generative and discriminative approaches, which one should 
we prefer? This is perhaps the biggest question in classification, and we do not 
believe that there is a right answer, as both ways of writing the joint p(y, x) are correct. 
However, it is possible to identify some strengths and weaknesses of the two 
approaches. The discriminative approach is appealing in that it is directly modelling 
what we want, p(y|x). Also, density estimation for the class-conditional distributions is 
a hard problem, particularly when x is high dimensional, so if we are just interested 
in classification then the generative approach may mean that we are trying to solve a 
harder problem than we need to. However, to deal with missing input values, outliers 
and unlabelled data missing values points in a principled fashion it is very helpful to 
have access to p(x), and this can be obtained from marginalizing out the class label 

y from the joint as ( ) ( ) ( )|
y

p x p y p x y=   in the generative approach. A further factor 

in the choice of a generative or discriminative approach could also be which one is 
most conducive to the incorporation of any prior information which is available.  
(Quote from C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine 
Learning, the MIT Press, 2006.) 
 

 
Linear Case 
 
As for all other kernel methods send in this class, we will first start with the linear case and then 
extend it to the non-linear case by exploiting the kernel trick. 
 
One problem when performing multi-class classification is to compare the predictions of each class. 
It would be easier if the output of the density could have a direct probabilistic interpretation. In the 
simply binary classification problem where the label y takes either value +1 or value -1, i.e. 

 1; 1 ,  1...iy i M − + = , a probabilistic readout of the the conditional ( )|i ip y x  can be obtained easily 

by using, for instance, the logistic regressive model and compute: 
 

 ( )
( )

1
1|

1
T

i

i i

x w

p y x

e
−

= + =

+
 (5.92) 

  

By extension, the probability of the label -1 is ( ) ( )1| 1 1|i i i ip y x p y x= − = − = + . 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

121 

The weight w determines the slope of the sigmoid function. This is an open parameter which should 

be chosen so as to ensure optimal classification, or conversely minimal penalty due 
misclassification. We now have all the tools to proceed to Gaussian Process classification. 
 
 
As in Gaussian Process Regression, we can start by putting a Gaussian prior on the distribution of 

the parameter w , i.e. ( )~ 0, ww N   and compute the log of the posterior distribution on the weight 

given our dataset  1,.... MX x x=  with associated labels  1,..., MY y y= : 

 

 ( )
( )1

1 1
log | , log

2
1

T
i

M
T

w
x wi

p w X Y w w

e
−=

= −  +

+
  (5.93) 

 
Unfortunately the posterior does not have an analytical solution, a contrario to the regression case. 
One can however observe that the posterior is concave and hence its maximum can be found using 
classical optimization method, such as Newton’s methods or conjugate gradient descent. Figure 
Figure 5-20 illustrates nicely how the original weight distribution is tilted as an effect of fitting the 
data. 
 
 

 
Figure 5-20: a) Contours of the prior distribution p(w) = N(0, I).  (b) dataset, with circles indicating class +1 
and crosses denoting class −1. (c) contours of the posterior distribution p(w|D). (d) contours of the predictive 
distribution p(y_=+1|x_), adapted from C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine 
Learning, the MIT Press, 2006. 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

122 

Non-linear case 
 
The non-linear case of classification using Gaussian Process proceeds similarly to Gaussian 
Process Regression. Instead of putting a prior on the weight as in the linear case, we put a prior 

on the latent function ( )f x , such that we have  

 ( )
( )

1
1|

1
f x

p y x
e

−
= + =

+
 (5.94) 

 
This has for effect to ensure that the output is bounded between 0 and +1 and can hence be 
interpreted as a probability (as in the linear case), see Figure Figure 5-21  
 

 

Figure 5-21: Example of an arbitrary prior function f(x) (here composed of the superposition of two Gaussian). 
Applyinhg the sigmoid function on f(x) flattens the function, while normalizing between 0 and +1. 

 

One now can build an estimate of the class label *y  for a query point 
*x  by computing the posterior 

distribution of the function ( )f x  applied on our query point. If we make this a distribution that is a 

function of the training datapoints, we have ( )( )* *| , ,p f x x X Y and the posterior distribution we want 

to compute is given by: 
 

 ( ) ( )( ) ( )( )* * * * *| , , | , ,p y x X Y sigmoid f x p f x x X Y df=   (5.95) 

 

The integral on the righthandside compute all values on our prior on ( )f x . While in GPR there was 

an analytical solution, in the classification case, the integral is usually analytically intractable. To 
solve this, one must use either an analytic approximations of integrals, or solutions based on Monte 
Carlo sampling. 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

123 

 
Figure 5-22: Example of successful classification with Gaussian Process classification, adapted from C. E. 
Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006.Panel  a 
shows the location of the data points in the two-dimensional space [0, 1]. The two classes are labelled as open 
circles (+1) and closed circles (- 1). Panels (b)-(d) show contour plots of the predictive probability Eq[_(x_)|y] 
for signal variance f = 9 and length-scales ` of 0.1, 0.2 and 0.3 respectively. The decision boundaries between 
the two classes are shown by the thicker black lines. The maximum value attained is 0.84, and the minimum 
is 0.19. 

 
 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

124 

  



 

©  A.G.Billard 2004         –         Last Update October 2024 

125 

6 Markov-Based Models 
 
 
Except for ICA, recurrent neural networks and continuous Hopfield network, these lectures notes 
have covered primarily methods to encode static datasets, i.e. data that do not vary in time. Being 
able to predict patterns that vary in time is fundamental to many applications. Such patterns are 
often referred to as time-series. 
 
In this chapter, we cover two models to encode time-series based on the hypothesis of a first-
order Markov Process, which we describe next. 
 
 

6.1 Markov Process 
 
A Markov Process is by definition discrete and assumes that the evolution of a system can be 

described by a finite set of states. If tx is the state of the system at time, then x can take only N

particular values  1,... Ns s , i.e.  1,... Nx s s .  

 
A first-order markov process is a process by which the future state of the system can be determined 
solely by knowing the current state of the system. In other words, if one has made T consecutive 

observation of the state x of the system:  
1

T

t t
X x

=
= , the probability that the state of the system 

at the next time step 1Tx + take any of the N possible value is determined solely by the current state, 

i.e.: 
 

 ( ) ( )1 1 0 1| , ,...., |t j t t t j tp x s x x x p x s x+ − += = =  (5.96) 

 
 
When modeling time-series, to assume that a process description is first-order markov is 
advantageous in that it simplifies greatly computation. Instead of computing the complete 

conditional on all previously observed states 1 0, ,....,t tx x x− , one must solely compute the 

conditional on the last state. We will see how this is exploited in two different techniques widely 
used in machine learning next. 
 
