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[. Introduction

1 Forewords

These lecture notes have been written with the goal of providing a memento of the main concepts
covered in the Applied and Advanced Machine Learning courses given at the EPFL. They do not
constitute a textbook. We hence encourage students to refer to existing textbooks for
complementary information on these techniques. A list of existing textbooks is given in Chapter 8.

The course and these lecture notes are intended to students, who have completed their Bachelor
in an engineering field. It hence assumes that the reader has a solid background in Linear Algebra,
Calculus and Statistics. The annexes to these lecture notes give a brief summary of basic concepts
from these fields used in the technical development covered in the lecture notes.

What is Machine Learning? - Definitions

Machine Learning (ML) encompasses a variety of techniques to enable machines (computers,
robots, etc) to learn from a set of data. While it started as a topical curiosity of statistics and
computer science in the 80's, it has matured over the past decades and is now a field of scientific
study on its own.

Itis broad in scope, as ML algorithms differ in both the type of computation performed and the way
they perform these computations. ML entails algorithms for classification, clustering, feature
extraction and regression, to name a few.

There is, hence, not a single definition of machine learning that is representative of this variety of
applications and use of machine learning techniques. We can however list three definitions that
encapsulate some of the key concepts behind the field:

Machine Learning is the field of scientific study that concentrates on induction algorithms and on
other algorithms that can be said to “learn”.
Machine Learning Journal, Kluwer Acadnemic

Machine Learning is an area of artificial intelligence involving developing technigues to allow
computers to “learn”. More specifically, machine learning is a method for creating computer
programs by the analysis of data sets, rather than the intuition of engineers. Machine learning
overlaps heavily with statistics, since both fields study the analysis of data.

Webster Dictionary

Machine learning is a branch of statistics and computer science, which studies algorithms and
architectures that learn from data sets.

WordlQ

These three definitions are similar in that they emphasize the idea of learning from data. This
implies that, on the one hand, we have data, and on the other hand, we process these data so as
to extract some useful information from which we can "learn”. In any learning process, including
the one you undergo when taking courses at EPFL, you need to be provided with relevant material
to be able to learn from it. Hence, gathering an informative dataset is a key issue in machine
learning. In Section 1.3, we will discuss issues related to choosing and using the dataset to obtain
optimal performance. Additionally, the practice sessions that accompany the courses will be
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1.2

devoted to help you to acquire a practical understanding of the effect of choosing a poor or good
dataset on the algorithms' performance. Let us first start by giving you’re an intuition of what is
meant for a machine to "learn".

What is Learning?

We start by citing two definitions provided by the machine learning community to situate how
"learning” is understood in the context of ML.

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

Mitchell, Tom. M. 1997. Machine Learning. New York: McGraw-Hill.

Things learn when they change their behavior in a way that makes them perform better in
the future.
Witten, lan H., and Eibe Frank. 2000. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. San Diego, CA: Morgan
Kaufmann.

Both definitions emphasize the notion of learning from experience. Learning hence depends on
gathering data and is inhenrently an incremental process. The second definition implies also that
this process leads to an improvement. Note that this raises one important issue. To measure
improvement in performance, one must have a metric to measure performance. The metric of
performance is key to guide how the system may change its behavior when incorporating new data,
and it must be chosen with care.

1.2.1 Taxonomy of learning algorithms

Machine learning algorithms are often organized according to taxonomy, based on the desired
outcome of the algorithm. Common algorithm types include:

e Supervised learning — where the algorithm learns a function or model that maps best a
set of inputs to a set of desired outputs.

e Reinforcement learning — where the algorithm learns a mechanism that generates a set
of outputs from one input in order to maximize a reward value (external and delayed
feedback)

e Unsupervised learning — where the algorithm learns a model that best represents a set
of inputs without any feedback (no desired output, no external reinforcement)

e Learning to learn — where the algorithm learns its own inductive bias based on previous
experiences

In all types of learning, it is important that the training examples contain enough information to
enable the system to find the solution, and that they are representative of the complexity of the
whole dataset in order to avoid an overgeneralization.

Machine learning algorithms can also be classified according to the type of computation they can
perform on a given dataset. Common types of computation include:

e Features extraction: finding relationship within the data
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e Classification: learn to put instances into pre-defined classes
o Clustering: discover classes of instances that belong together

e Regression: Predict a continuous output given a set of input. This can be used for
predicting time series or trends in data.

e Association: learn relationships between the attributes

1.2.2 Other important terms in machine learning

On-line learning: an algorithm is said to work on-line or in real-time, when it can perform its
computation on the data as they stream through. Typical example is an algorithm for vision that
could be performed without slowing down the 30 frames per second flow of images.

Connectionist models, more commonly called Artificial Neural Networks (ANN), form a large
part of the algorithms of machine learning. ANNs encompass a diverse set of algorithms that share
the same principle of computation, pseudo-parallel computation.

In connectionist models, unsupervised learning is also known as self-organization, a principle by
which the network self-organizes to best represent the data. Examples of self-organized networks
are Kohonen, Hopfield and other Associative Memories. Examples of supervised networks are
feed-forward and recurrent neural networks with Backpropagation.

1.2.3 Key features for a good learning system

There are a number of desiderata one could formulate for any given learning system, such as:

Denoising: Working in a real world application implies noise. Noise can mean several things. It
can be imprecision in the measurement (e.g. light affecting infra-red sensors). It can be side effects
from the experimental setups (e.g. systematic bias in the initial conditions). Eliminating noise is
probably the most crucial processing one might want to perform on the data, prior to any other
processing. However, it has its costs. Denoising requires noise model. It is seldom the case that
the model is known. There are methods to learn these models, but the process is slow. An incorrect
noise model is bound to eliminate good data with the noise, or get rid of too little noise.

Decorrelating: Decorrelating the data is often a first step before denoising or proceeding to any
feature extraction. The process of decorrelation aims at making sure that, prior to analyzing the
data, you have found a way to represent the data that explicitly encapsulate the correlations. Data
with low correlations can often be considered as noise, or of little relevance to modeling the
process.

Generalization versus memorization: A general and important feature of a learning system that
differentiates it from a pure “memory” is its ability to generalize. Generalizing consists of extracting
key features from the data, matching those across data (to find resemblances) and storing a
generalized representation of the data features that account best (according to a given metric) for
all the small differences across data. Classification and clustering techniques are examples of
methods that generalize through a categorization of the data. Generalizing is the opposite of
memorizing and often one might want to find a tradeoff between over-generalizing, hence losing
information on the data, and over fitting, i.e. keeping more information than required. Generalization
is particularly important in order to reduce the influence of noise, introduced in the variability of the
data.
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Feature extraction Part of the process of learning consists in extracting what is relevant in a set
of data. This is often done by finding what is common across all the examples used for learning.
The common feature to all data may consist of complex patterns (e.g. when training an algorithm
to recognize faces, you may expect the algorithm to learn to extract features such as nose, eyes,
mouth, etc). The process of finding what is common relies usually on a measure of correlation
across data points. Extracting correlation can often reduce the dimensionality of the dataset at
hand, by saving only a subpart of all the information.

Curse of dimensionality A problem which one often encounters in machine learning is what one
calls the curse of dimensionality, whereby the number of samples used for training should grow
exponentially with the dimensionality of your data set to remain representative. This exponential
increase is reflected back into an exponential increase of the computation steps for training. Both
of these are usually not practical and, as we will see in this class, many algorithms have been
developed to reduce the dimensionality of the data prior to further processing. Alternatively, efforts
are made when designing new algorithms to ensure that the growth of the computation cost is
reduced by finding simplification in the computation. The ideal is a linear growth. Algorithms that
achieve this are highly praised.

Curse of Dimensionality

Computational Costs Several methods for classification

and regression grow exponentially
O(N2) with dimension

O(N)

N: Nb of dimensions

When the increase is exponential/polynomial = reduce dimensionality of

data prior to further processing

1.2.4 Exercise

For the following scenarios: 1) learning to drive a bicycle; 2) learning how to open a box with a
lever; 3) learning sign language (if lost on a Island with only deaf people), determine:

a) The variables at hand (input and output to the system),
b) The unknown parameters of the model,

c) A good measure of performance,

d) A criteria of “good enough” optimality,

e) A threshold of sub-optimality (“too poor”)

f)  The minimal time lag

1.3 Best Practices in ML

ML algorithms are sensitive to the choice of data you use for training them. Ideally, you would like
your training set to be sufficiently large to be representative of all possible data you may encounter
(In a probabilistic view, this means that you want your sample to be representative of the distribution
of the data you try to estimate.) In practice, this is not feasible. For instance, imagine that you want
to train an algorithm to recognize human faces. When training the algorithm, you can use only a
subset of all faces you may encounter in life. Yet, you would still like your algorithm to generalize a
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model of “human faces”. If you provide the algorithm with too many examples of the same type of
faces (e.g. by training the algorithm only on faces of people with long hair), the algorithm may
overfit, i.e. it may learn that faces all have long hair and fail to latter recognize faces of people with
short hair. Each time an algorithm cannot detect correctly instances of a given class (e.g. human
faces with short hair) is called a false negative.

If the algorithm was not provided with representative examples of what is not a face, it may
incorrectly classify images of other objects as faces. For instance, in the above example, an
algorithm that retained that the feature "long hair" is representative of human faces may incorrectly
classify a picture of a horse as a human face. Such mistakes are called false positives. In ML, you
try to balance the number of false negatives and false positives and one uses the ROC curve to
measure this, see Section 3.5.1. In some applications, you may want to ensure to have no false
positives, even at the cost of increasing the false negatives, or conversely. For instance, if you
develop an application for identity verification, you want to make sure that no identity is mistakenly
associated with the wrong person.

Finally, since ML algorithms are essentially looking at correlations across data, they may fit
spurious correlations, if provided with a poorly chosen set of training data. To ensure that the
algorithm has generalized correctly over the subsets of training examples you used, a number of
good practices have been developed, which we review briefly below.

1.3.1 Training, validation and testing sets and crossvalidation.

X L . . Crossvalidation
Common practice to assess the validity of a Machine Learning A

algorithm is to measure its performance against three data
sets, the training, validation and testing sets. These three sets Training Set Validation
are disjoint partitions of all the data at hand. Set

|-------.f--------l

Training and validation sets are used to determine the
sensitivity of the learning to the choice of hyperparameters Grid Search on
(i.e. parameters not learned during training). Values for the Hyperparameters
hyperparameters are set through a grid search (i.e. by o

. K Crossvalidation
sampling uniformly all values that each parameter can take
within some fixed interval). The effect of each set of parameters on the performance of the algorithm
is measured through crossvalidation (see below).

Once the optimal hyperparameters have been picked, the model is trained with the complete set
(training + validation sets) and tested on the testing set.

The testing set consists of a subset of the data which you would normally encounter once training
is completed. It allows to measure the sensitivity of the algorithm specifically for this application.
Let us consider again the example we used before, where we trained an algorithm to recognize
human faces. To proceed to the first stage of training, one would typically choose a set of different
faces representative of all gender, ethnicities and other fashionable additions (hair cuts, glasses,
moustache, etc), collected from a variety of type of cameras, so as to provide a generic set of
examples of pictures of face independent of the material used to collect these. The testing set could
consist of faces recorded by the camera of the client to whom you plan to sell the algorithm after
training it in the laboratory and is hence used to validate the generalization properties of your
algorithm to this specific type of camera.

In practice, one often uses solely training and testing sets and performs crossvalidation directly on

these, while relying on grid search without crossvalidation (on training + validation sets) to
determine the optimal set of hyperparameters.
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There is no fixed rule to determine how to split the dataset. In practice, people tend to give more
datapoints to the training set than to the validation set (and similarly to the testing set), using the
2/3d — 1/3rule, i.e. with twice more datapoints for training than for validation or testing. But you
can try to reduce this ratio. The smaller the training/testing ratio required for good generalization,
the better the model.

Increasing the training/testing ratio provides the algorithm with more information and usually leads
to better performance at training. However, this can be detrimental at testing and lead to
overfitting. The training/testing ratio required to achieve good performance is indicative of the
complexity of the dataset. If one needs to use at least 80% or more of the datapoints to achieve
good generalization, this indicates that the dataset is very complex, since almost all datapoints are
needed to build a representative model. In this case, one should collect more data to provide more
statistics.

1.3.2 Crossvalidation

To ensure that the splitting of data into training and validation sets was not a lucky split leading to
an optimal (but not representative) performance, one must apply a crossvalidation step.
“Crossvalidation refers to the practice of confirming an experimental finding by repeating the
experiment using an independent assay technique” (Wikipedia). In ML, this consists of splitting the
dataset several times at random into training and validation sets. The number of repetitions is
referred to as the number of folds. When one proceeds to 10 such random draws of training and
validation sets, one says that one performs 10-fold crossvalidation.

K-fold cross validation: The data set is divided into k subsets and the training/validation steps is
repeated k times. Each time, one of the k subsets is used as the test set and the other k-1 subsets
are put together to form a training set. Then the average error across all k trials is computed. The
advantage of this method is that it matters less how the data gets divided. Every data point gets to
be in a test set exactly once, and gets to be in a training set k-1 times. The variance of the resulting
estimate is reduced as k is increased. The disadvantage of this method is that the training algorithm
has to be rerun from scratch k times, which means it takes k times as much computation to make
an evaluation. A variant of this method is to randomly divide the data into a test and training set k
different times. The advantage of doing this is that you can independently choose how large each
test set is and how many trials you average over. In this class, we use the random variant of K-fold
crossvalidation.

Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, with K equal
to N, the number of data points in the set. The evaluation given by leave-one-out cross validation
error is very informative and comprehensive, but it is overly expensive if you use algorithms that
are very expensive to compute at training time

As for the choice of training/validation sets ratio, there is no fixed rule to determine what would be
the optimal number of folds. People tend to use 10-fold crossvalidation. However, this makes sense
only if the number of datapoints is large enough for such a large set of repetitions to draw groups
of datapoints that are statistically significantly different at each round.

The performance of the algorithms is then measured on the whole set of experiments, e.g. by taking
the mean and standard deviation of the error when applying the algorithm on each set. The
standard deviation is important as it gives a measure of potential discrepancies in the structure of
your data set. A large variance is indicative of overfitting, as shown in the example below. The
crossvalidation phase is used to fine tune parameters of the algorithm (e.g. thresholds, priors,
learning rates, etc) to ensure optimal performance.
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6 comparison resui J ) =[S S The plot on the left shows

l Compare ‘ [CrossVal Cut '] o Clipboari [F—Measure (Test) | lBox Plots " the reSUIt Of i 10-f0|d
et crossvalidation with a 66%
frssionon Tenrk = S training/testing ratio for two
Z = reset reset .
e different sets of
t’::;e];'::;”o 4 fmeacna) C-SVM 100 RBF 0.4 C-SVM 5000 RBF 0.2 hyperp arameters in a
C-SVM 5000 REF 0.2 0.994 : . .
0.988 . binary classification
0-%&9 problem, using SVM as

classifier. The secon model
that uses a large penalty
(C=5000) and very small
kernel width (0.2) (see
Section 5.7 on SVM) leads
to overfitting.

This overfitting is visible through the large standard deviation on the error.

The two plots above display the result of the classification for the first and second models (left and
right figures respectively). On the right, we see that the model fitted perfectly the small set of
datapoints of the red class located in the middle of the white class, leading to overgeneralization
on the bottom right of the distribution.

1.3.2.1 Ground Truth

Comparing the performance of a novel method to existing ones or trivial baselines is crucial.
Whenever possible, one will use the ground truth as a means to compare performance of the
system during training.

In classification, the ground truthcan be obtained for instance from manually labeling each data
with the appropriate class label. If the choice of class label may be subjective (e.g. labeling facial
expressions of happiness, sadness, etc), one may ask several raters to label the picture and one
may take the average score across raters for the “true” label.

1.3.3 Performance measures

Performance measures depend on the method you use. We will present performance measure
for clustering, semi-supervised clustering and classification in their respective chapters.

1.3.4 Other practical considerations

This class will allow you to program some ML algorithms. Here are a few caveats to bear in mind
when programming ML algorithms.

A large number of algorithms we will see in class require knowing the mean and covariance of the
probability distribution function of the data. In practice, the class means and covariances are not
known. They can, however, be estimated from the training set. Either the maximum likelihood
estimate or the maximum a posteriori estimate may be used in place of the exact value. Further,
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several of these algorithms assume that the underlying distribution follow a normal distribution. This
again is usually not true. Thus, one should keep in mind that, although the estimates of the
covariance may be considered optimal, this does not mean that the resulting computation obtained
by substituting these values is optimal, even if the assumption of normally distributed classes is
correct.