 
 
 
 
 
 
  



 

©  A.G.Billard 2004         –         Last Update October 2024 

126 

6.2 Hidden Markov Models 
 
 
Hidden Markov Models (HMMs) are used to model the temporal evolution of a complex problem of 
which one can have only a partial description. The goal is to use this model to predict the evolution 
of the system in the future. One may be provided solely with the current state of the system or with 
several of the previous states of the system.  
 
Take for example the problem of predicting traffic jams. This seems to be a very intricate problem, 
especially as one can usually only observe part of the problem. One may have video cameras and 
other type of sensors monitoring the traffic at every single junction. However, one cannot know 
what individual path each car will follow. While one may suddenly measure an increase in traffic at 
all points and one may hence infer that there are good chances that a traffic jam may be created. 
It is very difficult to determine when and on which particular road the traffic jam will happen, if any. 
The underlying process leading to traffic jam is stochastic and highly complex. HMM-s aim at 
encapsulating such stochasticity and complexity in a partially observable problem. 
 
HMM are used widely in speech recognition and gesture recognition. In speech recognition, they 
are used to model the temporal evolution of speech pattern and to recognize either complete words 
or parts of the words, such as phonemes. In gesture recognition, HMM are used to recognize 
patterns of motions (from either video data or from recording joint motion through e.g. exoskeleton 
or motion sensors). One usually builds one HMM per gesture and one uses a measure of the 
likelihood that a new observed gesture was generated by a particular HMM to recognize this 
newspecific gesture (e.g. stop motion, waving motion, pointing motion, etc). These motions can 
either be computed from searching for body features in an image or through the use of an 
exoskeleton to measure directly displacement of each body segment.   
 

6.2.1 Formalism 

 
HMM extends the principle of first-order Markov Process and assumes that the observed time 
series was generated by an underlying hidden process. This hidden process is assumed to consist 
of stochastic finite state automata where the states sequence is not observed directly. Each state 
has an underlying probabilistic function describing the distribution of observable outputs. Two 
concurrent stochastic processes are involved, one modeling the sequential structure of the data, 
and one modeling the local properties of the data. A typical graphical representation of this process 
is given in Figure 6-1. 
 

Let  
1

T

t t
O o

=
= be the set of observations. These correspond to the set of values for all parameters 

describing the system which one recorded over a time period T. Each observation is usually 

multidimensional, e.g.   ot
Î q

. The set 
  
S = s

i{ }
i=1

N

 of N hidden states is finite.  

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

127 

 

 

Figure 6-1: Schematic illustrating the concepts of a HMM. The process is assumed to be composed of 7 hidden 
states. All transitions across all states are possible (fully connected). Note that for simplicity, we show only 
arrows across adjacent states. The schematic at the bottom shows a particular instance of transition across 
states over five time steps. Transitiosn across each state leads to an observation of a particular set of values 
for the system’s variables. As we see, the system rotates first across states 1 and 2 and then stays for two 
time steps on state 3.  

 
Transitions across states are described as a stochastic finite automata process. The stochasticity 
of the process is represented by computing a set of transition probabilities that determine the 
likelihood to stay in a state or to jump to another state. Transition probabilities are encapsulated in 

a N N matrix A , whose elements  
, 1...ij i j N

a
=

represent the probability of transiting from state i

to state j , i.e. ( )|ij j ia p s s= . The sum of all elements in each row of A equals 1. Each state is 

associated an initial probability ,  1,..i i N = that represents the likelihood to be in that state at any 

given point in time. In addition, one assigns to each state i  a density ( )ib o , so-called the emission 

probability that determines the probability of the observation to take a particular value when in state

iS . Depending on whether the observables take discrete versus continuous values, we talk about 

a discrete versus continuous HMM. When continuous, the density may be estimated through a 
Gaussian Mixture Model. In this case, one associates a GMM per state. HMM are used widely in 
speech processing. There, often, one uses very few hidden states (at maximum 3!). The complexity 
of the speech is then embedded in the GMM density modeling associated at each state. 
 
 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

128 

 

Figure 6-2: Schematic illustrating the concept of emission probabilities associated to each state in a HMM. to  

is the observable at time t. It can take any value
3v . 

 

6.2.2 Estimating a HMM 

 
Designing an HMM consists in determining the hidden process that explains at best the 
observations. The unkown variables in a HMM are the number of states, the transitions and initial 
probabilities and the emission probabilities. Since the matrix A is quite large, sometimes, often 
people chose a sparse matrix, i.e. they set to zero most of the probabilities hence allowing only 
some transitions across some states. The most popular model is the so-called left-right model that 
allows transitions solely from state 1, to state 2, and so forth until reaching the final state.  
 
Estimating the parameters of the HMM is done through a variant of Expectation-Maximization called 
the Baum-Welch procedure. For a fixed topology (i.e. number of states), one estimates the set of 

parameters ( , , )A B = by maximizing the likelihood of the observations given the model: 

 

  

P(O | l) = P(O | q,
q

å l)P(q | l) (5.97) 

where  1,...., Tq q q=  is one particular set of expected state transitions during the T observation 

steps. In the example of Figure 6-1, the set q is 1 1 2 2 3 1 4 3 5 3, , , ,q s q s q s q s q s= = = = = . 

 
Computing all possible combinations of states in Equation (5.97) is prohibitive. To simplify 
computation, one uses dynamic programming through the so-called forward-backward 
computation. The principle is illustrated in Figure 6-3 left. It consists of propagating forward in time 
the estimate of the probability of being in a particular state given the set of observations. At each 
time step, the estimate of being in state i is given by: 
 

 1( ) ( ... , | )t t t ii P o o q s = =  (5.98) 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

129 

 

Figure 6-3: The Forward Procedure used in the Baum-Welch algorithm for estimating the HMM parameters 

 
The forward procedure is thus iterative with an initialization step, an induction step (typical of 
dynamic programming) and a termination step, see Figure 6-3 right. 
 
It is easy to see that the same principle can be extended backwards and, thus, that one can infer 
the probability of being in a particular state by starting from the last state and building one’s way 
back in time. This is referred to as the backward procedure and is illustrated in Figure 6-4.  
 
 

 
 

Figure 6-4: The backward procedure in the Baum-Welch algorithm for estimating the HMM parameters 

While solving with Equation (5.97) would take on the order of 2T*N
T

 computation steps, the forward 

or backward procedures reduce this computation greatly and take instead on the order of N
2
T 

computation steps each. One may wonder what the advantage would be to do the computation 
either forwards or backwards. There is no direct advantage to do either. These two procedures are 
however crucial to the estimation of the parameters of the HMM. It is easy to see that, if one can 
compute the probability to be in state i at time t with the forward procedure and the probability to 



 

©  A.G.Billard 2004         –         Last Update October 2024 

130 

be in state j at time t+1 with the backward procedure, then one can combine these two quantities 

to compute the probability ( , )t i j  of transiting from i to j at time t. This is illustrated in Figure 6-5. 

 

 

Figure 6-5: Combining the forward and backward procedure to estimate the transition probability across the 
arc joining state i and state j. 

 
The probability of being in the state i at time t can then be inferred by simply summing over all the 
transition probabilities and is given by: 
 

 

  

g
t
(i) = x

t
(i, j)

j=1...N

å  (5.99) 

 

From the computation of both ( , )t i j and ( )t i  for each state, i.e. , 1...i j N= , one can now derive 

the update rule for all open parameters. HMM re-estimation of the parameter hence starts from an 

estimate of the parameters ( , , )A B = and updates these iteratively acoording to: 

 
The initial probabilities follow immediately from the computation of the probability to be in any given 
state at time t=1:  

 
  
p̂

i
= g

1
(i) (5.100) 

 
 
The transition probabilities are then given by computing the sum of probabilities of transiting to this 
particular state over the course of the whole sequence. This is normalized by the probability of 

being in any state (the reader will here recognize the Bayes rule, with ˆija being the conditional 

probability of being in j when being in j): 
 

 

  

â
ij

=
x

t
(i, j)

t=1

T -1

å
g

t
(i)

t=1

T -1

å
 (5.101) 

 
 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

131 

Finally, the emission probabilities in the discrete case are given by computing the expected number 

of times one will be in each particular state and that the observation took a particular value kv , i.e. 

 
o

t
= v

k
: 

 

  

b̂
i

v
k( ) =

g
t
(i)

{t:o
t
=v

k
}å

g
t
(i)

t=1

T

å
 (5.102) 

 

In the continuous case, one builds a continuous estimate of the 
  
b̂

i
, e.g. by building a GMM for 

each state. 
 
The ^ symbol in each of the above designates the new estimate of the values for each of the 
HMM parameter. 
 
 

6.2.3 Determining the number of states 

 
A crucial parameter to HMM (and similarly to GMM) is the number of states K. Increasing K 
increases the number of parameters and so computation. Of course, increasing the number of 
states allows a finer description of the density and hence increases the likelihood of the model 
given the data. This increase may however be negligeable in contrast to the increase in 
computation time due to the increase of parameters. One must then find a tradeoff between 
increasing the number of parameters and improving the likelihood of the model. This is 
encapsulated in the Aikaike Information Criterion (AIC):  

  

   AIC= - 2ln L+ 2K  (5.103) 

 
where L is the likelihood of the model. 
 
 
This criterion was however lately replaced by the Bayesian Information Criterion that also weights 
the fact that the estimate of the number of parameters depends on the number of data points. 
Sparsity in the data may require a lot of parameters to encapsulate non-linearities in these. As the 
number of datapoints M increases, so does the influence of the number of parameters. 

  

 
  
 BIC = -2ln L + K ln M( ) (5.104) 

 
 
An alternative to the above two criteria is the Deviation Information Criterion (DIC) 
 

 
  
DIC = E D K( ){ }-D E K{ }( )        with       D K( ) = - 2 ln p X | K( )  (5.105) 

 
Again the smaller the DIC, the better the model fits the data. DIC favors a good fit, while penalizing 
models by measuring the effective number of parameters required for a similar level of fit.  
 
 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

132 

6.2.4 Decoding an HMM 

 
There are two ways to use a HMM once built. It can be used either for classification or for prediction. 
 
Classification: assume that you have trained two different HMM-s on the basis of two classes of 
time series (say you trained a HMM to recognize a waving gesture and another HMM to recognize 
a pointing gesture on the basis of ten examples each). One can use these two HMM-s classify the 
observation of a new times series (a new movement) to determine whether it belonged more to the 
first or second type of time series (i.e. whether the person was waving or rather pointing). This can 
be done by computing the likelihood of the new times series given the model and determining 
simply which model is most likely to explain this time series.  If the new times series is X’, the set 

of parameters of each model are  l
1 = (A1,B1,p 1),  l2 = (A2 ,B2 ,p 2)  respectively, then the 

likelihoods of X’ to have been generated by each of these two models are
  
p X ' | l1( ),  p X ' | l2( )

. These likelihoods can be computed using either the forward or backward procedure.  
 
One can then decide which of model 1 and 2 is most likely to have explained the time series by 
directly comparing the two likelihoods. That is, model 1 is more likely to have generated X’ if: 
  

  
p X ' | l1( ) > p X ' | l 2( )    (5.106) 

 
Such a comparison is however difficult as the value of the likelihood is unbounded (recall that pdf 
are positive functions with no upper bound). It can take very large values just as an effect of one 
model having much more parameters than the other. Hence, in practice, one sometimes normalizes 
the likelihood by the number of parameters of each model. Since one only compares two values, 
one has no idea how well any of the two models actually explain the data. It could be that both 
likelihoods are very low and that hence the observed time series belongs to neither of these two 
models. In speech processing, people avoid this problem by creating a “garbage” model that 
ensures that, if a times series is not well represented by any of the meaningful model, then it will 
be automatically classified in the garbage model. Building a garbage model requires training the 
model on a large variety of things that cannot be the pattern one is looking for (e.g. noise from cars, 
doors shutting down, etc). Generating such a large set of non-class samples is not very practical. 
An alternative is to retain a value of the average likelihood obtained with the training examples for 
each model, and use this to ensure that the likelihood of the new time series is at least as big as 
that seen during training (or within some bounds). 
 
 
Prediction: Once built a HMM can be used to make prediction about the evolution of a given time 
series if provided with part of the time series. Clearly the farther back in time one can go, the better 
the prediction.  
 