Another complication that you will often encounter when dealing with algorithms that require
computing the inverse of the covariance matrix of the data is that, with real data, the number
of observations of each sample exceeds the number of samples. In this case, the covariance
estimates do not have full rank, and so cannot be inverted. There are a number of ways to
deal with this. One is to use the pseudoinverse of the covariance matrix. Another way is to
proceed to singular value decomposition.
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2 Methods for Dimensionality Reduction

This chapter will introduce you to basic techniques used to perform reduction of dimensionality. As
discussed in the introduction of these lecture notes, reducing the dimension of dataset is a main
goal in Machine Learning. Indeed, most machine learning algorithms suffer from the curse of
dimensionality. This refers to the fact that the number of model's parameters to estimate grow
usually exponentially with the dimension of the data. Techniques for reducing the dimensionality of
the problem aim, hence, at reducing the dimension of the space in which each datapoint is encoded.
To reduce the dimension of the space, these techniques try to determine the minimum number of
dimensions required to encode each datapoint while incurring minimum loss. This minimum loss
can be measured in different ways. In Principle Component Analysis (PCA) it is measured in terms
of mean-square error when reconstructing the dataset. In other probabilistic techniques (such as
Gaussian Mixture Models), which we will see in later chapters of these lecture notes, loss is
measured in terms of minimum discrepancy in likelihood term when estimating the density of
datapoints.

Data are usually encoded in thousands of dimensions. Take, for example the problem of
separating a set of pictures of faces from two different persons, as shown in
Figure 2-1. Pictures are high-dimensional, as they are composed of millions of pixels. Standard
cameras usually take pictures in a 320x240 format, which results in 76800 pixels. If the image is
in color, this number must be multiplied by 3 as each pixel has an associated 3 color channel
code RGB (Red-Green-Blue channel), yielding a dimension of 230400. If we apply Principal
Component Analysis (PCA), a method for reducing the dimension through linear projection (which
we will cover in Section 2.2.1), and look at the projections of each data picture along the first two
projections (see
Figure 2-1 right) we see that the picture s of the first person (in red) can be easily separated from
the picture s of the second person (in green) by drawing a line. When sole a line is sufficient to
distinguish between two groups of datapoints, one calls this a linearly separable problem. As we
will see when tackling Classification methods in Chapter 3, being able to separate linearly is
preferred over non-linear separation as it requires less parameters to code for a line than it does
for coding a complex curve.

The example of
Figure 2-1 shows that the true dimension of the problem was orders of magnitude smaller than the
original dimension of the problem. Projecting the data through PCA reduced the dimension from
230400 to 2, hence a gain of more than 99% of memory required to store the projected data.
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Separating Line

Figure 2-1: Example of two-class classification problem which can be approached by first
projecting the high-dimensional points from camera pictures (left) into a low-dimensional space
(2-dimensional, right), where they can be separated through a line.

In this chapter, we present one technique for reducing the dimensionality of the dataset which is
based on linear projections only. Extensions of these techniques for non-linear projection will be
presented in long version of these lecture notes, dedicated for advanced course in ML. Next, we
introduce the general formalism of linear projection techniques.

2.1 Formalisation of Reduction of Dimensionality through Linear Projection

Projection in 1-dimension: Recall that if you project a

vector point X onto a projection vector a, the image y of x

on a is given by: X
T

a'-x
y=-—7z4a.
2l

The figure on the right illustrates this projection.

Projection in 2-dimensions: The projection onto a plane defined by

the pair of linearly independent and orthogonal vectors (al, az) with
T
(al) a’ =0is given by:

@) x L @

e il !
%,__/ %/-_/
coordinate coordinate

ofyontoal  ofyontoa2

If the axes of projection (al,az) are orthonormal, the numerators disappear and Equation

Error! Reference source not found. simplifies to: y = (al)T -x-at +(a2)T -x-a%. As we will PCA

uses orthonormal axes of projection.

Projection in larger dimensions:
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The result in 2-dimensions generalizes to higher dimensions as long as the axes of projections are
orthogonal. It is hence interesting to project onto a basis formed of orthogonal axes. As we will PCA
and its variants choose an orthogonal basis (other techniques, such as Independent Component
Analysis, relaxes this constraint and requests only that the axes of projections be linearly
independent). We now formalize the principle of linear projection onto an orthonormal basis:

M
Consider a dataset X of M datapoints, ie. X :{Xl}i:1_ Each datapoint is N_dimensionaL ie.

i N .
X'eR", i=1..M . we order each datapoint in a matrix X whose columns are composed of the

each datapoint X', A linear projection of the dataset onto a low-dimensional space is performed
by applying a projection matrix A: PxN, p<N onto X . Theimage Y of X is given by:

Y = AX 2.1)

Y is a matrix with M column vectors yi S RP, i =1..M, each of which corresponds to the image

of each original vector X'

Each row of the matrix A corresponds to the projection axes onto which the data is projected. Below
is an example of such projection:

Example: 2-dimensional projection through a matrix A

015 0150 15 015 . -
0T 0]a
X=0 015 150 01515 4=

10 0|y
00 0 015151515 [t 0 0fa

Original data X Y=AX =
0 15 0 15 0 15 0 15

001515001515}

Projected data Y

The data are well
e grouped into 4 tiny
clusters

If we apply this formalism to the example of

Figure 2-1, we have M=37 original datapoints X' of dimension N=230400. The images of these
datapoints when projected onto a low dimensional space, p=2, correspond to a set of 2-dimensional
points.

2.2 Principal Component Analysis
Principal Component Analysis (PCA) is a technique for reducing the dimensionality of a
multidimensional data set by identifying a suitable projection of the data in which the data are de-

correlated. To do this, PCA will seek to determine directions along which the data is correlated!

Extracting correlations across dimensions has two advantages a) it allows to reduce the
dimensionality, as if one dimension is correlated with another dimension, you need to know only
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one of the two dimensions (e.g. assume you have a dataset made of blue balls and red boxes.
Since all balls in your dataset are blue and all boxes are red, then, detecting the color of the object
is sufficient to infer that the type of object and you can discard information about the objects’ shape);
b) in high-dimensional datasets, correlations in subset of the dimensions correspond to features.
Extracting these features is useful to group datapoints that share these features. PCA can then be
used as pre-processing method to project data onto dimensions where their features are easily
extractale. This make it easier then to cluster or classify the data.

2.2.1 Principal Component Analysis - Formalism

Consider a data set of M N-dimensional data points

X={x1"" and x'eR", i=1..,M.

j=1..N

PCA aims at finding a matrix A, such that:

A RY—25 RY with g<N
X —A 5 Y=AX, withY :{yl,....,y“"} and each y' € R®

Since there exists an infinite number of possible projection matrices A, we need a criterion to limit
our choice. PCA sets as criterion to determine the projection that incurs minimum loss, by
minimizing reconstruction error (error measured in norm-2). As we will see later, this is equivalent
to looking for the projection that maximizes the variance of the projected data.

x Smallest breadth of
2 . X, data lost
* L ]
[ ] L ]
L ]
[ ] * hd
. . Largest breadth of
. L - data conserved
* [ ]

X 1 Reconstruction after projection X 1

Figure 2-2: (left) original data; (right) data reconctructed in R? from the projection on the red axis.

Figure 2-2 above illustrate the principle of minimum loss in PCA. The data (shown in the right figure)

are projected along the red axes (left figure) in a projection A:R?* > R. There is a loss of
information since the distribution of the original data along the direction perpendicular to the red
axis has become zero. This is however the minimum loss one can incur as any other projection
would result in a larger fraction of the data' spread lost.

The criterion for minimum loss can be expressed mathematically by computing the mean square
error between the original data and the reconstructed one after projection.
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If X is an original datapoint and Y its image after projection through A, then we write
~_ | Y : : .
y*= 0 the least square reconstruction vector. The loss incurred by projecting the data
N-p

through A and removing the N-p dimensions is then given by:

HA’ly*—xH (2.2)

PCA solves then the following constrained minimization:
min HA_ly*—XH (2.3)
A

=1, vi
with A= (ez)T and ||e-||T |
(¢') & =0, Vi=]j

As mentioned previously, the rows of A consist of orthonormal vectors that form a basis of R” .
The image of the datapoint can hence be expressed in this basis as:

p

y = Z((e‘ )T x)ei (2.4)

i=1

AT . R R
Replacing (2.4) into (2.3), and asking that all projection axes be orthogonal, (e') e!'=0, i# ]

we get
= i |2 3] pin Zl 5)]

SR Y e

eP...eNi=p
The same procedure can be applied to compute the error when projecting the set X of M datapoints:

eFEmQN %ii((e‘ )T x'e )T ((ei )T xe ): emiﬂwg(ei )T ﬁixj (xj )Tei

i=p j=1

1 M ) T 1
Observe that C = MZXJ (X’) = M XX T is the covariance matrix of the dataset, when the
=1
dataset has zero mean. Hence one first preprocessing step in PCA will be to center the data, i.e.
to substract the mean of the dataset, so that it is zero-mean.

The constrained based optimization problem expressed in (2.3) becomes:
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min (e’ )T Ce!

el

under the constraints that: (2.5)
-

(e‘)T e, =0, Vi# ]

We can solve this iteratively (for each projection vector) using Lagrange. We start with the first
vector€' and ask that the first projection vector satisfies only the normality condition (i.e. that its
norm is 1). This gives us:

L(e!,2)=(e") cet=2((e") ¢ 1)

oL (e, 2)

= =Ce' - 1e"' =0
e

The solution is given by:
Ce' = 2e! (2.6)

The first projection vector is hence an eigenvector of the Covariance matrix!

Observe now that, when we proceed to an eigenvalue decomposition of the covariance matrix, we
end up with N eigenvectors. All these eigenvectors are orthogonal to one another. As a result,
performing an eigendecomposition of the covariance matrix C is the solution to the constrained
optimization problem expressed in (2.5). All eigenvectors of the covariance matrix are projection
vectors that satisfy our objective function (minimal reconstruction error) under the constraint that
they be orthonormal. We now have all at our disposal to proceed to PCA. We give the steps of the
algorithm next.

Algorithm:

Classical batch algorithm for PCA goes as follows:

Step 1: Center the data and then compute the covariance matrix

The mean of the dataset is denoted by

1 M 1 M
,u=(,ul,,ul,...,yN)= E(X)=(X1 et s Xy o Xy J (2.7)

M M

We substract the mean from the data and we get the new matrix of centered datapoints:
X'"'=X-u, where X' is zero mean.

The covariance matrix of the centered dataset is:

Xp = Ay e VXY — Ay

]

C:E{X'(X')T}:BMB, =3 O (2.8)
X = 4l X —

© A.G.Billard 2004 - Last Update October 2024



19

Each diagonal entry of the covariance matrix C, denoted C; , corresponds to the variance of the
data points along the dimension i.

l M
The off-diagonal components of C, denoted by ¢; = —Z(Xik —,ui)(X'j( — H4;) , are a measure of
k=1
the correlation of the datapoints across the dimensions i and j. If they are uncorrelated, their
covariance is zero, i.e. Cj =C; = 0.

The covariance matrix is symmetric and positive semi-definite. It has, thus, an orthogonal basis,
defined by N Eigenvectors €', i =1,...N with associated eigenvalues /1i :

Ce' = A€ (2.9)

The Eigenvalues /A, are calculated by solving the equation:

|IC-41|=0 (2.10)

When | is the N x N identity matrix and | | the determinant of the matrix.

If the data vector has N components, the characteristic equation becomes of order N. This is easy
to solve only if N is small. Note that, nowadays, you have numerous code at your disposal to
perform this eigenvalue decomposition automatically. When N is really large and if we know that
we care only about a subset of the eigenvectors, one can proceed directly to a singular value
decomposition, where we search for a subset p of projections.

Singular value decomposition is also needed when the covariance matrix is not full rank. Recall
that to compute the covariance matrix, we substract the mean. For the matrix to be full rank, we
need to have at least N-1 independent observations. When N is high, it may happen that the number
of observations (datapoints) is small compared to N, such as when using PCA for projecting high-
dimensional images.

2.2.2 Dimensionality Reduction

To reduce the dimensionality of the data, we must discard a subset of dimensions. PCA chooses
the dimensions that incur a minimum reconstruction loss as explained previously.

By discarding the N-p eigenvectors with smallest eigenvalues 4, >4, >...>2 4 >4, > 4 and

p+1

projecting onto the eigenvectors e',...,e" one can reduce the dimensionality of the dataset to a

subspace that contains only the major directions of variation of the data. This can be useful in order
to reduce noise, as it is likely that the noise is encapsulated in the lower dimensions of the dataset.

We can measure how much information is lost, by looking at the eigenvalues.
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Each projection Y, of X one' is given by Y, = ((e‘ )T X )e‘. The percentage of the dataset covered by
e

D XTe!
j

If we expand the numerator, we have (XTe‘)T XTel :(ei)T XX e,

each projection is

Using the fact that each eigenvector XX Te' =M 2¢e’ and v (i, j), i # j (e‘)T el =0,we have
X'l 4

ZXTej ;ll
i

Each eigenvalue gives us the amount of information contained in the projection. The loss of

information when projecting onto the first p eigenvectors is hence given by the ratio:

Hence, by ordering the eigenvectors in the order of descending eigenvalues (largest first), one can
create an ordered orthogonal basis with the first eigenvector having the direction of largest variance
of the data. The eigenvector corresponding to the largest eigenvalue is aligned with the direction
along which the variance of the data is maximal, see Figure 2-1. In this figure, the directions of the
two eigenvectors are indicated by the arrows in the right plot; the first eigenvector having the largest
eigenvalue points to the direction of largest variance (the longest axis of the ellipse) whereas the
second eigenvector is orthogonal to the first one (pointing to the second axis of the ellipse). The
right plot shows the data after projection onto the first eigenvector, one we have discarded the
projections onto the second eigenvector.

Example of PCA for data compression: We describe this procedure for dimensionality reduction
when applied to one single data vector x and show how PCA, in this case, can be used to compress
data (a typical example of use of PCA for data compression):

Let A be a matrix, whose row vectors are composed of the eigenvectors of the covariance matrix
as, i.e..

A= (2.11)

Let us transform the data vector x into y in the orthogonal coordinate system defined by the
eigenvectors:

y=A(Xx—pu) (2.12)
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The components Y,, i =1...N of Y are the coordinates of X in the orthogonal basis formed by
the eigenvectors.

In order to reconstruct the original data vector X from Yy, one must compute:
X=A"y+u

using the property of an orthogonal matrix A~ = A .

Now, instead of using all the eigenvectors of the covariance matrix, one may represent the data in
terms of only a few basis vectors of the orthogonal basis. If we denote the reduced transfer matrix

Ap, that contains only the p first eigenvectors. The reduced transformation is, thus:

y= Ap(X—,u).

If x is a vector composed of the pixel of an image, after the above transformation, the image y of x
lives in a coordinates system of dimension p. This provides a way to compress data without losing
much information. Below is an example of PCA compression for one image, where only the first
10% of the eigenvectors were retained, leading to a 90% compression gain.

Original Image Image compressed 90%

Example dimensionality reduction for group of images: PCA can also be used to reduce the
dimensionality of a dataset. Below, we show two examples of PCA projection of a dataset of images
of faces and of colored ball. Looking at the eigenvectors provides information on the features
extracted by each PCA projection. Recall, however, that the first projection is the one that minimizes
reconstruction error and maximizes variance. It is hence representative of all datapoints and usually
represents a mix between all the faces. If you want to use PCA to separate groups of images, you
must often use the 2", 3, and other projections that will embed features that are not common to
all the dataset.

© A.G.Billard 2004 - Last Update October 2024



-~
-m

poan | o

'/0'

"'""""“‘“TQ“EV
roervey

22

Figure 2-3: An example of dimensionality reduction using PCA. The source images (left) are 32x32 color
pixels. Each image corresponds to a 3072 dimensional vector. (center) the principal components shown in
decreasing order of eigenvalue, notice how the first components contain the main features of the data (e.g.
color of the balls) while the components further down only contain fine details. (right) projection of the source

images onto the first two principal components.

When applying techniques for reducting the dimension of the data, we are faced with contradictory
goals: On the one hand, we should simplify the problem by reducing the dimension of the
representation. On the other hand, we want to preserve as much as possible of the original
information content. PCA offers a convenient way to control the trade-off between loosing

information and simplifying the problem at hand.

Reconstructing an approximation of the original datapoint after projection:

If we want to reconstruct x from the projection y, we proceed as follows:
First, recall that:
el)T
T elll=1, Vi
|1
(¢') =0, Vi j

A

Ais N x N. As A is square and orthogonal, A™ = AT,

When reducing the dimensionality, we have pruned the N — p eigenvectors. We obtained y e R,

ap-dim. vector. A is Nx p, and is composed of the p eigenvectors: A ™ = AT

We can reconctruct x € R"through least-square approximation as x = ApT y.
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2.2.2.1 Dataonto PCA projections is uncorrelated

As stated in introduction to this chapter, projecting onto the vectors generated by PCA de-correlates
the data.

Proof: let us start by decomposing the covariance matrix C =V AV" with V the matrix
of eigenvectors and A the matrix of eigenvalues.

The image Y of a dataset X is given by: Y = AX with A=V,

The covariance matrix of Y is given by:

C, =YYT =VTXXV =V'VAV'V = A.

The covariance matrix in the projected space is hence diagonal. This means that all off-diagonal
elements that correspond to correlation across dimensions are zero.

The projection vectors (eigenvectors) embed correlations across the original dimensions of the
dataset (this is true only if there are correlations). Looking at the coordinate of these vectors onto
the original dimensions gives us an idea of what relations it found across the original dimensions,
see the exercise sessions of the course for examples.

2.2.2.2 Solving PCA as a variance maximization through constrained optimization

The PCA procedure delineated in the previous paragraphs was derived from solving an
optimization under constraint problem, where we were minimizing the reconstruction error. As we
explained earlier on, by projecting the zero-mean dataset onto the eigenvectors of its covariance
matrix, PCA ensures that the first projection is along the direction of maximal variance of the data.

One can then also formulate PCA as an optimization problem that maximizes variance along the
projections:

M
argmax J (e',....e" ) =arg max —
i jw.Ny M T

with C the covariance of the dataset.

(&) x|~(e) ce’ (2.13)

Adding the constraint that the e’ should form an orthonormal basis

le’|=1 vi=1..qand (ek)T el =0 Vk#j.

PCA becomes an optimization under constraint problem, which can be solved using Lagrange
multipliers. PCA proceeds iteratively by first solving for the first eigenvector, using:

L(e')=(e) cet =2 (1-(¢') &) (2.14)

where 4, is the first Lagrange multiplier. We end up with the same solution as found previously with
the minimization of reconstruction error.

2.2.3 PCA limitations

PCA is a simple and straightforward means of determining the major dimensions of a dataset. It
suffers, however, from a number of drawbacks. The principal components found by projecting the
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dataset onto the perpendicular basis vectors (eigenvectors) are uncorrelated, and their directions
orthogonal. The assumption that the referential is orthogonal is often too constraining, see Figure
2-4 for an illustration.

1t PC

1=t1C

Figure 2-4: Assume a set of data points whose joint distribution forms a parallelogram. The first PC is the
direction with the greatest spread, along the longest axis of the parallelogram. The second PC is orthogonal
to the first one, by necessity. The independent component directions are, however, parallel to the sides of the
parallelogram.

PCA ensures only uncorrelatedness. This is a less constraining condition than statistical
independence, which makes standard PCA ill suited for dealing with non-Gaussian data. ICA is a
method that specifically ensures statistical independence.

It is clear that PCA can be used as the basis of a clustering method, by grouping the points
according to how they clump along each projection. Each cluster can then be treated separately.
illustrates a situation in which PCA is useful in projecting the dataset onto a new frame of reference,
from which the cluster of datapoints can be easily inferred. Figure 2-5 on the other hand shows an
example in which PCA would fail to segment two clusters. By projecting the data along the principal
direction, i.e. the vertical axis, PCA would merge the two clusters. ICA is one alternative method
for separating such clusters.

Figure 2-5: A classical illustration of problems occurring with variance-based methods such as PCA.
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2.2.4 Projection Pursuit

Projection—Pursuit (PP) methods aim at finding structures in multivariate data by projecting them
on a lower-dimensional subspace. Since there are infinitely many projections from a higher
dimension to a lower dimension, PP aims at finding a technique to pursue a finite sequence of
projections that can reveal the most “interesting” structures of the data. The interesting projections
are often those that depart from that of normal/Gaussian distributions. For instance, these
structures can take the form of trends, clusters, hypersurfaces, or anomalies. Figure 2-5 illustrates
the “interestingness" of non-gaussian projections. The data in this figure is clearly divided into two
clusters. However, the principal component, i.e. the direction of maximum variance, would be
vertical, providing no separation between the clusters. In contrast, the strongly non-gaussian
projection pursuit direction would be horizontal, providing optimal separation of the
clusters. Independent Component Analysis (see Section 2.4) is a method for discovering a linear
decomposition into directions that maximize non-Gaussianity. In this respect, it provides a first step
for PP decomposition.

Typically, PP uses a projection index, a functional computed on a projected density (or data set),
to measure the “interestingness” of the current projection and then uses a numerical optimizer to
move the projection direction to a more interesting position. Interesting projections usually refer to
non-linear structures in the data, i.e. structure than cannot be extracted by linear projections such
as PCA and ICA. PP can be formalized as follows:

Given a dataset X TIR” and a unit vectorg IR one defines an index I, ‘R” 5> R” that
measures the interest of the associated projection Pa (X) PP finds the parameters a that
maximize I .

PCA is an example of PP approach that takes the variance as the projection index. Further, if we

consider a linear projection of each datapoint x through a of the form z = a’x and take the
negative Shannon entropy as a measure for the index:

I = —(‘)fz(z)logfz(z)dz (2.15)

Where fz is the probability density function of the projected data z, then PP is equivalent to
Independent Component Analysis.

© A.G.Billard 2004 - Last Update October 2024



26

2.2.5 Probabilistic PCA

Until now, all variants of PCA we have seen had a deterministic nature. However, implicitly through
the computation of the mean and covariance matrix of the data, one assumed that the data followed
a distribution that could be parameterized through these two parameters. A distribution
parameterized with this is the Gaussian distribution.

Here we will see how the standard PCA procedure can be extended with a probabilistic model. This
rewriting will provide a first step toward introducing a series of methods based on so-called latent
variables, which will see later on.

Latent variables correspond to unobserved variables. They offer a lower dimensional
representation of the data and their dependencies. Fewer dimensions result in more parsimonious
models. Probabilistic PCA (PPCA) is then PCA through projection on a latent space.

Formalism:

Asssume a N-dimenionsal data set X TRY. X corresponds to the observations. Probabilistic
PCA starts with the assumption that the data X were generated by a Gaussian latent variable
model of the form:

x=Wz+m+e (2.16)

where z TR? are the g-dimensional Latent Variable,

WisaN ™~ g matrix

m TR" is a vector of parameters

e TR" is the noise and follows a zero mean Gaussian distribution e = N (O,ée)

Probabilistic PCA hence differs from PCA by assuming that a) the linear transformation through the
matrix W goes from the latent variables to the observables; b) the transformation is no longer
deterministic and is affected by random noise.

Note that the noise is a random variable with zero mean and fixed covariance. If one further
assumes that the covariance matrix of the noise ée is diagonal, i.e. that the noise along each

dimension is uncorrelated to the noise along the other dimensions, this leads to a conditional
independence on the observables given the latent variables. In other words, the latent variables z
encapsulate the correlations across the variables. Such conditional independence on the
observables is advantageous for further processing, e.g. to proceed to an estimation of the
likelihood of the model given the data. In this case, one can then simply take the product of the
likelihood of the data for each dimension separately.

Probabilistic PCA consists then in estimating the density of the latent variable z. PPCA does so
through maximum likelihood.

Algorithm:
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If one further assumes that the noise follows an isotropic Gaussian distribution of the form
N (O,Sezl) , i.e. that its variance SSis constant along all dimensions. The conditional probability

of the observables X given the latent variables p(x|z)is given by:
px|z)= N(Wz+/77,ssl) (2.17)

The marginal distribution can then be computed by integrating out the latent variable and one
obtains:

P. (x) =N (m, ww' + sj]) (2.18)
If we set B=WW" + sj[ , one can then compute the log-likelihood:

L(B,se,m) = —%{Nln(Zp)+ In‘B‘ +tr(B‘1C)} (2.19)

M

1 T, . .
where C = i é_(x - m)(xl - /77) is the covariance matrix of the complete set of
i=1

M datapoints XZ{xl,...,xM}.

The parameters B, /mand S, can then be computed through maximum likelihood, i.e. by
maximizing the quantityL(B,Se,/ﬂ)using expectation-maximization. Unsurprisingly, the

maximum estimate of /7turns out to be the mean of the dataset.

The maximume-likelihood estimates of B and s% are then:
1
B =W (L -521)2 R
q q [

N
[o]

(si)2 = Ni al (this is also called the residual)
=94 j=qn1

where W is the matrix of eigenvectors of C and the /, are the associated eigenvalues.

As in PCA, the dimension N of the original dataset, i.e. the observable X, is reduced by fixing the
dimension g < N of the latent variable. The conditional distribution of the latent variable given the

observable is:

plz1x)= N(B'lW(x - m),B'lsj) (2.20)
T
where B = (W) W+sll.

Finally note that, in the absence of noise, one recovers standard PCA. Simply observe that:
-1
T
((W) W) W(x - /77) is an orthonormal projection of the zero mean dataset, and hence if one

-1
T
sets A= ((W) W) W', one recovers the standard PCA transformation.
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2.3 Canonical Correlation Analysis
Adapted from Hardoon, Szedmak & Shawe-Taylor, Neural Computation, 16:12, p. 2639-2664, 2004

Canonical Correlation Analysis (CCA) is a technique for dimensionality reduction designed for data that are
described in different modalities. An example of such multi-modal dataset is illustrated in Figure 2-6. Each
datapoint is described by an image and an audio file, each of which lives in a high-dimensional space.

N.
xeR™

Vi 477
° s o
Video description Audio description

Figure 2-6 Example of a bimodal 2 datapoints dataset. Each datapoint is described by an image and an audio
file, each of which lives in a high-dimensional space.

CCA can be used to find a projection in image and audio space separately. CCA uses the data labels to
enforce that the data in each projected space correlate with one another. This preserves consistency across
the projections. Data with similar labels will grouped similarly in each space.

Imagine that you want to develop a biometric system that can identify different people based on
audio recordings of the persons’ voices and sets of video recordings of each person’s face when
talking. Audio and video recordings are recorded simultaneously and hence when taken as a pair
they may reveal some more information than taking each of these individually. CCA will aim at
extracting the features in each dataset (audio and visual) that correlate best for each person
individually. CCA can be seen as a generalized version of PCA for two or more multi-dimensional
datasets. In each space (audio and video), CCA would find one or more projections that maximize
correlation across pair of first, second, third eigenvectors in each basis. In other words, CCA tries
to find a linear combination of audio features and a linear combination of video features that
correlate best. Data once projected in each of these separate sets of eigenvectors would then be
most representative of a person and hence can be used to best discriminate afterwards (e.g. by
using the projected data in a classifier afterwards).

While PCA works with a single dataset and maximizes the variance of the projections of the data
onto a set of eigenvectors forming a basis of this dataset, CCA works with a pair of random vectors
determined in each basis separately and maximizes correlation between sets of projections. In
other words, while PCA leads to an eigenvector problem, CCA leads to a generalized eigenvector
problem.
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2.3.1.1 Formalism:
M

Y e{y eR" } of which we

Consider a pair of multivariate datasets X ={X' eRM }
i=1

i
M

measure a sample of M instances pairs {(x",y")} . CCA consists in determining a set of
i=1

projection vectors W, and w, for X and Y such that the correlation p between the projections

T T
z =W X and z,=wY . . . i
X X y Y (the canonical variates) is maximized.

wTE{XYT} wiC, w,
max p = max corr(zx,zy): max Ty %Vx - -
My wi [ H WiC, W) C,w,
(2.21)

Where ny,Cxx,nyare respectively the inter-set and within sets covariance matrices.

C, isN,xN , C isN, xN, andC N xN,.

Note that, for the above computation, we have assumed that both X and Y are zero-mean. This is
a pre-processing step, which we already did for PCA and that simplifies the computation of the
correlation, by removing the expectation terms on X and Y.

Given that the correlation is not affected by rescaling the norm of the vectors W,, W, , we can set
that:

:HWTC w
y w 'y

w
X

=1 (2.22)

) arbitrary wy
The above constraints bound the norm of W, and W, .

This rescaling is equivalent to forcing the vectors to point
on an ellipse with axes aligned with the eigenvectors of
the covariance matrices C,, and C,, . The lengths of the ~ *x @/ ter normalization [ —

ellipse’s axes are given by the inverse of the square root
of the eigenvalue of the associated eigenvectors.
Applying this constraint amounts to scaling the norm of
the vectors W, and W, so that they touch the ellipsoid

isoline of value 1. It does not change the direction of the
vectors W, and w, and hence does not change the \

relative correlation across pairs of vectors, as illustrated
on the figure on the right.

The CCA algorithm consists thus in finding the optimum of o under the above two constraints. This
again can be resolved through Lagrange and gives:

L(w,,w,, 4,4, )=W,C, w, — 4, (W, C,w, —1)—4, (w,C, w, 1)
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with 4,, 4, the Lagrange multiplier of the constraint.

Taking the partial derivatives over w,,w, and setting 4, =4, :=4/2,we get:

[0 CXYJKWXJ [Cxx O j(WXJ
=1
C, 0w, 0 C, lw,

=> Which can be rewritten as C, C_/C W, = AC W,

(2.23)

This is a generalized eigenproblem of the form Ax = I Bx. If C_ is invertible (which is the case if
all the columns of X are independent), then the above problem reduces to a single symmetric
eigenvector problem of the form nyC;lCXyWy = A°C, W, , and conversely for W, .

X yy 'y
2.3.2 CCA for more than two variables

Given sets of K random variables X (k =1.., K) with dimension M x n* (note that while each

variate can have different dimensions n", they must all have the same number of observed
instances M). The generalized CCA problem consists then in determining the set of projection

vectors W = {wlk} ,with p=min,_; , N, , such that:
i=1.p -

st (w) c =1 "k=1..k, (2.24)

k | - e . __ . .
WiCk]Wj—O, Lj=1..,pitj.

Where || ||F is the Frobenius norm (Euclidean distance for matrices). The above consists of K

minimization under constraint problems. Unfolding the objective function, we have the sum of the
squared Euclidean distances between all of the pairs of the column vectors of the matrices
Xka,k:].,...,K. This problem can be solved by using singular value decomposition for
arbitrary K.

2.3.3 Limitations

CCA is dependent on the coordinate system in which the variables are described, so even if there
is a very strong linear relationship between two sets of multidimensional variables, depending on
the coordinate system used, this relationship might not be visible as a correlation. Kernel CCA has
been proposed as an extension to CCA, where data are first projected into a higher dimensional
representation. KCCA is covered in Section 5.4 of these Lecture Notes.
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2.4 Independent Component Analysis

Adapted from Independent Component Analysis, A. Hyvarinen, J. Karhunen and E. Oja, Wiley
Inter-Sciences. 2001

Similarly to PCA, ICA is a linear transformation that projects the dataset on a sub-manifold, that
best represent the data at hand. While PCA looks for the principal components, ICA looks for the
directions along which statistical dependence of the data is minimal.

ICA is particularly useful in order to decorrelate and denoise data. ICA is very closely related to the
method called blind source separation (BSS) or blind signal separation. The ““source" is the original
signal, i.e. the independent components, (e.g. the speaker in a cocktail party). ~Blind" means that
neither the mixing matrix nor the independent components are known to start with. ICA is one
method, perhaps the most widely used, for performing blind source separation. It has been used
successfully in a wide range of signal processing applications, e.g. for de-correlating multiple sound
sources or extracting invariant features in image processing.

2.4.1 lllustration of ICA

To illustrate the idea of ICA, consider that you have observed four instances of a two-dimensional
distribution S of independent components s; and sz and that the four instances form the four corners
of a rectangle, as shown in Figure 2-7:

Figure 2-7; Distribution of two independent components

Note that the range of values for these data was chosen so as to make the mean zero and the
variance equal to one, an important constraint of ICA. Now let us mix these two independent

components, using the mixing matrix A:(l lj' This gives us two mixed variables, x1 and Xa.

) ()
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Figure 2-8: Mixture of variables

Note that the random variables x1 and x2 are not independent any more, see Figure 2-8; an easy
way to see this is to consider, whether it is possible to predict the value of one of them, say xz, from
the value of the other. Clearly it is the case, as they line up along a line of slope 1.

The problem of estimating the data model of ICA is now to estimate the mixing matrix A using only
information contained in the mixtures x1 and xz. In the above example, it is easy to estimate A by
simply solving the inverse for each of the four data points, assuming that we have at least four
points. The problem is less trivial, once we consider a mixture of two arbitrary continuous
distributions.

Let us now assume that s; and s; were generated by the following uniform distribution:

1
p(s)=1243 sl <3

0 otherwise

(2.25)

Figure 2-9: joint distributions of S1 and S2
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If we now mix those two distributions according to A= (2 1) , we have:

Figure 2-10: Joint distribution of the two observables X1 and X2

The edges of the parallelogram are in the directions of the columns of A . This means that we could,
in principle, estimate the ICA model by first estimating the joint density of x1 and xz, and then
locating the edges. So, the problem seems to have a solution.