Say that you have built a HMM to represent the temporal evolution of the weather day after day 
taking into account the seasons and the particular geographical area, one can then use the model 
to predict the weather for the following couple of days. The farther in the future the prediction, the 
less reliable it may be.   
 
To perform prediction one uses the Viterbi algorithm. The viterbi algorithm aims at generating the 

most likely path. Given a HMM model with parameters
  l = (A, B,p ), one looks for the most likely 

state sequence
  
Q = q

1
,¼,q

T{ } for T time steps in the future, i.e. one optimizes for: 

 

  
Q = argmax

Q '

P(Q ' |O,l) (5.107) 

To do this, one proceeds iteratively and tries to find the optimal state at each time step. Such an 
iterative procedure is advantageous in that, if one is provided with part of the observations as in 



 

©  A.G.Billard 2004         –         Last Update October 2024 

133 

the above weather prediction example, one can use the observations 
  

o
1
,...,o

t{ }made over the 

first t time steps to guide the inference. 
 
The optimal state at each time step is obtained by combining inferences made with the forward and 

backward procedures and is given by

  

g
t
( j) =

a
j

t( )b j
t( )

a
i

t( )bi
t( )

i=1

N

å
, see also Equation(5.99). 

 
The most likely sequence is then obtained by computing:  
 

 

  
q t( ) =

1£i£N

argmax g
t
(i)( ) (5.108) 

 
The state sequence maximizing the probability of a path, which accounts for the first t observations 
and ends in state j is given by: 
 

 

  
d

t
( j) = max

q
1
...q

t-1

p(q
1
...q

t-1
,q

t
= j,o

1
...o

t
) (5.109) 

 
Computing the above quantity requires taking into account the emission probabilities and the 
transition probabilites. Again one proceeds iteratively through induction. This forms the core of the 
Viterbi algorithm and is summarized in the table below: 
 

 
 
 
Hence, when inferring the weather over the next five days, given information on the weather for the 

last ten days, one would first compute the first 10 states sequence 1 10,.....q q using (5.109) and then 

one would use (5.108) to infer the next five states 11 15,.....q q . Given 11 15,.....q q , one would then 

draw from the associated emission probabilities to predict the particular weather (i.e. the particular 
observation one should make) for the next 15 time slots.  
 
: 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

134 

6.2.5 Further Readings 

 
Rabiner, L.R.  (1989) “A tutorial on hidden Markov models and selected applications in speech 
recognition”, Proceedings of the IEEE, 77:2 

Shai Fine, Yoram Singer and Naftali Tishby (1998), “The Hierarchical Hidden Markov Model”, 
Machine Learning, Volume 32, Number 1, 41-62. 

  



 

©  A.G.Billard 2004         –         Last Update October 2024 

135 

 

7 Annexes 
 

7.1 Brief recall of basic transformations from linear algebra 

7.1.1 Eigenvalue Decomposition 

 
The decomposition of a square matrix A into eigenvalues and eigenvectors is known as 
eigen decomposition. The fact that this decomposition is always possible as long as the 
matrix consisting of the eigenvectors of A is square is known as the eigen decomposition 
theorem.  
 

Let A be a linear transformation represented by a matrix A . If there is a vector 

0Nv  such that  

Av v=  

 
 (6.1) 

 

 

for some scalar  , then  is called the eigenvalue of A with corresponding (right) 

eigenvector v .  

Letting A  be a N N square matrix:  

11 12 1

21 22

1 2

  ... 

  ... 

...

  ... 

N

N N NN

a a a

a a aN

a a a

 
 
 
 
 
 

 (6.2) 

 
 

with eigenvalue  , then the corresponding eigenvectors satisfy  

 

11 12 1 1 1

21 22 2 2 2

1 2

  ... 

  ... 

... ......

  ... 

N

N

N NN N NN

a a a v v

a a a v v

v va a a



     
     
     =
     
     

    

 (6.3) 

 
 
which is equivalent to the homogeneous system  

11 12 1 1

21 22 2 2

1 2

-            ...    0

        -    ...    0

.........

0               ...   -

k

k

NN N NN

a a a v

a a a v

va a a







     
     
     =
     
     

   

 (6.4) 

 
 
Equation (6.4) can be written compactly as  



 

©  A.G.Billard 2004         –         Last Update October 2024 

136 

 

( ) 0A I v− =  (6.5) 

 
 

where I is the identity matrix. As shown in Cramer's rule, a linear system of equations has 
nontrivial solutions iff the determinant vanishes, so the solutions of equation (6.5) are given 
by  
 

( )det 0A I− =  (6.6) 

 
 

This equation is known as the characteristic equation of A , and the left-hand side is known 
as the characteristic polynomial.  
 

For example, for a 2 2  matrix, the eigenvalues are  
 

( ) ( )
2

11 22 12 21 11 22

1
4

2
a a a a a a

 = +  + −
  

 (6.7) 

 
 

If all N eigenvalues are different, then plugging these back in 6.5 gives 1N −  independent 

equations for the N components of each corresponding eigenvector, and the system is said 
to be nondegenerate. If all or some of the eigenvalues are identical, then the system is said 
to be degenerate and the eigenvectors are not linearly independent. In such cases, the 
additional constraint that the eigenvectors be orthogonal,  
 
 

( ) 0
T

i je e =  (6.8) 

 
can be applied to yield additional constraints, thus allowing solution for the eigenvectors.  
 
If all the eigenvectors are linearly independent, then the eigenvalue decomposition  
 

 
1A V V −=   (6.9) 

 

Where the columns of V are composed of the eigenvectors of A and  is a diagonal matrix 
composed of the associated eigenvalues. 
 

7.1.2 Singular Value Decomposition (SVD) 

 
When the eigenvectors are not linearly independent, then V does not have an inverse (it is 
thus singular) and such decomposition does not exist. The eigenvalue decomposition 
consists then in finding a similarity transformation such that: 
 

 A U V=   (6.10) 

 

With ,U V two orthogonal (if real) or unitary (if complex) matrices and  a diagonal matrix. 

Such decomposition is called singular value decomposition (SVD). SVD are useful in sofar 



 

©  A.G.Billard 2004         –         Last Update October 2024 

137 

that A represents the mapping of a N-dimensional space onto itself, where N is the 
dimension of A. 
 