In practice, however, this can serve solely as an intuition. Determining the edges explicitly works
with variables that either follow uniform distributions or are sufficiently low dimensional that one can
sample and observe the entire distribution. What we need is a method that works for any distribution
of the independent components and works fast and reliably. Ideally, this should be a method that
can be expressed as an optimization to automatically identify the sources and mixing matix.

mixed signals separated signals

Figure 2-11: ICA can be applied to separate signals that have been mixed together (e.g. one image bleeding
into another during wireless transmission of a video signal). [DEMOS\ICA\ICA IMAGE MIX.M]

2.4.2 Why Gaussian variables are forbidden

As mentioned above, a fundamental restriction of ICA is that the independent components must be
non-Gaussian for ICA to be possible. To see why Gaussian variables make ICA impossible,
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assume that the mixing matrix is orthogonal and the s; are Gaussian. Then x1 and x2 are Gaussian,
uncorrelated, and of unit variance. Their joint density is given by:

p(x]_,xz):él;e[_lzzj (2.26)

This distribution is illustrated in Figure 2-12. The Figure shows that the density is completely
symmetric. Therefore, it does not contain any information on the directions of the columns of the
mixing matrix A. This is why A cannot be estimated.

Figure 2-12: The multivariate distribution of two independent Gaussian variables

More rigorously, one can prove that the distribution of any orthogonal transformation of the
Gaussian (x1,x2) has exactly the same distribution as (x1,x2), and that x1 and x2 are independent.
Thus, in the case of Gaussian variables, we can only estimate the ICA model up to an orthogonal
transformation. In other words, the matrix A is not identifiable for Gaussian independent
components. Note that if just one of the independent components is Gaussian, the ICA model can
still be estimated.

2.4.3 Definition of ICA
Let X ={X,..., Xy} be a N-dimensional random vector of observables.

ICA consists of finding a linear transform S =WX so that the projections S, ..., S, of x through W
are linearly independent.

To proceed, one builds a general linear model of the form:

X=A-S+¢
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Where A is agx N ‘mixing’ matrix, S,...,S, the set of independent components and &a N-

dimensional random noise vector!. The independent components are latent variables, meaning that
they cannot be directly observed.

This formulation reduces the ICA problem to ordinary estimation of a latent variable model.

Because the estimation of the latent variable in the noisy case can be very tricky, the majority of
ICA research has concentrated on the noise-free ICA model, where:

X=A-s (2.27)
X, =Y a;s, (2.28)

The matrix W is then the inverse of A, i.e. W = A™ (this is possible only if A is invertible; to this
end, one can ensure that A is full rank by reducing its dimension to that of the independent
component, see below)..

Hypotheses of ICA:

The starting point for ICA is the following assumptions:

e Without loss of generality, we can assume that, both the mixture variables X _and the
independent components S _have zero mean. Observe that the observable variables x can

always be centered by subtracting the sample mean, i.e. X=X'-E {X} . Consequently,

the independent component have also zero mean, since E {S} =A"'E {X} .

e The components s; are statistically independent. Statistical independence is rigorously
defined in Section 7.2.8. It is a stronger constraint than uncorrelatedness (which is ensured
through PCA). Hence, ICA decomposition results usually in different estimates from that
found through PCA decomposition.

e As discussed before, we must also assume that the independent components have non-
Gaussian distributions. Usually, assuming that the data follow a Gaussian distribution is
handy and is done in many other techniques we will see in this course (see e.g. PPCA or
GMM). Gaussian distributions are so-called parametric distribution that is the distribution
is fully determined once its parameters have been defined. Hence, assuming a Gaussian
distribution simplifies the estimation of the density as one must solely estimates the
parameters of the Gaussian (or mixture of Gaussians, as in GMM). Since ICA does not
make any assumption regarding the form of the distribution of the independent component,
it looks as if ICA would estimate the full density of s. This is a very difficult problem. ICA
will overcome this difficulty by not estimating explicitly the density of s. Rather; the density
of s can be recovered by sampling through x and using the inverse transformation.

¢ In our general definition of the ICA model given previously, we have assumed that A was
a gx N matrix. Here, we will focus on a simplified version of ICA whereby one assumes

that the unknown mixing matrix A is square, i.e. that the number of independent
components is equal to the number of observed mixtures and thus A is. X ( (note that

this assumption can be sometimes relaxed (see extensions proposed in Hyvarinen et al

1 Note the similarity between this model and that introduced in PPCA, see Section 2.2.52.2.5; the difference
here lies in the optimization method whereby ICA optimizes for statistical independence and PCA optimizes
for maximal variance.
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2001). This can be done for instance by performing first PCA on the original dataset and
then use a reduced set of g dimensions obtained by PCA for ICA. If A is square, then, after

estimating the matrix A, one can compute its inverse, W =A"1, and obtain the
independent component simply by:

s=Wx=A"x (2.29)

e The data is white, i.e. each datapoint is uncorrelated and the variance of the dataset is
equal to unity. This will be a basic preprocessing step in ICA, as we will discuss next.

2.4.4 Whitening

A useful preprocessing strategy in ICA is to first whiten the observed variables. This means that
before the application of the ICA algorithm (and after centering), we transform the observed vector

X linearly so that we obtain a new vector X, which is white, i.e. its components are uncorrelated
and its variance equal unity. In other words, the covariance matrix of X equals the identity matrix:

E {xxT} =1 (2.30)

The whitening transformation is always possible. One popular method for whitening is to use the
eigen-value decomposition of the covariance matrix E {)”()”(T} =UDU", where U is the orthogonal

matrix of eigenvectors of the basis of x and D is the diagonal matrix of its eigenvalues,
D =diag (ﬂlﬂn) Note that E{)?)?T} is the empirical means, i.e. it is estimated from the

available data samples. Whitening can now be done by computing:

1
Xx=UD 2UTx (2.31)

1
The matrix D ?is computed by a simple component-wise operation, such that:

1 1 1
D2 =diag[d1 2,..d, 2)

It is easy to check that now E{XX'}=1.

Whitening transforms the mixing matrix into a new one, A:

1 .
Xx=UD 2U"As = As (2.32)

The utility of whitening resides in the fact that the new mixing matrix Ais orthogonal. This can be
seen from

E{)?)?T} - AE{ssT}AT =AAT = (2.33)

Here we see that whitening reduces the number of parameters to be estimated. Instead of having
to estimate the N? parameters that are the elements of the original matrix A, we only need to
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estimate the new, orthogonal mixing matrix A . An orthogonal matrix has N (N —1) / 2 degrees of

freedom. For example, in two dimensions, an orthogonal transformation is determined by a single
angle parameter. In larger dimensions, an orthogonal matrix contains only about half of the number
of parameters of an arbitrary matrix. Thus one can say that whitening solves half of the problem of
ICA. Because whitening is a very simple and standard procedure, much simpler than any ICA
algorithms, it is a good idea to reduce the complexity of the problem this way.

It may also be quite useful to reduce the dimension of the data at the same time as we do the
whitening. For instance, one can look at the eigenvalues of E{XXT} and discard those that are too

small, as is often done in the statistical technique of principal component analysis. This has often
the effect of reducing noise. Moreover, dimension reduction prevents overlearning, which can
sometimes be observed in ICA

A graphical illustration of the effect of whitening can be seen in Figure 2-13, in which the data in
Figure 2-10 has been whitened. The square defining the distribution is now clearly a rotated version
of the original square in Figure 2-9. All that is left is the estimation of a single angle that gives the
rotation.

'.I:'I'f,','. N
Tt g v FH
SN VRSN
ERTUI ':'l.n..a:}-..-,-.'." .
DR n
HlevraEm s

Sy

=

Figure 2-13: The joint distribution of the whitened
mixtures

In the rest of this chapter, we assume that the data has been preprocessed by centering and
whitening. For simplicity of notation, we denote the preprocessed data just by X, and the

transformed mixing matrix by A , omitting the tildes.

2.4.5 ICA Ambiguities

We cannot determine the variances of the independent components. The reason is that, both S
and A being unknown, any scalar multiplier in one of the sources s; could always be cancelled by

dividing the corresponding column @, of A by the same scalar, say &; .
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X:Z(aiiai](si ‘a;) (2.34)

As a consequence, we may as well fix the magnitudes of the independent components; as they are
random variables. The most natural way to do this is to assume that each component has unit

variance, i.e. E {Siz} =1. Then the matrix A will be adapted in the ICA solution methods to take into
account this restriction. Note that this still leaves the ambiguity of the sign: we could multiply any of

the independent components by -1 without affecting the model. This ambiguity is, fortunately,
insignificant in most applications.

We cannot determine the order of the independent components.
The reason is that, again both S and A being unknown, we can freely change the order of the terms
in the sum in (2.28) and call any of the independent components the first one. Formally, a

permutation matrix P and its inverse can be substituted in the model to give X = AP'Ps. The

elements of PS are the original independent variables s;, but in another order. The matrix AP tis
just a new unknown mixing matrix, to be solved by the ICA algorithms.

ICA properties are:

¢ Redundancy reduction: reducing redundancy in a dataset has numerous advantages. When
the data show no redundancy any longer, the correlations across the data is null. In other
words, each data point is significant and encapsulates a relevant characteristic of the dataset.
Moreover, such a dataset is noise-free, because noise affects all data similarly. The brain
seems to rely particularly on redundancy reduction. As we will see in later on in these lecture
notes, the capacity of Neural Networks based on Hebbian Learning is maximal with non-
redundant datasets.

¢ Project pursuit: In a noise-free or non-redundant dataset, there might still be a number of
features irrelevant to the task. Project pursuit is a method for determining the relevant
directions along which lie the data.

2.4.6 ICA by maximizing non-gaussianity

A simple and intuitive way of estimating ICA is done through the FastiCA method. FastICA is based
on a fixed-point iteration scheme for finding a maximum of a measure of nongaussianity. We
present this solution here. Note that other objective functions have been proposed in the literature
to solve ICA, such as minimizing mutual information or maximizing the likelihood. We will not review
these here. In Section Error! Reference source not found., we will offer another solution to ICA
using Artificial Neural Networks.

2.4.6.1 Negentropy

To obtain a measure of non-Gaussianity that is zero for a Gaussian variable and always
nonnegative, one often uses a slightly modified version of the definition of differential entropy, called
the negentropy. The negentropy J is defined as follows

J(Y)=H(Yguss ) H(Y) (2.35)

where Y., is a Gaussian random variable of the same covariance matrix as y to the above-

mentioned properties. The negentropy is always non-negative, and it is zero if and only if y has a
Gaussian distribution. Negentropy is invariant for invertible linear transformations.
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The advantage of using negentropy, or, equivalently, differential entropy, as a measure of
nongaussianity is that it is well justified by statistical theory. In fact, negentropy is in some sense
the optimal estimator of nongaussianity, as far as statistical properties are concerned. The problem
in using negentropy is, however, that it is computationally very difficult. Estimating negentropy using
the above definition would require an estimate (possibly nonparametric) of the pdf of the
independent component. Therefore, simpler approximations of negentropy are very useful. For
instance, Hyvarinen et al 2001 propose to use the following approximation. For a given non-linear
guadratic function G, then:

3(y) = [E(G(¥))~E(G(Yous)) |
I(y) oc[E(G(WTX))—E(G(yGauss))T

(2.36)

2.4.6.2 FastICA for one unit

To begin with, we shall show the one-unit version of FastICA. By a "unit” we refer to a computational
unit. As we will see in Section Error! Reference source not found., this can also be considered
as the output of a neuron.

The FastICA learning rule determines a direction, i.e. a unit vector W such that the projection w' X
maximizes nongaussianity. Nongaussianity is here measured by the approximation of the empirical

measure of Negentropy on the projection, i.e. J (WT X).

Recall that the variance of W' Xmust here be constrained to unity; for whitened data this is
equivalent to constraining the norm of Wto be unity.

The FastICA is based on a fixed-point iteration scheme for finding a maximum of the nongaussianity
of W' X. It can be also derived as an approximative Newton iteration, minimizing for the derivative

dJ (y=w'x)

of the Negentropy, i.e.
dw

. Hyvarinen et al 2001 propose to use either of the two

following quadratic functions:

Gl(y)zélog(cosh(a-y)), 1<a<?

1

G,(y)=—e?

Denote by g the derivative of the above two functions, we have:
9 (U) = tanh (aiu)

g,(u)= ue[_uz]

where 1< @, <2 is some suitable constant, often taken as ai=1. These function are monotonic and
hence particularly well suited for performing gradient descent.
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The basic form of the FastICA algorithm is as follows:

1. Choose an initial (e.g. random) weight vector W.

n

Compute the quantity W* = E {xg (WT x)} -E {g (WTX)}W

w
3. Proceed to a normalization of the weight vector: W = H_+
w

4. If the weights have not converged, i.e. W(t —1)-W(t) #1, go back to step 2.

Note that it is not necessary that the vector converge to a single point, since w and -w define the
same direction. Recall also that it is here assumed that the data have been whitened.

2.4.6.3 FastICA for several units

The one-unit algorithm of the preceding subsection estimates just one of the independent
components, or one projection pursuit direction. To estimate several independent components, we
need to run the one-unit FastICA algorithm using several units (e.g. neurons) with weight vectors

W,y W

To prevent different vectors from converging to the same maxima we must decorrelate the outputs

WlT Yooy WqT at each iteration. We present here three methods for achieving this.

A simple way of achieving decorrelation is a deflation scheme based on a Gram-Schmidt-like
decorrelation. This means that we estimate the independent components one by one. When we

have estimated p independent components, or p vectors W, ..., W, , we run the one-unit fixed-point

algorithm for W and after every iteration step subtract from W4 the ““projections”

p+1’

WTMWj Wi, j =1,...pof the previously estimated p vectors, and then renormalize Wt

p
.
LoLet Wy, =W, — > W, W,W,
=1 (2.37)

-
2. Letw ,=w,,/, /Wp+1Wp+1

In certain applications, however, it may be desired to use a symmetric decorrelation, in which no
vectors are privileged" over others. This can be accomplished, e.g., by the classical method
involving matrix square roots,

Let W=(wwT™) "“w (2.38)
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1

T —
where W is the matrix (Wl,...,Wq) of the vectors, and the inverse square root (WWT) 2 is

1 1
obtained from the eigenvalue decomposition of WW' = FAF' as (WWT) 2=FA2F". A

simpler alternative is the following iterative algorithm:

1.Let W :W/,/”\NWTH

Repeat 2. until convergence (2.39)

2. Let W :gW —gWWTW

The norm in step 1 can be almost any ordinary matrix norm, e.g., the 2-norm or the largest absolute
row (or column) sum (but not the Frobenius norm).

2.4.7 Further Readings

In this chapter, we have focused only on the linear version of ICA, and, on one method for solving
ICA, namely fast ICA. Note that there exist also methods for non-linear ICA and for time-dependent
ICA. The reader can refer to [Hyvarien et al, 2003] for further readings on ICA and its applications.
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3 Clustering and Classification

This chapter will present a series of methods to perform clustering and classification.

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-
classes, called clusters. A cluster is a collection of data objects that are “similar” to one
another and thus can be treated collectively as one group.

Classification consists of modeling and categorizing data belonging to the same class.

Clustering is oftern referred to as unsupervised classification. In contrast, classification relates to
supervised classification. The notion of supervision/unsupervision in clustering and classification
relates to the fact that in classification, we are provided with the class labels, whereas in clustering
we do not have the class labels. This is illustrated in the schematic example below. A dataset of 6
objects are in one case already categorized by the user who attributed them class labels, grouping
the objects according to their color. In the second case, the objects do not have a class label and
one is left to infer what would be an adequate way of grouping the data. There are at least two
different ways in which one could group these data. One could either group them according to their
color (ending up with the same grouping as in the classification case) or one could group them
according to shapes (ending up with only two groups with a mix of color).

Supervised Classification =Classification

-> We know the class labels and the number of classes.

Unsupervised Classification = Clustering

-> We do not know the class labels and may not know
the number of classes.

e

Clustering is hard as we do not know the true class label and that there are many ways in which
one could group data. Also, in real life, datapoints are never identical and they all resemble each
other somehow, as illustrated in the schematic below:

Unsupervised Classification = Clustering

- Hard problem when no pair of objects have exactly
the same feature.

- Need to determine how similar two or more objects
are to one another.

1 @Y e o

The type of clusters you will create depends on the metric of similarity you choose for grouping
your datapoints. If you choose to pre-process your data by applying PCA, for instance, then the
choice of projection will highlight some features (correlations across the datapoints). This implicitely
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will extract some measure of similarity across datapoints, as in some projections some datapoints
will look closer to one another than in other projections, see example below:

e eeeeE!
tlthia{nhll

'3

Projection onto e1 against e3

e1 e? L]

Figure 3-1: A database of images from two persons composed of 4 classes highlighted in colors is projected
onto eigenvectors 1 and 3. When projecting onto el and e3, we can separate the image of the first person
with and without glasses, as the eigenvector e3 embeds features distinctive of personl primarily.

In this projection, it becomes easier to find clusters denoting the glasses versus non-glasses
images of the first person. Do not forget that in clustering you do not have the class labels. Hence,
the colors in the plot above would not be an information at your disposal and the real challenge
would look like the figure below, where groups of points appear in the space without labels (colors):

-

-

[P

3.1.1 Semi-supervised clustering

Since clustering is very hard job for lack of labels, whenever possible, one will try to gather labels.
However, gathering labels may be much more time consuming than gathering the data. For
instance, imagine that you are a company selling on-line a set of products such as movies, books
and musics. To increase your sale, you may want to propose to your customer a set of items which
you think “they may like”. To select which product you will propose, you need to get a representation
of how items group with one another according to types of customers’ tastes. However, you do not
know how many groups of customers and of products exists. To get a better idea of how many
potential groups exists, you may pay a few customers to labels the items they find “similar”. While
you may have thousands of customers on a yearly basis visit your website, only a small subset of
them will be paid to provide their labels. You hence end up with a partial labeling of the data. To
cluster the rest of your data, you will use this partial set of labeled data. Clustering methods that
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use partially labeled dataset are referred to as semi-supervised clustering. The schematic below
illustrates the difference between clustering, semi-supervised clustering and classification in a
binary classification problem.

Clustering Semi-supervised clustering Classification

No labels for the points! Labels a faction of the points All points are labelled

3 Labels class 1
B |abels class 2
— Unlabeled

Group points according to the Use the labels to choose Use the labels to determine
geometrical distribution of points hyperparameters of the boundary between the
clustering using F1-measure.  two classes

3.2 Types of Clustering Techniques

There exist many types of clustering techniques. In these lecture notes, we cover some examples
that illustrate distinctive features across clustering techniques.

One important feature of a clustering technique is the type of clusters it creates.

/

K-means
produces
globularclusters

DBSCAN

produces non-
globularclusters

Figure 3-2: Example of a dataset that form 3 clusters

There are many ways to shape clusters. Clusters can be either globular (convex) such that any line
you can draw between two cluster members stays inside the boundaries of the cluster, or non-
globular (concave), i.e. taking any shape. Globular clusters, such as those produced by the K-
means clustering technique we will see next, are advantageous in that they require few parameters
to describe the cluster. A ball shape is described by its centroid and the radius to its centroid.
However, a convex envelope is limiting and may not encapsulate well groups of points that are
distributed along a non-convex shape. Non-globular clusters, such as those generated by the
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DBSCAN technique, are advantageous in that they can produce tight boundaries of arbitrary
shapes around the data. However, this comes at a price, with a large increase in computational
cost, as we will discuss later on.

Clusters can contain an equal number of data, or be of equal size (distance between the data).
Central to all of the goals of cluster analysis is the notion of degree of similarity (or dissimilarity)
between the individual objects being clustered. This notion determines the type of clusters that will
be formed.

In this chapter, we will see different methods of clustering that belong to two major classes of
clustering algorithms, namely hierarchical clustering and partitioning algorithms. We will
discuss the limitation of such methods. In particular, we will look at a generalization of K-means
clustering, namely soft k-means and mixture of Gaussians that enable to overcome some but
no all limitations of simple K-means.

While hierarchical algorithms build clusters gradually (as crystals are grown), partitioning algorithms
learn clusters directly. In doing so, they either try to discover clusters by iteratively relocating points
between subsets, or try to identify clusters as areas highly populated with data. Algorithms of the
first kind are surveyed in the section Partitioning Relocation Methods. They are further categorized
into k-means methods (different schemes, initialization, optimization, harmonic means,
extensions) and probabilistic clustering or density-Based Partitioning (E.g. soft-K-means and
Mixture of Gaussians). Such methods concentrate on how well points fit into their clusters and tend
to build clusters of proper convex shapes.

When reading the following section, keep in mind that the major properties one is concerned with
when designing a clustering methods include:

Type of attributes algorithm can handle

Scalability to large datasets

Ability to work with high dimensional data

Ability to find clusters of irregular shape

Handling outliers

Time complexity (when there is no confusion, we use the term complexity)
Data order dependency

Labeling or assignment (hard or strict vs. soft of fuzzy)

Reliance on a priori knowledge and user defined parameters
Interpretability of results

3.2.1 Hierarchical Clustering

In hierarchical clustering, the data is partitioned iteratively, by either agglomerating the data or by
dividing the data. The result of such an algorithm can be best represented by a dendrogram.
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Figure 3-3: Dendogram

An agglomerative clustering starts with one-point (singleton) clusters and recursively merges two
or more most appropriate clusters. A divisive clustering starts with one cluster of all data points and
recursively splits the most appropriate cluster. The process continues until a stopping criterion
(frequently, the requested number k of clusters) is achieved.

To merge or split subsets of points rather than individual points, the distance between individual
points has to be generalized to the distance between subsets. Such derived proximity measure is
called a linkage metric. The type of the linkage metric used significantly affects hierarchical
algorithms, since it reflects the particular concept of closeness and connectivity. Major inter-cluster
linkage metrics include single link, average link, and complete link. The underlying dissimilarity
measure (usually, distance) is computed for every pair of points with one point in the first set and
another point in the second set. A specific operation such as minimum (single link), average
(average link), or maximum (complete link) is applied to pair-wise dissimilarity measures:

d(c,.c,)=operation{d(x,y)|xec,yec,}

An agglomerative method proceeds as follows:

1. Initialization: To each of the N data points p;, {i=1,..,N} associate one cluster ci. You, thus,
start with N clusters.

2. Find the closest clusters according to a distancemetric d(c;, ¢;). The distance between groups
can either be:

. Single Linkage Clustering: The distance between the closest pair of data points
d(ci,, ¢;) = Min { d(p;, p;,) : Where data point piis in cluster c; and data point pj,is cluster c;}

. Complete Linkage Clustering: The distance between the farthest pair of data
points
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d(ci,, ¢)) = Max { d(p;, p;,) : Where data point piis in cluster ¢ and data point pj,is cluster cj}

o Average Linkage Clustering: The average distance between all pairs of data
points
d(ci,, ¢;) = Mean { d(pi, p;,) : Where data point piis in cluster c¢; and data point pj,is cluster c;}

3. Merge the two clusters into one single cluster taking, e.g., either the mean or the median
across the two clusters.

4. Repeat step 2 and 3 until some criterion is achieved, such as, for instance, when the minimal
number of clusters or the maximal distance between two clusters has been reached.

The divisive hierarchical clustering methods work the other way around. They start by considering
all data points as belonging to one cluster and divide iteratively the clusters, according to the
oints furthest apart.

* .0 . '\
® S
@ e
AN \
. A
e ® ® \‘\\;\
* ® o \ \
Single Linkage Complete Linkage Average Linkage

Figure 3-4: Example of distance measurement in hierarchical clustering methods

It is clear that the number and type of clusters will strongly depend on the choice of the distance
metric and on the method used to merge the clusters. A typical measure of distance between two
N-dimensional data points X, Y takes the general form:

N
HCRIEN Y T EARNEEY
i=1

The 1-norm distance, i.e. p=1, sometimes referred to as the Manhattan distance, because it is the
distance a car would drive in a city laid out in square blocks (if there are no one-way streets). The
2-norm distance is the classical Euclidean distance.

Figure 3-5 shows examples of data sets in which such nearest neighbor technique would fail.
Failure to converge to a correct solution might occur, for instance, when the data points within a
dataset are further apart than the two clusters. An even worse situation occurs when the clusters
contain one another, as shown in Figure 3-5 right. In other words such a simple clustering technique
works well only when the clusters are linearly separable. A solution to such a situation is to change
coordinate system, e.g. using polar coordinates. However, determining the appropriate coordinate
system remains a challenge in itself.
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Figure 3-5: Example of pairs of clusters, easy to see but awkward to extract for standard clustering algorithms

3.2.2 K-means clustering

K-Means clustering generates a number K of disjoint, flat (non-hierarchical) clusters C* k= 1..K,
S0 as to minimize the sum-of-squares criterion

K N
Wt ) =Y T8 00Y)  and AP =g x-v @2
k=1 jeck i=1

where X; is a vector representing the i data point, usually p=2 (norm-2) and g, is the geometric

centroid of the data points associated tocluster c*.

The objective function minimizes the distance of all datapoints to the centroid of each cluster. In
other words, it asks that the points to be well grouped around the centroids. By using norm-2, it
builds a ball around each centroid and groups points within this ball.

The K-Means method is numerical, unsupervised, non-deterministic and iterative. We summarize
the steps of K-means next.

K-Means Algorithm:

1 Initialization: Pick K arbitrary centroids and set their geometric means f4,,..., f to
random values.

2 Calculate the distance d(X;, £, )from each data point | to each centroid K .

3 Assignment Step: Assign the responsibility rki of each data point I to its “closest”

centroid ki (E-Step). If a tie happens (i.e. two centroids are equidistant to a data
point, one assigns the data point to the smallest winning centroid).

k =argmin{d (x;, z)} (3.3)
k

o 1 if k'=k
i 0 otherwise

4  Update Step: Adjust the centroids to be the means of all data points assigned to
them (M-Step)
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My = IZ:—k (3.4)

5 Go back to step 2 and repeat the process until a complete pass through all the data
points results in no data point moving from one cluster to another. At this point the
clusters are stable and the clustering process ends.

We illustrate below an example of K-means clustering for 3 clusters. At initialization the clusters
are not well split, as two of the centroids are initialized in the same cluster (top-right). After one
iteration, we see how the centroid move toward each of their clusters. The algorithms converge in
two iterations in the correct solution.

Initialization iteration 1 iteration 2 - convergence

K-means generates globular clusters with isotropic distances in all dimensions. The boundaries
between the clusters are linear if we use norm-2 as distance metric (classical K-means version).
One can however use other metrics, such as norm-1, norm-p or infinite norm. The effect on the
boundaries are illustrated in the example below.

L1-Norm L2-Norm

L3-Norm L8-Norm

Using other norms than the Euclidean norms allows K-means to produce non-linear boundaries
and hence to move away from the globular clustering it is known for. Yet, these non-linear
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boundaries remain quite limited in their power of structure and the equidistance across clusters
remains a strong limitation which forces clusters to be balanced in both their spread and their
relative distance to one another.

K-means clustering is a particular case of Gaussian Mixture Model estimation with EM
(expectation maximization) where the covariance matrices are fixed (these are actually diagonal
and isotropic), see Section 3.2.4.

The properties of K-means algorithm can be summarized as follows: There are always K clusters.
There is always at least one item in each cluster. The clusters are non-hierarchical and they do not
overlap. Every member of a cluster is closer to its cluster than any other cluster because closeness
does not always involve the 'center' of clusters.

The algorithm is guaranteed to converge in a finite number of iterations.
But it converges to a local optimum

Advantages of K-means:

With a large number of variables, K-Means may be computationally faster than other clustering
techniques, such as hierarchical clustering or non-parametric clustering. Its computational costs
grow linearly with both the number of datapoints and of the number of clusters, i.e. O(MK). K-Means
may produce tighter clusters, especially if the clusters are globular. K-mean is guaranteed to
converge

Drawbacks of K-means:

K-mean clustering suffers from several drawbacks. The choice of initial partition can greatly affect
the final clusters that result, in terms of inter-cluster and intra-cluster distances and cohesion.
Hence, one might find it difficult to compare the quality of the clusters produced (e.g. for different
initial partitions or values of K affect outcome).

Below we show the solution found by K-means for the same 3 cluster clustering problem shown
previously but with another initialization. There, the algorithm stopped even thought it had split one
cluster in half and grouped two very distant clusters. This is an illustration of the sensitivity of the
clustering technique to initialization and of the drawback of the hard assignment of the datapoints
to one one cluster. A softer assignment as in soft-K-means would not get stuck in this local minimum
as it allows all points to influence the update step, as we will see next and as illustrated below.

,es
L

% ke

.

* Segit,

1y

Left: Solution with K-'meransr; Right: Solution with soft K-means

Moreover, K-means assumes a fixed number K of clusters, which is difficult to estimate off-hands.
It does not work well with non-globular clusters. Different initial partitions can result in different final
clusters see below:
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Figure 3-6: The random initialization of K-Means can lead to different clustering results, (in this case using 3
clusters) [DEMOS\CLUSTERING\KMEANS-RANDOM _ INITIALIZATIONS.ML]

It is, therefore, good practice to run the algorithm several times using different K values, to
determine the optimal number of clusters.

Cases where K-means might be viewed as failing:

Unbalanced clusters:

The K-means algorithm takes into account only the distance between the means and data points;
it has no representation of the weight and breadth of each cluster. Consequently, data points
belonging to unbalanced clusters (clusters with unbalanced number of points, spread with a smaller
breadth) will be incorrectly assigned.

Elongated clusters:
The K-means algorithm has no way to represent the shape of a cluster. Hence, a simple measure
of distance would be unable to separate two elongated clusters as shown in Figure 3-7.

CEE o U s

Figure 3-7: Typical examples for which K-means is ill-suited: unbalanced clusters (left) and elongated clusters
(right). In both cases the algorithm fails to separate the two clusters.
[DEMOS\CLUSTERING\KMEANS-UNBALANCED.ML] [DEMOS\CLUSTERING\KMEANS-ELONGATED.ML]

3.2.3 Soft K-means

“Soft K-means algorithm' was offered as an alternative to K-means in order to “soften” the
assignment of variables. Each data point X; is given a soft "degree of assignment' to each of the
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means. The degree to which X; is assigned to cluster k is the responsibility I‘ki of cluster k for point
I and is a real value comprised between 0 and 1.

(=B-d(p%))
rk = e— (3.5)

! Ze(—ﬁ"d(ﬂkwxi))
=
f is the stiffness and determines the binding between clusters. The larger £, the bigger the

1
distance across two clusters. A measure of the disparity across clusters is given by ¢ = T , the

radius of the circle that surrounds the means of the K clusters.

The sum of the K responsibilities for the it point is 1, i.e. Zri" =1
k

Update step. The model parameters, i.e. the means, are adjusted to match the sample means of
the data points that they are responsible for.

Zrik "X
7 Z—'an

The update algorithm of the soft K-means is identical to that of the hard K-means, apart for the fact
that the responsibilities to a particular cluster are now real numbers varying between 0 and 1.

Figure 3-8: Soft K-means algorithm with a small (left), medium (center) and large(right) B
[DEMOS\CLUSTERING\SOFT-KMEANS-SIGMA.ML]

© A.G.Billard 2004 - Last Update October 2024



53

& F AR
¢ ey 8 i‘-"‘-’f"t * ey s

A L2

initialization iteration #1 iteration #2 iteration #3 iteration #4

‘s
A

Figure 3-9: Iterations of the Soft K-means algorithm from the random initialization (left) to convergence (right).
Computed with f= 10. [DEMOS\CLUSTERING\SOFT-KMEANS-ITERATIONS.ML]

3.2.4 Density Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a simple clustering algorithm which offers an interesting alternative to K-means. It
provided non-globular clusters (concave). Most importantly, it can detect outliers and remove these
from clustering.

Like K-means, it proceeds iteratively. It has two hyperparameters (parameters fixed by the user).
These are the minimal size of a cluster £ and the minimum number of datapoints in a cluster mgata.
These two parameters determine minimal bounds on noise/outlier determination. They must be
chosen with care and as a function of the dataset.

The algorithms is summarized below:

1. Pick a first datapoint at random

2. Compute number of datapoints within € around the datapoint

3. If this number is < mdata, Set this datapoint as an outlier
otherwise, for each point found within ¢ around the first datapoint, assign it to the same
cluster as the first datapoint.

4. If there is a cluster within g, merge with this cluster.

Below, we illustrate the main steps of the algorithm in a schematic:

@ 3 Outliers (noise) ° Outliers (noise)
L]
. . . . . ° . .
P -. KX .. -j-CIusteH Cluster 1
e @ Cluster 2

. X4 [ ] X4

Figure 3-10: lllustration of the step of DBSCAN. Left: a point is identified as an outlier as it has no datapoint
within an ¢ neighbourhood. Right: two newly created cluster of datapoints are merged as the two clusters are
within & from one another.

DBSCAN can cluster correctly elongated clusters (which K-means cannot cluster correctly), see
example below:
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Figure 3-11: Clustering obtained with DBSCAN illustrating the ability of the algorithm to generate non-globular
clusters (left) and that it can separate the double elongated clusters which K-means cannot (right).

DBSCAN is computationally intensive, as one must swipe the data several times to test the
neighbourhood and then to merge the clusters. Its computational costs grow quadratically with M.
There exists methods to speed up computation, but at best it grows with O(M log(M)).

3.2.5 Clustering with Mixtures of Gaussians

An extension of the soft K-means algorithm consists of fitting the data with a Mixture of Gaussians
(not to be confused with Gaussian Mixture Model (GMM))) which we will review later on. Instead of
simply attaching a responsibility factor to each cluster, one attaches a density of probability
measuring how well each cluster represents the distribution of the data. The method is bound to
converge to a state that maximizes the likelihood of each point to belong to each distribution.