An alternative to SVD is to compute the Moore-Penrose Pseudoinverse
#A of the non 

invertible matrix A and then exploit the fact that, for a pair of vectors z and c, 
#z A c=  is 

the shortest length least-square solution to the problem Az c= .Methods such as PCA that 

find the optimal (in a least-square sense) projection of a dataset can be approximated using 
the pseudoinverse when the transformation matrix is singular. 
 

7.1.3 Frobenius Norm 

 
The Frobenius norm of an m n matrix A is given by: 

 
2

1 1

m n

ijF
i j

A a
= =

=   (6.11) 

 
 
 

7.2 Recall of basic notions of statistics and probabilities 

7.2.1 Probabilities 

 
Consider two variables x and y taking discrete values over the intervals [x1,…, xM] and 
[y1,…, yN] respectively, then

( )  is the probability that the variable x takes value x ,  with:i iP x x=  

( )

( )
1

i)   0 1,   1,..., ,

ii)  1.

i

M

i

i

P x x i M

P x x
=

 =   =

= =
 

 

( )The same two above properties applies to the probabilities ,  1,... . jP y y j N=  =  

 
Some properties follow from the above: 

Let ( )P x a= be the probability that the variable x will take the value a. If ( ) 1P x a= = , x 

is a constant with value a. If x is an integer and can take any value a between [1, ]N   

with equal probability, then the probability that x takes value a is 
1

( )P x a
N

= =  

 
 
Joint probability: 
The joint probability that the two events A (variable x takes value a) and B(variable y 
takes value b) occuris expressed as: 
 

 ( ) ( ) ( ) ( )( ),P A B P A B P x a y b=  = =  =  (6.12) 

 
 
Conditional probability: 



 

©  A.G.Billard 2004         –         Last Update October 2024 

138 

P(A| B) is the conditional probability that event A will take place if event B already took 
place 

 ( )
( )

( )
|

P A B
P A B

P B


=  (6.13) 

 
 

It follows that: 

 ( ) ( ) ( )|P A B P A B P B =  (6.14) 

 
 
By the same reasoning, we have: 
 

 ( ) ( ) ( )|P A B P B A P A =  (6.15) 

 
 

Hence,  

 ( ) ( ) ( ) ( )| |P A B P B P B A P A=  (6.16) 

 
 
Bayes' theorem: 
 

 ( )
( ) ( )

( )

|
|

P B A P A
P A B

P B
=  (6.17) 

 
 
 
Marginal Probability: 
 
The so-called marginal probability that variable x will take value xi is given by: 

1

( ) ( , )
N

x i i j

j

P x x P x x y y
=

= = = =   

 (6.18) 
 
To compute the marginal, one needs to know the joint distribution of variables x and y. 
Often, one does not know it and one can only estimate it.Note that if x is a 
multidimensional random variable, then the marginal is a joint distribution over the 
random variable spanned by x. 
 
The joint distribution is far richer than the marginals. The marginals of N variables taking 
K values corresponds to N(K-1) probabilities, while their joint distribution corresponds to 
KN-1 probabilities.  

 

7.2.2 Probability Distributions, Probability Density Function 

 

p(x) is the probability density function of the variable x  . p(x) is continuous, Lebesgue 

integrable, non-negative and normalized: 



 

©  A.G.Billard 2004         –         Last Update October 2024 

139 

 

( ) 0,   

( ) 1

p x x

p x dx


−

 

=
  (6.19) 

 

7.2.3 Expectation 

 
If x an take a set if discrete value in X and follow with probability P(x), then: 

 
  ( )

x X

E x xP x


= =   (6.20) 

 
The expectation of x, E{x}, is the mean   of its distribution: 

    ( )
X

E x x p x dx = =    (6.21) 

 
 

7.2.4 Variance and Covariance 

 

The variance
2 of a distribution measures the amount of spread of the distribution around 

its mean: 
 

   ( )     
222 2Var x E x E x E x = = − = −     (6.22) 

 
  is the standard deviation of x. 

 
 
For two random variables x and y, one can measure the level of correlation between the 
two variables through the co-variance: 
 

      cov( , ) ,x y E x y E x E y= −   (6.23) 

 

  ( ), ,E x y xyp x y dxdy=  is the expectation of the joint distribution. 

 
 

7.2.5 Distribution Function or Cumulative Distribution Function 

 

The distribution function ( ) ( )* *

xD x P x x=  also called the cumulative distribution 

function (CDF) describes the probability that a random variable x  takes on value less 
than or equal to a number x*.  
 
If p(x) is the probability density function of x then: 
 

 ( ) ( )* * ( )xP x x D x p x dx = =   (6.24) 

 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

140 

p(x) dx ~ probability of x to fall within an infinitesimal interval [x, x + dx]. 
 
 
The probability that the variable x takes a value in the subinterval [a,b] is equal to: 

( ) ( )
b

a
P a x b p x dx  =   

 
 

7.2.6 Joint and Conditional Probability Distribution  

For two random variables x and y with joint distribution p(x,y), the conditional probability 
of y given x is given by: 

 ( )
( )

( )
( )

( )

( | )( , )
| |

p x y p yp x y
p y x p y x

p x p x
=  =   (6.25) 

7.2.7 Marginal Probability Distribution or Marginal Density 

 
For two random variables x and y with joint distribution p(x,y), the marginal density of x is 
given by: 

( ) ( , )xp x p x y dy=   
 

7.2.8 Statistical Independence 

If x and y are two random variables, generated by the distribution p(x) and p(y), then x and 
y are said to be mutually independent, if their joint density p(x,y) is equal to the product of 
their density functions:  

 ( , ) ( ) ( )p x y p x p y=  (6.26) 

 

7.2.9 Uncorrelatedness 

x and y are said to be uncorrelated, if their covariance is zero, i.e. ( )cov , 0x y = . If the 

variables are generated by a distribution with zero means, then uncorrelatedness is equal 
to product of their separate expectations:  

 
     

     

cov( , ) , 0

,

x y E x y E x E y

E x y E x E y

= − =

 =
 (6.27) 

 
Independence is in general a much stronger requirement than uncorrelatedness. Indeed, 
if the variables are independent, for any transformation f1 and f2 

  

( ) ( )  ( )  ( ) 1 2 1 2E f x f y E f x E f x=  (6.28) 

 

7.2.10 Uniform and Gaussian PDF 

 
We here recap the definition of the uniform and Gaussian distribution, the two most 
classical parametric distribution probabilities. These distributions are parametric because 
their equation is known and depends only on a finite set of parameters. Using such 
distribution to model arbitrary distribution is advantageous as it amounts to determine only 



 

©  A.G.Billard 2004         –         Last Update October 2024 

141 

the parameters of the distribution. In contrast, non-parametric distribution require to keep 
in memory all datapoints to perform a precise estimate of the distribution. 
 