Soft-Clustering methods are part of model-based approaches to clustering. In clustering with
mixture of Gaussians, the model is naturally a Gaussian. Other model-based methods use, for
instance, the Poisson or the Normal distributions.

The main advantages of model-based clustering are:
e It can make use of well-studied statistical inference techniques;
o lts flexibility in choosing the component distribution;
e |t obtains a density estimation for each cluster;
e ltis a “soft” means of classification.

Clusters with mixtures of Gaussian places K distributions, whose barycentres are located on the
cluster means, as in Figure 3-13.
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Figure 3-12: Examples of clustering with Mixtures of Gaussians (the grey circles represent the first and second
variances of the distributions).[DEMOS\CLUSTERING\GMM-CLUSTERING-SIMPLE.ML]

Algorithm

Assignment Step (E-step): The responsibilities are
1 [_%'d(ﬂk X )]
a, Ch

)

rk = (3.6)

R

= (o)

where M is the number ofdatapoints, i.e. x={x1, X2,..., Xxm}, d (X, y) is a distance measure, e.g. the
Euclidean distance.

Update Step (M-step): Each cluster's parameters 1, , «, and o, are adjusted to match the
data points for which the cluster is responsible:

2%

M= IZ:F-k 3.7
Zrik (Xi — )2
ol = . -Zrk (3.8)
25
a, ! (3.9)

3TF
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The o, represents a measure of the likelihood that the Gaussian k (or cluster k)generated the
whole dataset.

This fits a mixture of spherical Gaussians. “Spherical” means that the variance of the Gaussians is
the same in all directions. In other words, in the case of multidimensional dataset, the covariance
matrix of the Gaussian is diagonal and isotropic (i.e. all the elements on the diagonal are equal and
all elements on the off-diagonal are zero). This algorithm is still not good at modeling datasets
spread along two elongated clusters, as shown in Figure 3-7. If we wish to model the clusters by
axis-aligned Gaussians, we replace the assignment rule given by Equations (3.6) and (3.8) with
the following:
L,
B EE—

r* = i=1 (3.10)

N dw,x.)zJ
=1 2(aik)

SR (3.11)

(o )2 = (3.12)

N-Dr

R

Soft K-means and the mixture of Gaussians are two examples of maximum likelihood algorithm.

a, (3.13)
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Figure 3-13: Examples of clustering with Mixtures of Gaussians using spherical Gaussians (left) and non-
spherical Gaussians (i.e. with full covariance matrix) (right). Notice how the clusters become elongated along
the direction of the clusters (the grey circles represent the first and second variances of the distributions).

[DEMOS\CLUSTERING\GMM-ELONGATED.ML]

A fatal flaw of maximum likelihood (KABOOM!):

The major drawback of maximizing the likelihood (people tend to actually minimize the —log of the
likelihood) is that there is no actual maximum. Indeed, the pdf is a positive but unbounded function.
As a result, one may observe the so-called KABOOM effect.

When the mean of one of the Gaussian is located on a particular data point, and, if the variance is

already very small o? <<1, then o will become even smaller. This is a fatal flaw of soft k-means
algorithms: very small clusters can be formed that satisfy only a few data points. If the variance
goes to zero, you will obtain an arbitrary large likelihood (kaboom). This is a general flaw of
maximum likelihood methods that can find highly tuned models that fit only part of the data, but
perfectly. This phenomenon is known as over fitting.

3.2.6 Gaussian Mixture Models

While Gaussian Mixture Models (GMM) are often presented alongside other parametric or non-
parametric density estimation methods (e.g. such as Gaussian Process which we here present in
the regression method section), we felt that in the framework of these lecture notes it was preferable
to introduceGMM here as its notation follows naturally from that introduced in the soft-K-means
methods.

The estimation of Mixture of Gaussians we reviewed in the previous section assumed a diagonal
covariance matrix for each Gaussian. This is rather restrictive as it forces the Gaussians to have
their axes aligned with the original axes of the data, seeFigure 3-14. As a result, they are ill-suited
for estimating highly non-linear densities that have local correlations.
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%
Figure 3-14: A spherical Mixture of Gaussian Model can only fit Gaussians whose axes are

aligned with the data axes. It may require far more local models to account for local
correlations across the dimensions of the data X.
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X
Figure 3-15: In contrast, a Gaussian Mixture Model can exploit local correlations and adapt

the covariance matrix of each Gaussian so that it aligns with the local direction of
correlation.

Gaussian Mixture Model is a generic method that fits a mixture of Gaussians with full covariance
matrices. Each Gaussian serves as a local linear model and in effect performs a local PCA on the
data. By mixing the effect of all these local models, one can obtain a very complex density estimate,
see as an illustration the schematics in Figure 3-14 and Figure 3-15.

) -y j=1..M . . .
Let suppose that we have at our disposal X = {Xij}_ N the set ofMN-dimensional data points
1=1,...

whose density we wish to estimate. We consider that these are observed instances of the variable
X . The probability distribution function or density of X is further assumed to be composed of a

. . . . . K .
mixture of k =1,.., K Gaussians with mean u* and covariance matrix )" , i.e.

p(X)=sz_;%-pk(Xlﬂk'Zk)’ with p (x| 4,2 ) =N (s X) @19

K
The &, are the so-called mixing coefficients. Their sum is 1, i.e. Zak =1. These coefficients are
k=1
usually estimated together with the estimation of the parameters of the Gaussians (i.e. the means
and covariance matrices). In some cases, they can however be set to a constant,for instance to

give equal weight to each Gaussian (in this case, &, = }{( Vk =1,...K)). When the coefficients
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are estimated, they end up representing a measure of the proportion of data points that belong
most to that particular Gaussian (this is similar to the definition of the ¢ seen in the case of Mixture
of Gaussians in the previous section). In a probabilistic sense, these coefficientsrepresent the prior
probability with which each Gaussian may have generated the whole dataset and can hence be

written o = p(K) = i p(k|x!).
=

Learning of GMM requiresdetermining the means and covariance matrices and prior probabilities
of the K Gaussians. The most popular method relies on Expectation-Maximization (E-M). We
advise the reader to take a detour here and read the tutorial by Gilmes provided in the annexes of
these lectures notes for a full derivation of GMM parameters estimation through E-M.We briefly
summarize the principle next.

We want to maximize the likelihood of the model’s parameters
®:{al, ..... (2N T TN S ZK,} given the data, that is:

max L(®|X)=m%x p(X|0O) (3.15)

M
Assuming that the set of M datapoints X = {XJ }
J

) is identically and independently distributed

(iid), we get: _
M K _
max p(X©)=max [ [ p(x'|u,2) (3.16)

j=1 k=1

Taking the log of the likelihood is often a good approach as it simplifies the computation. Using the
fact that the optimum X of a function f (X) is also an optimum of log f (X) , One can compute:
max X|®)=max lo X|0
ax p(X|©)=max logp(X|©)
M K

max log [ > e - p(x!| &, 2¥) = max ZIog(Zak p(x! ka,Zk)j
1 k=1

j=1 k=1

(3.17)

The log of a sum is difficult to compute and one is led to proceed iteratively by calculating an
approximation at each step (EM), see Sections 7.3.2.The final update procedure runs as follows:

Initialization of the parameters:

Initialize all parameters to a value to start with. The P,,.., P can for instance be initialized with a

uniform prior, while the means can be initialized by running K-Means first. The complete set of
parameters is then given by:

0y =l s, i, 10, 50, 3}
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E-step:

At each step t, estimate, for each Gaussiank, the probability that this Gaussian is being
responsible for generating each point of the dataset by computing:

pe (x 1440, 2} )
> o (x 1,4Y)-a) (3.18)
i

a =p(kleY)=

M-step:
Recompute the means, Covariances and prior probabilities so as to maximize the log-likelihood of

the current estimate: Iog(L(®“) | X )) and using current estimate of the probabilities p(k |@Y )

Zp(k|x",®(‘))-xj
LK = (3.19)

Zp(klxj’@t))

]

Z p(k | Xj,G)(t))(Xj _ﬂk(m))(xj _#k(pr]_))-r
Zk(t+1) _ i 020

> p(kIx,0")
vy _ Zp(k | X! ,®(t))

lo4
X M

(3.21)

Note finally that we have not discussed how to choose the optimal number of states K. There are
various techniques based on determining a tradeoff between increasing the number of states and
hence the number of parameters (increasing greatly the computation required to estimate such a
large set of parameters) and the improvement that such an increase brings to the computation of
the likelihood. Such a tradeoff can be measured by either of the BIC, DIC or AIC criteria, see the
slides of the class.

Figure 3-16 shows an example of clustering using a 3 GMM model with full covariance matrix and
illustrates how a poor initialization can result in poor clustering.
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Figure 3-16: Clustering with 3 Gaussians using full covariance matrix. Original data (top left), superposed
Gaussians (top right), regions associated to each Gaussian using Bayes rule for determining the separation
(bottom right); effect of a poor initialization on the clustering (bottom right).

3.2.7 Metrics for evaluating clustering techniques

One major issue with clustering is the fact that we do not have access to the ground truth, as we
do not have the true class labels. Moreover, we do not even know how many classes (clusters)
there are. One must hence rely on other criteria to evaluate how good the clustering is. We here
present three metrics to help you assess how good your clustering is and help you to derermine
the optimal number of clusters. These metrics are usually referred to as internal measures, by
opposition to external measures, which we will see with semi-supervised clustering.

3.2.7.1 The RSS measure
The residual sum of square (RSS) measure computes the distance (in norm-2) of each datapoint

from its centroid for all clusters.
K
— k|?
RSS=) > [x— 4|

k=1 xeCy
It hence measures how close the datapoints are to the center of the cluster. The closer, the smaller
the measure. This measure is identical to the objective function that is minimized in K-means. K-
means solution is hence optimal according to RSS. However, since K-means is quite sensitive to
initialization, different initialization may lead to different clustering and the goodness of one solution
over another solution can be assessed with RSS. DBSCAN tends also to group datapoints close
to one another and would hence fare well on the RSS measure.
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Figure 3-17: (From left to right:) Clustering of two elongated clusters with K-means, DBSCAN with
large/medium/small ¢, respectively. The RSS, AIC and BIC measures give different results, with optimum for
different solutions. If one looks for the model for which all 3 metrics give a low value, then DBSCAN with

medium ¢ is the best solution.

In Figure 2-1, we show an example of clustering on the difficult case of clustering two elongated
clusters. We contrast the value obtained on the RSS measure for K-means, and DBSCAN with
different values of . The RSS measures does not allow one to determine that K-means is doing
poorly nor to determine that DBSCAN with a tiny value of ¢ is not doing a good job. This is normal
since the RSS measure is optimal for K-means and it values tight clusters. In fact, the RSS measure
is optimal when one places one cluster on any single datapoint! This is illustrated below for K-
means and this is what we observed already above for small values of ¢ in DBSCAN.

Flamq Gaussian

M:100 datapoints 4 o2
‘e’ RSS:0
D:2 dimensions 3 Y. .
, K:M clusters
! ¢
fal’] 'Y 'r .
of A -
-3 I} -
4 "igr
4 2 0 2 4 6

Figure 3-18: Example of application of K-means on a dataset with as many clusters as datapoints. This yields
an optimum on RSS with RSS=0.

Although the RSS measure is optimal is the degenerated case where one places one cluster on
everysingle datapoint, it can still be used to help one to determine the correct number of clusters K
in K-means. In the previous example, we see that when incrementing the number of cluster and
computing the RSS measure, we can determine correctly that the optimal number of clusters is 4,
see below.
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The same can be done also for determining the correct value of the two hyperpameters of
DBSCAN, although the RSS measure may sometimes not show the desired plateau.

3.2.7.2 AIC and BIC criteria

The Aikaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) determine
how good the model fits the dataset in a probabilistic sense. It takes a measure of how likely it is
that the model fits well the underlying (unknown) distribution of the data. The measure is balanced
by how many parameters are needed to get a good fit.

AIC=-2InL+2B
BIC =—2InL+BIn(M)

where L is the maximum likelihood of the model, B the number of free parameters and M the number of datapoints.

While AIC penalizes only for an increase in the number of parameters of the model, BIC penalizes
takes into account the number of datapoints. The larger the number of datapoints, the larger the
necessary increment in likelihood needed to counterbalance the penalty. In other words, for large
dataset, BIC will tend to penalize harder models with low gains in likelihood. This avoids overfitting
and tends to favor sparse but highly representative models. It is particularly suited to fit GMM and
would lead to models with few Gaussians but well tunes means and covariance matrices so as to
maximize coverage of the data with the model. This is illustrated below:

Figure 3-19: Fit with a GMM with 2 (left) and 3 (right) full covariance models. BIC yields a value of 29 and 22
respectively, hence favoring the model with more parameters but better statistical coverage of the data.

As we see in Figure 3-17, AIC and BIC yield both very different values when comparing the
solutions found with K-means and DBSCAN on the two elongated clusters. While each metric
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cannot be used to determine the correct solution, when we compare the solutions we see that the
solution that finds a compromise across all metrics is the optimal choice, namely DBSCAN with
medium e.

3.2.7.3 Fl-measure for semi-supervised clustering

As we have seen previously, one of the main difficulties in evaluating clustering is the fact that we
do not have the ground truth and know neither the true class labels nor the true number of classes.
Whenever possible, one may help clustering by providing a subset of the trues class labels. This is
known as semi-supervised clustering. In this case a fraction of the data receives a class label. The
higher the fraction, the more information at our disposal. In real life, this fraction of labeled data can
be very low, ranging from 10% to 1% of all data. The reason for such a low number is that it is very
time consuming to label data and it may in some cases simply be impossible to label all possible
data. Typically, semi-supervised clustering may be used when one wants to group products sold
on on-line shopping websites (amazon, itunes), one will pay a few willing customers to provide their
grouping and use their labeling to help clustering.

To evaluate the clustering, we can use the F1-measure, given below:

M : nm of labeled datapoints Penalize fraction of labeled points in

C ={c,}: the set of classes each class

K : nm of clusters,

n,: nm of members of class ¢, and of cluster k -
< ! Picks for each class the cluster
with the maximal F1 measure
F(C.K)=> ax {F, (c,.k)} €
c;eC k
2IR (c¢..k c..k
F (¢, .k)= @ IP (<, Recall: proportion of datapoints
R (C:=k ) + P (Cn correctly classified/clusterized
My
R(c.k)=—
(erk)=1
n. Precision: proportion of
P(c,.k)= datapoints of the same class in
( ) |k| <« the cluster

This metric looks at each class and measures how well each class is clustered. It then balances
two factors, the recall and the precision.

» Recall measures if all datapoints for which we have the class label have been clustered in the
same cluster. It is 1 when all points of the same class are grouped together and zero when the
cluster contains no labelled datapoints.

= Since the number of points with class labels is low, recall is balanced by precision. Precision
measures how many labeled points are contained in the cluster compared to the total number
of datapoints. A cluster with a large number of unlabeled points compared to the number of
datapoints correctly classified would receive a low value of precision.

Finally, the Fl-measure sums the F1l-values of each class and balances their contribution
according to the fraction of labelled datapoints from this class. Classes with few datapoints will
have less impact on the total F1-measure.

The F1-measure is comprised between 0 and 1. It is 1 when all datapoints are perfectly classified
and the clusters contain only correctly classified datapoints. In semi-supervised clustering, the F1-
measure can never be 1, since only part of the data are labelled, and henceforth the precision will
always be lower than 1.
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Below is a schematic example of the result yielded by the F1-measure. The two clusters have
perfect recall, as they both grouped correctly all labelled datapoints of class 1 and 2 within the same
cluster. Their respective F-measure will however be penalized by having a low value for the
precision. Precision measures the fraction of labelled points over all points within the cluster. The
first cluster is more penalized than the second one, as only two datapoints over a total of 6 are
labelled.
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The total F1-measure sums the result of the best F1- measure for each cluster and weights their

influence by the fraction of points labelled over all points with labels. In other words, clusters that

would have a perfect F1-measure but include only a low number of labelled point would be

penalized for this. In the schematic example above, this would yield the following F1-measure:
ﬁ(QK}:%(FI (61:}(=1_}]+%[Fl(62:k=2]]=0.7

I Penalize fraction of labeled points in each class I

The cluster one is penalized further by the fact that it represents only 2 out of the 6 labelled
datapoints. The total F1-measure is 0.7.

3.3 Classification

3.3.1 Bayes Classifier

The simplest means to perform binary classification in probabilistic models is to use the so-called
Bayes Classifier. Assume a binary labeling Y e[—l, +l] of a set ofi =1....M datapoints X' .

Assume that you have built twoprobabilistic models p, (y|x) and p_(y|x) that predict the

probability that the data point X had associated label +1 and -1 respectively.A Bayes classifier will
decide on the correct labeling simply by comparing the relative probabilities of each model, i.e.:

Ifp, (yIx)> p_(y|x), theny=+1.

: (3.22)
Otherwise y=-1.

Take for example a two classification problem where you have modeled each class with a single
Gauss distribution. The likelihood of each class is given by:
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To determine to which of the two classes one point belongs, one applies the Bayes’ rule to
compute for each class label i, p(y =1 X),

p(x|y=i)p(y=i)

P(x)
This numerator of this equation simplifies if one assumes that the likelihood of observing class +1

is equal to the likelihood of observing class label -1. To determine if a point belongs to either class
+ 1 or class -1 is equivalent to requesting that the ratio between the two likelihood be greated than

1, ie. p(x| y:1)
p(xly=-1)

Given that the distribution follow two Gauss distributions, we can take the log and we obtain an
explicitly rule:

=11

p(y=ilx)=

>1

Pxly=1) [ PXIY=D

p(x]y=-1) p(xly=-1)

.625 0.75

Figure 3-20: Example of binary classification using Bayes rule on two classes modelled by (left) isotropic
Gaussian distributions and (right) full covariance Gaussian distributions.

Note that Bayes classification can easily be extended to multiclass classification. Assume that you

\M .
wish to classify a set of datapoints X = {X' } into K classes Cl, . C" . Each label y' associated

to each datapoint X', i =1....M, can then take any value C*,....,C¥ . One can then compute the
posterior probability of each class, using:
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p(y=C'[x)=

p(y=C')p(xly=C') 629
p

> p(y=C*)p(xly=c’)

k=1

For a multi-class classification problem with K Gaussian functions, one for each class, to
determine the class label the discriminant rule becomes:

CK(x) = argkmin {(x—,u“)T (Z")fl(x—y")jt Iog‘Zk‘}

While powerful, the Bayes classifier remains a very simplistic model and is bound to make
erroneous predictions far from the data, as it does not take into account the absolute value of the
likelihood associated with each mode (only their relative importance). If both classifiers are
predicting the labelof X with a very low likelihood (which happens when the data point x is very far
from the training points or when the two classes overlap heavily in that region) then, deciding on

one class label over the other is usually no better than random. Besides, when p, and p_are two

arbitrary densities, comparing these may be dangerous if one did not make sure that the quantities
are comparable. Since a pdf is a positive, but unbounded (above), function, its likelihood may grow
arbitrarily. It usually grows with the numer of parameters. A good precaution is then to make sure
that the two classifiers have the same number of parameters and are trained on the same number
of datapoints. The latter means that one must have at its disposal as many examples of the positive
class as that of the negative class. If this can not be ensured, then one may apply some
normalization term on the likelihood of each classifier or one may use a threshold on the likelihood
of both models to determine when inference is warranted. Despite these caveats, Bayes classifiers
remain quite popular, in part because of their extreme simplicity, but also because they yield very
good performance in practice.

We see next how this can be used when using Gaussian Mixture Models.
3.4 Bayes classification with Gaussian Mixture Models

The Gaussian Mixture Model, introduced in Section 3.2.6, can be used in conjunction with the
Bayes classifier to perform binary classification. For two knows classes of datapoints, one can train
two separate GMM-s, one for each class of datapoints and use the Bayes classifier to determine

the labeling of any given datapoint. In other word, each GMM yields a density P, and p_which can
then be used to determine the label of a new training point using (3.22).

To ensure that the two models are comparable, one should train two GMM with same number of
Gaussians, using the same modeling (with full, diagonal or isotropic covariance matrix in each
case), and using similar number of training points for each GMM. Figure 3-21 shows one example
of such classification using two GMM-s with 8 Gaussians each.
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Figure 3-21: Bayes classification using a two GMMs with 8 Gaussians each and full covariance matrix. From
left to right top to bottom: i) original datapoint (in dark, datapoints belonging to class +1, empty circles denote
datapoints belonging to class -1), ii) result of the classification; all datapoints are correctly classified in their

respective class; iii) the 16 Gaussians superimposed on the datapoints; iv) the region associated to each class
using Bayes classification.
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3.5 Performance Measures for Clasification

3.5.1 ROC

Graphical representations such as the Receiver Operating Characteristic, so called ROC curve
provide an interesting way to quickly compare algorithms independently of the choice of
parameters.

The ROC curve is used in binary classification problems. It balances the number of true positives
(TP), i.e. number of instances when the algorithm classified correctly a datapoint of the 15t class to
the 1st class again the numbe of false positives (FP), i.e. number of instances when the algorithm
classified incorrectly datapoints of the 2" class to the 1t class.

The ROC curve plots the fraction of true positives (TP) and false positives (FP) over the total
number of samples of the 15t class in the dataset. Each point on the curve corresponds to a
different value of the classifier's parameter (usually a threshold; e.g. a threshold on Bayes’
classification). A typical ROC curve is drawn below.

Always
positive

100%.
Perfect /

classification

p(TP)

Performance drops

Always
negative —

0% p(FP) 100%

As you may have noticed, the ROC curve tends to measure only classification performance with
respect to one class, the 1%t class. This is due to the fact that one often cares about achieving
excellent classification on one class against the rest (the non-class), e.g. recognizing human faces
versus any other image which is not a human face.

If, however, one cares about computing performance on both classes, one will also compute the
number of false negatives (FN), namely the number of instances when the algorithm classified a
datapoint of the 2nd class to the 1st class.

Below you can find a schematic illustrating the notion of FP, TP and FN in a binary classification
example.
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3.6 Further Readings

There exist numerous methods to cluster or classify data. This chapter dealt only with some
of the major algorithms for clustering and classification from which most of state-of-the-art
methods are derived. In this manuscript, we will also see two other techniques for
classification as part of the Artificial Neural Networks chapter. These are the perceptron
and the backpropagation algorithm.

In part-1l of this manuscript, we will also consider other techniques for classification, such
as Support Vector Machine and Support Vector Clustering that exploit non-linear
transformation of the data through kernel projection.
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4 Regression Techniques

There is a growing interest in machine learning to design powerful algorithms for performing non-
linear regression. We will here consider a few of these. The principle behind the technique we will
present here is the same as the one used in most other variants we find in the literature and hence
this offers a good background for an interested reader.

Consider a multi-dimensional (zero-mean) variable X € R" and a one-dimensional variable yeR

, regression techniques aim at approximating a relationship f between y and x by building a model
of the form:

y=1f(x) (4.1)

4.1 Linear Regression

The most classical technique that the reader will probably be familiar with is the linear regressive
model, whereby one assumes that f is a linear function parametrized by w € RN, that is:

T

y=f(x,w)=x"w 4.2)

For a given instance of the pair Xxand Yy one can solve explicitly for w. Consider now the case
M M

where we are provided with a set of M observed instances X ={xi } 1and Y = {yi } ) of the
i=

variables X and Y such that the observation of Y has been corrupted by some noise which may

or not be a function of x, i.e. 8(X):

y=X"w+e(X) (4.3)

Classical means to estimate the parameters W is through mean-square, which we review next.

4.2 Gaussian Mixture Regression
Adapted from Hsi Guang Sung, Gaussian Mixture Regression and Classification, PhD thesis, Rice University,
2004.

In Section 3.2.6, we introduced Gaussian Mixture Models (GMM). Assume z € RV a multi-
dimensional variable GMM builds a model of p(Z)= p(Zl,..., Z, )of the joint distribution of X

using a mixture of k =1,.., K Gaussians p, (Z | 12 ,Zk)z N ([,uk,zk]) with mean u* € R"

. . k NxN .
and covariance matrle eR™ , 1.e.

p(2) =D, -p. (2143 ) = Do, — 2 —exp((z- ) () (- 1*)) @)
k=1 ( ) k=: \/Z‘sz ( )

K
The mixing coefficients ¢, satisfy Z a, =1.
k=1
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Gaussian Mixture Regression (GMR) exploits the joint density to construct its estimate using the
expectation on the conditional of the variable onto which we wish to make a prediction. If for

instance, we wish to predict Z, from knowing all other entries Z,,...Z, , then we can compute:

2, =E{p(z12,...2 )}:jzl- P(2, 125,02y )-dz, (4.5)

When applying Bayes’ theorem, we get:

jzl- p(2,2,,....2y )-dz,
Ip(zl,zz,...,zN)-dzl

Z, = (4.6)

In contrast to most regression techniques, GMR also allows to make prediction on multi-
dimensional output in one swipe. So, if we sety = {Zl, Z,, 23} and X = {24,..., Z, } , then we can
compute:

I~ E{p(Y1)} = E{p(21 2202420202} @)

421 One Gaussian Case

Let us first consider first the case where the joint density p(Z): p(y, X)follows a single

Gaussian distribution (and not a mixture). Using the fact that, if the joint distribution of two
variables is Gaussian then each conditional distribution is also Gaussian, see Figure 7-3 for an

illustration,we can compute the conditional density p(y | X) which is given by:

p(yl X) =N (:uy +ZYX (zxx )71(X_ﬂx)’zvx _ZYX (zxx )71 ZXY ) (4.8)

where 4, and U, are the means of the variable Yand Xrespectively and have thus the
dimensions of Y and X, which we shall call N',N*. X, the covariance matrix of the input
variable X has dimension N* xN*and the cross-covariances matrices 2w s 2y have
dimension NY x N, N* x N" respectively.

In predictive regression, we are interested in computing the expectation and uncertainty of the
predictive regressive model at a given query point. When the conditional density is Gaussian, this

is easy to obtain and we thus have for a query point X", the estimated output:
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9*:E{p(y|X*)}:/uY+ZYX (Zxx)il(x_ﬂx) (4.9)

with associated uncertainty:

var (p(y1x))=Zp ~Zo (T ) Ty (4.10)

4.2.2 Multi-Gaussian Case

It is easy to extend the previous result to a mixture of Gaussians, where p(X, y) is given by
Equation(4.4). Recall that each joint density pk(y, X), k=1,.K can be decomposed as
P, (y, X) =Py (y | X)~ P, (X) (Bayes’ Theorem), then the joint density of the complete mixture

is given by:

K
p(y,x):Zak : pk(yl quk(x)1zk)' pk(xllu>k<1 i;X) (4.11)
k=1

XY

with 2 (x) =,Uf +z‘:X (z‘;x )71(x—,ut ) and X =th —ZEX (th )712k :

The marginal density of X is given by:

pk(Xlﬂk,Zk)=ipk(Xlﬂk,Zk) (4.12)

k=1

Replacing (4.12) in (4.11), we can express the conditional probability of Y given X:

p(y|x) Zwk )Py (Y1) (4.13)

ak pk(xlluk’zk)

i% p, (x|, 31}
j=1

Equation (4.13) forms the core of the GMR model. One can then compute explicitly the
expectation and variance on the above conditional, similarly to what we did for the probabilistic
regression.

where W, =

K

E{p(yIx)}=Dw (x)x (x)= gwk (x)(ﬂf +3F (kax )_1(X—y: )) (4.14)

k=1
The expectation is thus a non-linear combination of the expectation of each local component. In

effect, the regression signal from GMR is the result of a non-linear weighting of local linear
regressions.
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#(x))
(4.15)

The variance of GMR is no longer a simple function increasing with the amplitude of the input X
(as in probabilistic regression). Rather it is modulated by the variance of each component locally
and hence carries across a notion of local variance.

A schematic of these variables is shown in Figure 4-1.

0.05;

-0.05 |

GMR

80 100

Figure 4-1: Two-dimensional illustration of a) left: a Gaussian Mixture Model with 3 Gaussians (in violet)
superposed to the original set of pairs (x,y) of datapoints (in grey), b) the Gaussian Mixture Regression model

resulting from the GMM. The dark line is the regression signal, i.e. E { p (Y | X )} . The blue envelope around

it is one standard devitation computed from var{ p (Y | X )} :

Model
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Figure 4-2: Gaussian Mixture Model (top row) and Regression (bottom row) with different amounts
of Gaussians in the mixture. The center line shows the regression mean, while the two thinner
lines display respectively one and two sigmas. The regression function becomes more detailed
when the data is modeled by more Gaussians, and represents better the modulation of its
variance.[DEMOS\REGRESSION\GMR-THINNING.ML]
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5 Kernel Methods

These lecture notes have sofar covered linear methods for performing a variety of computation,
ranging from dimensionality reduction, clustering and classification to regression. The term linear
refers to the assumptions that all of these transformations could be expressed as linear
transformation of the form y = AXx (where y and X are given and A is the unknown transformation).

Kernel methods relax the assumption of a linear transformation, so as to perform non-linear
regression, classification, etc. Kernel methods proceed by first projecting the data through a non-
linear transformation into a feature space and then perform the same type of computation (e.g.
classification or regression), as in the linear case, in the feature space. This principle is illustrated
in Figure 5-1.

input space A feature space
) L 4

sesnnannnnan o
D

> L

Figure 5-1: lllustration of the principle of non-linear classification through Support Vector Machine.
The data are first projected from input space to a feature space via a non-linear map ¢ Linear

separation is then performed in the feature space. Figure from "Learning with Kernels" by B.
Scholkopf and A. Smola, MIT Press 2002.

In these lecture notes, we cover a subset of existing Kernel methods. We focus on kernel methods
that extend the algorithms we presented previously for dimensionality reduction (from PCA, CCA,
ICA to kernel PCA, kernel ICA, kernel CCA), for clustering (from K-Means to kernel K-means), for
classification (from linear classifier to support vector machine) and for regression (from probabilistic
regression to Gaussian Process Regression).

5.1 The kernel trick

All kernel methods we will see here are based on the so-called kernel trick. The kernel trick stems
from a variety of fundamental mathematical principles which we will skip here, focusing solely on
explaining its basic principle.

M
If X = {X' }_71 is the set of our M observations, we can construct a projection of X onto the feature

space H through a non-linear mapping ¢ :
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$:X > H
X — p(x).

(5.1)

Note that if the dimension of X is N , then the dimension of the feature space may be greater than
N .
Finding the appropriate non-linear transformation ¢ is difficult in practice. The kernel trick relates

to the observation that most methods rely on computing an inner product <Xi , Xj> across pairs of

observations Xi,Xj € X (e.g., recall that in order to perform PCA, we needed to compute the

covariance matrix on X , which is given by the dot product on all the data points, i.e. XXT ; similarly
when performing linear regression, we had to multiply by the inverse of the covariance on X).

Hence, determining an expression for this inner product in feature space may save us from having
to compute explicitly the mapping ¢ . This inner product in feature space is expressed through the

kernel function (or simply the kernel) K (., )

All the kernel methods we will see in these lecture notes assume that the feature space H into
which the data are sent through the non-linear function ¢ is a Reproducing Kernel Hilbert Space

(RKHS).H is hence a space H.’Z{hl(.),h2 (),} of functions from R to R . In this space,

¢(.,Xi), ¢(.,Xj) vx',x! € X defines a set of functions indexed by X. The “reproducing

property" of the kernel ensures that taking the inner product between a pair of functions in H yields
a new function in H . Hence setting k(., X) = ¢(., X) yields the following kernel:

0

k(x',x))= <¢( X'), (. % )> = j #(z.x),4(z.%' )z (5.2)

—00

The kernel in (5.2) is the dot product in feature space. Most techniques covered in these lecture
notes will be based on this kernel.

Note that, in the literature, people tend to omit the open parameter on ¢<, Xi)and write simply

¢(Xi ) We will follow this notation in the remainder of this document.

For proper use in the algorithms we will see next, the kernel must satisfy a number of properties
that follow the Mercer’s theorem. Among these, we will retain that kis a symmetric continuous
positive function that maps:

k:iXxX >R
k(x',x1) > (¢(x),¢(x')) :3)

The kernel kprovides a metric of similarity across datapoints. Using k may allow extracting features
common to all training datapoints. These features are some non-linear correlations not visible in
the original space.
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Classical kernels one finds in the literature are:
e Homogeneous Polynomial Kernels: k(x, X') :< X'>p , peN;

X,
e Inhomogeneous Polynomial Kernels: k(x, x') = (<X X'>p +C), peN, c>0;

e Hyperbolic Tangent Kernel (similar to the sigmoid function):
k(x,x")=tanh(0+(x,x")), OeR;
_x=x]

e Gaussian Kernel (translation-invariant): k(X, X') =e 2 geR

The most popular kernel is the Gaussian kernel.

5.1.1 Stationary and non-stationary kernels

A kernel is stationary if the kernel depends only on the distance between two points. The Gaussian
kernel is stationary. The other three kernels listed above are non-stationary as they depend on the
coordinatre of the points.

5.2 Which kernel, when?

A recurrent question we often hear in class is “how does one choose the kernel”. A number of
recent works have addressed this problem by offering techniques to learn the kernel. This often
amounts to building esimators that rely on mixture of kernels. One then learns how to combine
these kernels to find the optimal mixture. There is however unfortunately no good recipe to
determine which kernel to use when. One may either try different kernel in an iterative manner and
look at which provides the best result for a given technique. For instance, if you perform
classification, you may want to compare the performance obtained on both training and testing sets
after crossvalidation when doing so with either Gaussian kernel or Polynomial kernel. You may
then pick the kernel that yields to best performance.