 

• The Uniform distribution is usually defined over an interval where the random 
variable takes the same uniform density of probability. 
  

 ( )

0          if      

1
    if      ,      with  ,  ,  

0          otherwise

a x

p x a x b x a b
b a





=   
−



  (6.29) 

 

 

Figure 7-1: Pdf and Cumulative Distribution for the Uniform Distribution 

 
The uniform pdf is unbounded above and can reach infinity as the b-a interval 
goes to zero. 
 
 

• In one dimension, the Gaussian distribution, usually called Normal 
distribution  

 ( )

( )
2

221

2

x

p x e





 

 −
 −
 
 =   (6.30) 

 
To emphasize that the Gaussian pdf depends on two parameters, the mean and 

variance, one sometimes writes ( ); , ,p x   or equivalently ( )| , .p x  
 

 
 

• The multi-dimensional Gaussian or Normal distribution has a pdf given by: 
 

 ( )
( )

( ) ( )( )1

1

22

1
; ,

2

T
x x

N
p x e

 





−− −  −

 =



  (6.31) 

if x is N-dimensional, then

 is a dimensional mean vector 

 is a  covariance matrix 

N

N N

 −

 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

142 

 

Figure 7-2: A 2-dimensional Gaussian distribution. The 2D oval-shape representation (left) is obtained by 
projecting the density onto the 2D axes of the random variable X. The color code represent surfaces of 1 
standard deviation (std) in red, 2 std in light blue, 3 std in darker blue, etc. 

 
The marginal and conditional distribution in a multivariate Gaussian distribution are all 
Gaussian distributions, see Figure 7-3. This result is quite important and is used extensivly 
in machine learning to exploit the fact that the marginal and conditional can be 
parametrized and their parameters can be estimated through techniques applied to 
Gaussian distribution, such as expectation-maximization. 
 
 

 

Figure 7-3: How the Joint, Marginal, and Conditional distributions are related in a bi-dimensional Gaussian 

distribution over the random variable x and y.  

 
 

7.2.11 Likelihood Function 

 

The likelihood function L  (usually simply called the likelihood) is an important quantity in 
statistics and in machine learning. It determines the total probability of observing the set, 



 

©  A.G.Billard 2004         –         Last Update October 2024 

143 

 
1

M
i

i
X x

=
= , of M observation of the random variable x  given that x follows a distribution 

( )p x  .   

 ( ) ( )1 2,  ,..., ML X p x x x=   (6.32) 

 

For a set X of M datapoints  
1
,

M
i

i
X x

=
= where each datapoint is identically and 

independently distributed (i.i.d) according to the density ( )p x , the likelihood is given by: 

 ( ) ( )
1

 
M

i

i

L X p x
=

=    (6.33) 

The likelihood is used to help to determine how to improve the parameter of the model of 

the pdf to increase the likelihood that the particular choice of parameter (and of density) 

represent the set of data.  

 

( )

( ) ( )

For a parametrized density ; , ,  with parameters , ,  the Likelihood Function is 

the likelihood of the data  given the parameters: , |  | , .

p x

X L X p X

   

   =
 

 
 

7.2.12 Kullback-Leibler Distance 

 
The most common method to measure the difference between two probability 
distributions p and q is to us the Kullback-Leibler distance (DKL), sometimes known as 
relative entropy: 

 

 ( ) ( )
( )

( )
|| log

p x
D p q p x dx

q x
=   (6.34) 

 
 

DKL is always positive ( )|| 0D p q  . It is zero if and only if p=q, i.e. ifthe variables are 

statistically independent. Note that in general the relative entropy or DKL is not symmetric 

under interchange of the distributions p and q: in general ( ) ( )|| ||D p q D q p . Hence, 

DKL is not strictly a distance. The measure of relative entropy is very important in pattern 
recognition and neural networks, as well as in information theory, as will be shown in other 
parts of this class. 
 
  



 

©  A.G.Billard 2004         –         Last Update October 2024 

144 

 

7.3 Estimators 
 

7.3.1 Maximum Likelihood 

 
Machine learning techniques often assume that the form of the distribution function is 
known and that sole its parameters must be optimized to fit at best a set of observed 
datapoints. It then proceeds to determine these parameters through maximum likelihood 
optimization. 
 
The principle of maximum likelihood consists of finding the optimal parameters of a given 
distribution by maximizing the likelihood function of these parameters, equivalently by 
maximizing the probability of the data given the model and its parameters, e.g.: 
  
The method of maximum likelihood is a method of point estimation that uses as an 
estimate of the parameters of the distribution by maximizing the likelihood function. If   is 

the parameter of the density and  
1

M
i

i
X x

=
=  the set of observed instances of the random 

variable x, the probability of having observed the set X given the underlying distribution 
p(x|  ) is: 

 

 ( ) ( )| |L X P X =  (6.35) 

 

the value of X  that maximizes ( )L  is the maximum-likelihood estimate of  . In 

order to find the maximum, one will compute the derivative of L: 0
L




=


. Often, it is 

simpler to compute the derivative of the logarithm of the likelihood function, the log-
likelihood. 

 

If ( )p x  is a multi-dimensional Gaussian function, with parameters ,    . The mean and 

covariance matrices can be estimated in closed-form by Maximum-Likelihood: 
 

 

( ) ( )

( ) ( )

, ,
max , | max | ,

| , 0   and  | , 0

L X p X

p X p X

 
 

 


 
 = 

 
 =  =

 

 (6.36) 

 

In most problems, it is not possible to find an analytical expression for ̂ . One, then, has 

to proceed to an estimation of the parameter through an iterative procedure called 
Expectation-Maximization (EM), see next. 
 

7.3.2 EM-Algorithm 

  
EM is an algorithm for finding maximum likelihood estimates of parameters in probabilistic 
models, where the model depends on unobserved latent variables. EM alternates between 
performing an expectation (E) step, which computes the expected value of the latent 
variables, and a maximization (M) step, which computes the maximum likelihood estimates 
of the parameters given the data and setting the latent variables to their expectation. It is 



 

©  A.G.Billard 2004         –         Last Update October 2024 

145 

used in a vast variety of Machine Learning techniques, such as K-means, Gaussian Mixture 
Models and Hidden Markov Models. 
 

If  
1

M
i

i
X x

=
=  is the set of M observed data,  

1

K
i

i
Z z

=
= , the set of K discrete variables 

and   the set of parameters of the pdf function, the likelihood is:   

 

( ) ( )| , , |L X Z P X Z =   

 

At first, it may not be very clear why one should distinguish between the parameters 

and the latent variables Z . The notion of latent variable offers a mean to express the fact 
that the distribution of the observables can be explained by a finite set of distributions. Each 

observable 
ix  may have been generated by one or a combination of the K distributions 

associated to each of the K latent variables. Introducing Latent variables allows to proceed 

to a reduction of the original problem. The expression of the density ( )p x  can be reduced 

to a finite set of densities. For instance, in Gaussian Mixture Models, the density ( )p x  is 

expressed as a weighted linear combination of K Gaussian functions:  

( ) ( ) 1 1

1

; ,  with , ,... , [0,1 .; ]{ },
K

k k K K

k k k

k

p xx p    
=

    ==  . 

Each Gaussian function represents a latent variable with associated parameters (mean 
and Covariance matrix). In Hidden Markov Models, the latent variables correspond to the 
hidden states. Each hidden state is associated two pdf to explain the probablity of the 
observation and the probability of transiting across states.    
 

In E-M, the number of latent variables Z  is fixed during the entire E-M process. Only the 
parameters are updated. However, the latent variables play a role in the computation of 
the likelihood. 
 
The EM-algorithm is an iterative process that aims at updating the:  

• Step 0: Make an initial estimate of the parameters ̂  and of the latent variables 

Z. (Initialization)  

• Using current ̂ , compute the expectation of the complete data likelihood 

( )ˆ | ,L X Z . (E-step) 

• Find (and update) ̂  to maximize the expectation (M-step). 

 
EM stops when there is no improvement in Likelihood above some threshold. Of course, 
this all depends on the threshold. Since the likelihood function is unbounded, fixing this 
threshold requires some care. Even when taking the log of the likelihood function, variation 
in the likelihood are hard to quantify and depend on the number of datapoints and type of 
density used. Good practice is to plot the decrease in the log of the likelihood and determine 
visually a plateau, which one can then translate in a numerical value. 
 
EM is  a description of a class of related algorithm, not of a particular algorithm. EM is a 
recipe or meta-algorithm, which is used to devise particular algorithms. The Baum-Welch 
algorithm is an example of an EM algorithm applied to Hidden Markov Models. Another 
example is the K-means clustering algorithm.  
 
It can be shown that an EM iteration does not decrease the observed data likelihood 
function, and that the only stationary points of the iteration are the stationary points of the 



 

©  A.G.Billard 2004         –         Last Update October 2024 

146 

observed data likelihood function. In practice, this means that an EM algorithm will 
converge to a local maximum of the observed data likelihood function. 
 
EM proceeds thus iteratively and is particularly suited for parameter estimation under 
incomplete data or missing data situations. By using the EM procedure, the so-called 

marginal (or incomplete-data) likelihood ( ) ( )| |L X P X =   is obtained by 

computing the average or expectation of the complete-data likelihood with respect to the 
missing data using the current parameter estimates (E-step), then the new parameter 
estimates are obtained by maximizing the marginal likelihood (M-step). 
 
For a complete description of EM, we refer the reader to: Moon, Todd K. "The expectation-
maximization algorithm." Signal processing magazine, IEEE 13.6 (1996): 47-60. 
 

7.3.3 Gradient descent 

(from Mathworld) 

 
Gradient descent is an incremental hill-climbing algorithm that approaches a minimum or 
maximum of a function by taking steps proportional to the gradient at the current point.  
 
An algorithm for finding the nearest local minimum of a function, which presupposes that 
the gradient of the function can be computed. The method of steepest descent, also called 

the gradient descent method, starts at a point 1iP+  and, as many times as needed, moves 

from  iP  to 1iP+ by minimizing along the line extending from ( )if P−  the local downhill 

gradient.  
 
 

 
 

 

 
When applied to a 1-dimensional function f(x), the method takes the form of iterating  

 

 ( )1 1i i ix x f x− −= −  (6.37) 



 

©  A.G.Billard 2004         –         Last Update October 2024 

147 

 
 

from a starting point 0x for small 0  until a fixed point is reached. The results are 

illustrated above for the functions ( ) 3 22 2f x x x= − +  with 0.1 = and starting point 

0 2x =  and 0.01, respectively. 

This method has the severe drawback of requiring a great many iterations for functions, 
which have long, narrow valley structures. In such cases, a conjugate gradient method is 
preferable.  

 

7.3.4 Conjugate Gradient descent 

 
The conjugate gradient method is an algorithm for finding the nearest local minimum of a 
function of n variables, which presupposes that the gradient of the function can be 
computed. It uses conjugate directions instead of the local gradient for going downhill. If 
the vicinity of the minimum has the shape of a long, narrow valley, the minimum is reached 
in far fewer steps than would be the case using the method of steepest descent.  
 
The conjugate gradient method is an effective method for symmetric positive definite 
systems. It is the oldest and best-known non-stationary method. The method proceeds by 
generating vector sequences of iterates (i.e., successive approximations to the solution), 
residuals corresponding to the iterates, and searches directions used in updating the 
iterates and residuals. Although the length of these sequences can become large, only a 
small number of vectors need to be kept in memory. At each iteration step of the method, 
two inner products are performed in order to compute update scalars that are defined to 
make the sequences satisfy specific orthogonality conditions. On a symmetric positive 
definite linear system these conditions imply that the distance to the true solution is 
minimized in some norm.  
 

 



 

©  A.G.Billard 2004         –         Last Update October 2024 

148 

 
 
 
 

  



 

©  A.G.Billard 2004         –         Last Update October 2024 

149 

8 References 
 
General Textbooks on Machine Learning: 
 

• Machine Learning: a Probabilistic Perspective, K. P. Murphy, MIT Press, 
2013. 
 

• Machine Learning, Tom Mitchell, McGraw Hill, 1997. 
 

• Pattern Classification Richard O. Duda, Peter E. Hart, David G. Stork, 2nd 
Edition, Willey 2007 

 

• Elements of Machine Learning, Pat Langley, Morgan Kaufmann, 1996. 
 
 
General Textbooks on Neural Networks: 

 

• Information Theory, Inference and Learning Algorithms, David J.C Mackay, 
Cambridge University Press, 2003. 

 

• Artificial Neural Networks and Information Theory, Colin Fyfe, Tech. Report, 
Dept. of Computing and Infortion Science, The University of Paisley, 2000. 

 

• Neural Networks, Simon Haykin, Prentice Hall International Editions, 1994. 
 
Textbooks on Topics of Machine Learning 
 

• Learning with Kernels, B. Scholkopf and A. Smola, MIT Press 2002 
 

• A Tutorial on Support Vector Machines for Pattern Recognition, C.J.C. 
Burges, Data Mining and Knowledge Discovery, 2, 121167 1998. 
 

• Reinforcement Learning: An Introduction,. R. Sutton & A. Barto, A Bradford 
Book. MIT Press, 1998. 

 

• Cluster Analysis, Copyright StatSoft, Inc., 1984-2004 
 
Textbooks on Topics of Neural Networks 
 

• Independent Component Analysis, A. Hyvarinen, J. Karhunen and E. Oja, 
Wiley Inter-Sciences. 2001. 

 

• Self-Organizing Maps,Teuvo Kohonen, Springer Series in Information Sciences, 
30, Springer. 2001. 
 

 

• Neural Networks for Pattern Recognition, Bishop, C.M. New York: Oxford 
University Press, 1996. 
 

• Adaptation In Natural and Articial Systems. University of Michigan Press. 
Holland, J (1975) 

 
 
 



 

©  A.G.Billard 2004         –         Last Update October 2024 

150 

 
Other recommended readings on some basic neural networks: 

 
Hopfield Network: 

 
J.J. Hopfield, "Neural networks as physical systems with emergent collective 
computational abilities", Proc. National Academy of Sciences of USA, vol.72, 
pp.2554-2558, 1982. 
 
J.J. Hopfield. Pattern recognition computation using action potential timing for 
stimulus representation. Nature, 376:33--36, 1995 
 

 
Boltzmann Machine: 

 
G Barna and K Kaski 1989 Variations on the Boltzmann machine J. Phys. A: Math. 
Gen.22 5143-5151  
 
Ackley D H, Hinton G E and Sejnowski T J 1985 Cognitive Sci. 9 147. 
 
 

Reinforcement Learning: 
 
Leslie Pack Kaelbling &Michael L. Littman and Andrew W. Moore, Reinforcement 
Learning: A Survey, Journal of Artificial Intelligence Research, Volume 4, 1996., 
1996. 

 
 

 

State-of-the-art 
 

State-of-the-art research in Machine Learning can be found in the proceedings of the 
International Conference in Machine Learning (ICML) and the Neural Information 
Processing Symposium (NIPS), but also in publications in major journals such as the 
Machine Learning Journal, the IEEE Transactions on Signal processing, IEEE 
Transactions on Pattern Analysis, IEEE Transactions on Pattern Recognition, the Journal 
of Machine Learning Research. 
 
State-of-the-art research in Neural Networks can be found in the proceedings of the 
International Conference on Artificial Neural Networks (ICANN), the Internation Joint 
Conference on Neural Networks (IJCNN), the European Conference on Artificial Neural 
Networks (ECANN) and in major journals such as Neural Networks, Neural Computation, 
IEEE transactions on Neural Networks, Neurocomputing. We list major sites for on-line 
resources in ML next. 

 

8.1.1 ML Resources: 

 
One most prominent resource for machine learning is found at the official website of the 
machine learning society  http://www.machinelearning.org/index.html 
This website keeps a repository of all papers published at International Machine Learning 
Conference (ICML), one of the two major venues for research papers in ML. 
 

http://www.machinelearning.org/index.html


 

©  A.G.Billard 2004         –         Last Update October 2024 

151 

Below is a list of other repositories which the interested reader is invited to visit to keep up 
to date on research advances in ML and for getting access to various databases for 
benchmarking the development of new algorithms.  

 

 
 

Major venues for publishing research on machine learning are: 
 
Journals:  
•  Machine Learning 
•  IEEE Transactions on Signal processing 
•  IEEE Transactions on Pattern Analysis  
•  IEEE Transactions on Pattern Recognition 
• The Journal of Machine Learning Research 
•  Data Mining and Knowledge Discovery 
•  ACM Transactions on Information Systems 
 
• Neural Networks 
• Neural Computation 
• Biological Cybernetics 
 

ML List  
http://www.ics.uci.edu/~mlearn/MLList.html 

"Archives of the Machine 
Learning List"  

ML Repository  
http://www.ics.uci.edu/~mlearn/MLRepository.html 

"This is a repository of 
databases, domain theories 
and data generators that are 
used by the machine learning 
community for the empirical 
analysis of machine learning 
algorithms."  

MLnet 
http://www.mlnet.org/  

Machine Learning network 
online information service. 
"This site is dedicated to the 
field of machine learning, 
knowledge discovery, case-
based reasoning, knowledge 
acquisition, and data mining."  

KDnet  
http://www.kdnet.org/control/index 

"The KDNet (= Knowledge 
Discovery Network of 
Excellence) is an open Network 
of participants from science, 
industry and the public sector. 
The major purpose of this 
international project is to 
integrate real-life business 
problems into research 
discussions and to collaborate 
in shaping the future of 
Knowledge Discovery and Data 
Mining."  

NIPS 

http://nips.cc/  

Neural Information Processing 
Conference – on-line repository 
of all research papers on 
theoretical ML 

Pascal 
http://www.pascal-network.org/ 

Network of excellence on 
Pattern Recognition, Statistical 
Modelling and Computational 
Learning  

http://www.ics.uci.edu/~mlearn/MLList.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.mlnet.org/
http://www.kdnet.org/control/index
http://nips.cc/
http://www.pascal-network.org/


 

©  A.G.Billard 2004         –         Last Update October 2024 

152 

Conferences: 
• ICML: Int. Conf. on Machine Learning  
• NIPS: Neural Information Processing Conference  
 
• COLT: Annual Conference on Learning Theory 
• IJCAI: Int. Joint Conf. on Artificial Intelligence 
 
• ICANN: Int. Conf. on Artificial Neural Networks 
• ESANN: European Conf. on Artificial Neural Networks 
• IJCNN: Int. Joint Conf. on Neural Networks 

 