While choosing the kernel is already an issue, once a kernel is chosen, one is left with the problem
of chosing the hyperparameter of the kernel. These are, for instance, the variance o in the
Gaussian kernel or the order of the polynome [ in the polynomial kernels. There again, there is no

good recipe. When using a Gaussian kernel, a number of approaches, known under the term of
kernel polarization, have been proposed whereby one learns the optimal covariance parameters.
Most of these approaches however are iterative by nature and rely on a discrete sampling of values
taken by the parameters, using some heuristics or boosting techniques to optimize the search
through these parameter values.

5.3 Kernel PCA

We start our review of kernel methods with kernel PCA, a non-linear extension to Principal
Component Analysis (PCA).

To recall, PCA is a powerful technique for extracting structure from high-dimensional data. In
Section 2.2.1, of these lecture notes, we had reviewed two ways of computing PCA. We can either
do it through an analytical decomposition into eigenvalues and eigenvectors of the data space, or
through an iterative decomposition using Hebbian Learning in multiple input-output networks.
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A key assumption of PCA was that the transformation applied on the data was linear. Kernel PCA
is a generalization of the standard PCA, in that it considers any linear or non-linear transformation
of the data.

Figure 5-2: (RIGHT:) Example of a two-class dataset (red and white classes) in original space. (LEFT® Data
becomes linearly separable when using a rbf kernel and projecting onto first 2 PC-s of kernel PCA.

We first start by reintroducing the PCA notation and then show how we can go from linear PCA to
non-linear PCA.

Linear PCA:

Assume that the dataset is composed of a set of vectors xl e RN ,i=1..M. Assume further that the

M .
dataset is zero mean, i.e. Zx' =0.

i=1

PCA finds an orthonormal basis such that the projections along each axis maximize the variance

of the data. To do so, PCA proceeds by diagonalizing the covariance matrix of the dataset c=xxT.
C is positive definite and can thus be diagonalized with non-negative eigenvalues.

The principal components are then all the vectors vi ,i=1...,N, solution of:
CV' = AV (5.4)
where ﬂ] is a scalar and corresponds to the eigenvalue associated to the eigenvector v

Non-Linear Case:

Observe first that one can rewrite the eigenvalue decomposition problem of linear PCA in terms of
dot product across pairs of the training datapoints. Indeed, each principal component V' can be

1 M . N\T
expressed as a linear combination of the datapoints. Using C:MZXJ (XJ) and replacing in

j=1
(5.4), we obtain:
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. 1 M T . .
Cv':—Zx‘(x‘) Vi = AV (5.5)

= (5.6)
M ( . T i
=——> [x (V' )x
w2 (V)
Introducing a set of scalars /| =(xj (vi )T ) for each data point x’ (these correspond to the value of the
projection of x! onto the eigenvector vector v'.
Then each eigenvector v' with non-zero eigenvalue A' lies in the space spanned
by the input vectors x*,....., x™ :
. 1 M
Vi=——> ajx’. (5.7)
MA' =

Assuming now that the data are projected into a feature space through a non-linear map ¢ and
that these are centered in feature space, i.e.

Z¢(x‘)=o, (5.8)

the Correlation matrix in the feature space is then given by:

1
C, =MFFT (5.9)

where each i=1,...,M columns of F are composed of the projections ¢(Xi )

© A.G.Billard 2004 - Last Update October 2024



80

As in the original space, in feature space, the correlation matrix C¢ can be diagonalized and we

have now to find the eigenvalues 4, >0, i =1..M, satisfying:

(5.10)

Each eigenvector v*,...,v" can be expressed as a linear combination of the images of the
datapoints.

Rewriting PCA in terms of dot products:

Using C,,;Vi:%igé(xj)qﬁ(xjyv‘ with  Cv' =4V’
=t
. . 1 M . T .
we obtain, V' :—Z¢(x’)¢(xj) v
R S—

AM

i
LN

All solutions v with A =0 lie in the span of the ¢(x"),...,#(x") and we can thus write:
i 1 S |
=— (5.11)
M Z]; j ( )

Developping the left hand-side

<¢(xi),c¢vi>=<¢(x"),c¢%Méa2¢(x")>

© A.G.Billard 2004 - Last Update October 2024



81

Using the kernel trick, one can define the Gram Matrix K , whose elements are composed of the
dot product between each pair of datapoints projected in feature space, i.e. Kij = <¢(Xi ) : ¢(Xj )>

Beware that Kis M xM , where M is the number of data points.

We can finally rewrite the expression given in (5.12) as an eigenvalue problem of the form:

K’a'=MAKa', i=1.M

_ _ (5.13)
Ka'=MAca!'

This is the dual eigenvalue problem of finding the eigenvectors V' of C.

The solutions to the dual eigenvalue problem are given by all the eigenvectors o',...,a™ with
non-zero eigenvalues A,,..., 4,,.

Asking that the eigenvectors v of C, be normalized, i.e. (V',v')=1 Vi=1..,M

is equivalent to asking that the dual eigenvectors «',...,a" be such that 1/4, = Ha‘ H

One can now compute the projections of a given query point x onto the eigenvectors v' using:

<vi,¢(x)>=éa} <¢(xj),¢(x)>=éa}k(x",x) (5.14)

Note that the solution of kernel PCA yields M eigenvectors, whereas the solution to linear PCA
yielded N eigenvectors, where N is the dimensionality of the dataset and M is the number of
datapoints. Usually, M is much larger than N, hence kernel PCA corresponds to a lifting into a
higher-dimensional space, whereas linear PCA was a projection into a space of lower dimension
than the original space. By lifting the data, kernel PCA aims at extracting features that are common
to subsets of datapoints. In some way, this is close to a clustering technique. Datapoints that bear
some similarity will be close to one another along some particular projection.If the data points have
really no regularity, then they will be distributed homogeneously along all projections.

Figure 5-3 illustrates the principle of PCA on a dataset that forms approximatively three clusters.
By looking at the regions with equal projection value on the first or second eigenvector, we see that
some subgroups of datapoints tend to group in the same region. When the kernel width is large,
the two clusters on the right-handside of the figure are encapsulated onto a single contour line in
the first projection. The datapoints of the cluster on the far left are closely grouped together. As a
result, the contour lines form ellipsoids that match the dispersion of the data. When the datapoints
are more loosely grouped, as it is the case for the two groups at the center and far right, one
observes some non-linear deformations of the contour lines that reflect the deflections due to the
absence of the datapoints. Using a smaller kernel width allows for encapsulating finer features and
allows us to separate the groups. A very small kernel width will however lead to one datapoint per
projection.
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5 Eigenvector=1; Eigenvalue=0.246

.5 -
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

-0.5

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 5-3: Example of clustering done with kernel PCA with a Gaussian Kernel and kernel width o = 0.1 (top)
and o =0.04 (bottom). Reconstruction in the original dataspace of the projections onto the first two
eigenvectors. The contour lines represent regions with equal projection value.
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5.4 Kernel CCA

The linear version of CCA was treated in Section 2.3. Here we consider its extension to non-linear
projections to find each pair of eigenvectors. We start with a brief recall of CCA.

l,Y =e{yi ERNV}M of

i=1

M
Consider a pair of zero-mean multivariate datasets X :{X‘ ERN*},
1=
M
which we measure a sample of M instances {(X‘ VY )} . CCA consists in determining a set of
i=1
projection vectors W, and w, for X and Y such that the correlation p between the projections

T T
z=w X and z,=w,Y _ _ . -
X x y Y (the canonical variates) is maximized:

WIE{XY"}w, w,C, W,
Max p = max Corr(z,,z,)==max —— —— =max
Wi, Wy i Wy HWX X HHWyY H Wy \/WICXXWXW;CWWV
(5.15)

WhereC,,C,,,C, are respectively the inter-set and within sets covariance matrices.

C, isN,xN,,C,=E{XXT}:N,xN,, C =E{YY"}: N xN,
Non-linear Case:

Kernel CCA extends this notion to non-linear projections. As for kernel PCA, let us assume that
both sets of data have been projected into a feature space through a non-linear map ¢, 4,, such

M

M
that we have now the two sets {¢X (Xi )} and {¢y (y‘ )} . Let us further assume that the data
i=1 1

i=
M M

are centered in feature space, i.e. Z(;SX (Xi ) =0and Z¢y (yi ) =0 (if the data are not centered
i=1 i=1

in feature space, one can find a Gram matrix that ensures that these are centered, as done for
kernel PCA, see exercise session). Kernel canonical correlation analysis aims at maximizing the
correlation between the data in their corresponding projection space. Similarly to kernel PCA, we

can construct the two kernel matrices K, =F'F,, K, = FyT F,. where F andF are two

M M
M x M matrices, whose columns are composed of the projections {¢X (xl )}i=1 and {¢y (yi )}i=1

, respectively.

The weights W,, W, can be expressed as a linear combination of the training examples in feature

space, i.e. W, =Fa, andw, =F «, . Substituting into the equation for linear CCA yields the
following optimization:
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In kernel CCA, we solve for:
max o, F, F, F/F, o,

Wy, Wy

uc. oF'FFFa, = ozyTFyT F FyT Fa, =1

: T T o
Replacing F F, =K,, F,/F, =K, we obtain:
aK.K,a,
max o =max

ay.,a ay.a 2 2 2
% % (aXKXaX) (ayKyay)

1/2

(5.16)

Then, as done for linear CCA, see Section 2.3, one can express this optimization as a generalized
eigenvalue problem of the form:

0 KK, [ a, K2 0 \a,
_ 5.17
KK, 0 Jlo,) "lo K )a &40

y y

A first difficulty that arises when solving the above problem is the fact that its solution is usually
always p =1, irrespective of the kernel. This is due to the fact that the intersection between the

spaces spanned by the columns of K, and K, is usually non-zero?. In this case, there exist two
vectors &, and aysuch that Kx()tX = Kyay , that are solution of (5.17). Finding a solution to (5.17)
will hence yield different projections depending on the kernel, but all of these will have maximal
correlation. This hence cannot serve as a means to determine which non-linear transformation K
is most appropriate.

A second difficulty when solving (5.17) is that it requires inverting the Gram matrices. These may
not always be invertible, especially as these are not full rank (because of the constraint of zero
mean in feature space).

To counter this effect, one may use a regularization parameter (also called ridge parameter) K on
the norm of the transformation yielded by KX,Ky and end up with the following regularized

problem: . N
( Y’
(0 KK)a) LKﬁMTk'J  ra)
LKny 0 Aay}_r . [K Mk, ]z LaJ (5.18)
A R P Mk
A a o2
B
< Aa= rBa

2 K,and K, are centered and are hence at most of dimensions M -1. The dimension of the
intersection between the spaces spanned by the column vectors of these matrices is
dim(C(Kx),C(Ky))2dim(C(Kx))+dim(C(Ky))—M. If M>2, i.e. if we have more than two

datapoints, then the space spanned by the two canonical basis intersect.
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Thanks to the regularization term, when M is very large, the right-handside matrix becomes PSD
(which is usually the case as the number of datapoints M>>N, the dimension of the dataset; if this
is not the case, then one makes K very large). In this case, the matrix B can be decomposed into

B=C'C. Replacing, this vyields a classical eigenvalue problem of the form:

(CT)'1 AC b= rb, with b= Ca.

Note that the solution to this eigenvalue problem neither shows the geometry of the kernel
canonical vectors nor gives an optimal correlation of the variates. On the other hand, the additional
ridge parametercinduces a beneficial control of over-fitting and enhances the numerical stability of
the solutions. (Bach & Jordan, 2002) report that, in many experiments, the solution of this
regularized problem show better generalization abilities than the kernel canonical vectors, in the
sense of giving higher correlated scores for new objects.

Generalizing to multiple multi-dimensional datasets:

As in linear CCA, one can extend this to comparison across several multidimensional datasets. If
Xys...y X are the L datasets, each of which are composed of M observations. Each dataset may

however have different dimensions N ;,....N, and hence X; : N; xM . As in the two-dimensional

case, one can construct a set of L Gram matrices Ki,....., K and the solution to this kernel CCA
problem is given by solving:
Mr,
K +—1 0
0 KK, ... KK, o, 2 o,
K,K, 0 ... KK, || &, a,
S P
KKK KK, ... KK N\« Mr. Vo
LM L' *2 LML L 0 KE"‘ | L
2
(5.19)

When using a Gaussian kernel, one can see that as the kernel width increases, the correlation will
also increase as an effect of the overlap created across the mapping between the two Gaussian
functions.

Further Readings:

For a good overview of kernel CCA, see M. Kuss and T, Graepel ,The Geometry Of Kernel
Canonical Correlation Analysis Tech. Report
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55 Kernel ICA

Adapted from Kernel Independent Component Analysis, F. Bach and M.I. Jordan, Journal of Machine Learning
Research 3 (2002) 1-48

In Section 2.4, we covered the linear version of Independent Component Analysis. We first here
revisit ICA, presenting an alternative approach based on minimization of mutual information. We
then extend this approach to non-linear ICA, also known as kernel ICA.

Linear ICA

ICA assumes that the set of M observations X = {x'J }ift"MN was generated by a set of statistically
j=1...

independent sources S = {sl,....sq}, withq <N through a linear transformation A :

A:R* > R"
s = x=As
where 4: is an unknown N x ¢ mixing matrix.

ICA consists then in estimating both A and S knowing only X .

ICA bears important similarity with Probabilistic PCA, see Section 2.2.5. The sources S are latent
random variables, i.e. each source S,,...,S; was generated by an independent random process and

hence as an associated distribution psi . ICA differs from PPCA in that it requires that the sources

be statistically independent. PCA in contrast requires solely that the projections be uncorrelated.
Statistical independence is a stronger constraint than un-correlatedness, see definitions in
Annexes, Sections 7.2.8 and 7.2.9.

To solve for ICA would require doing a multi-dimensional density estimation to estimate each of the
densities Psl,----psq-This is impractical and hence ICA is usually solved by approximation

techniques. In Section 2.4, we saw one method to solve ICA using a measure of non-gaussianity.
The intuition behind this approach was that the distribution of the mixture of independent sources
becomes closer to a Gaussian distribution than the distribution of each source independently. This,
of course, assumed that the distribution of each source is non-gaussian. This idea is illustrated in
Figure 5-4. A measure of non-gaussianity was proposed based on the Negentropy

J(Y)=H (Ysass)—H(Y)- The negentropy measures by how much the entropy H (y) of the

current estimate Y ~ S of the distribution of the sources differs from the entropy H (yGauss)Of a

Gaussian distribution with the same mean and covariance as that of the distribution of y . In

information theory, the entropy is a measure of the uncertainty attached to the information
contained in the observation of a given variable. The more entropy, the more uncertain the event
is, see Section Error! Reference source not found.. The notion of entropy can be extended to
joint and conditional distributions. When observing two variables, the joint entropy is a measure of
the information conveyed by the observation of one variable onto the other variable. It is hence
tightly linked to the notion of information. Unsurprisingly, ICA can hence also be formulated in terms
of mutual information, as we will see next.
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Marginal and joint densities, uniform distributions.

Marginal and joint densities, whitened mixtures of uniform ICs
Figure 5-4: TOP: Marginal (left) and joint (right) distributions of two statistically independent sources, a

Gaussian distribution and a uniform distribution. BOTTOM: The marginal distributions after whitening are
closer to that of a Gaussian distribution.

ICA by minimization of mutual information

ICA searches statistically independent sources. These sources must therefore have minimal
mutual information. A measure of the mutual information across the q sources is given by:

q

| (sl,...sq)= Zh(si)—h(x)—Iog‘det(A’l)‘ (5.20)

i=1
where h(X) is the entropy of the distribution of the observations.

To recall, ICA started with the assumption that the data was centered and white, i.e. x~ N (O, | )

In practice, this requires to first substract the mean of the data and then to proceed to a
decorrelation through PCA, followed by a normalization, see Section Error! Reference source not
found.. By extension if x ~ N (0, | ) then the sources are also centered and white and hence:

| =E{ss'} = ATE{x (A7) (5.21)
Given that det(l ):1, we have:
det(A‘lE{xxT}(A‘l)T )=1

< det (A det (E (<" |)det((A™)' )<L 522)
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This implies that det(A‘l) is a constant (and is equal to +1 in the particular case of whitenend

mixtures).

Assuming then that the data is zero-mean and white, that the number of sources equal the
dimension of the data, i.e. N, and replacing in (5.20), one can see that maximizing the negentropy
is equivalent to minimizing mutual information, as the two quantities differ only by a constant factor,
ie.

N
(s,,..5y ) =cst.— > J(%). (5.23)
i=1

Given that the mutual information of a random vector is nonnegative, and zero if and only if the
components of the vector are independent, minimization of mutual information for ICA is interesting
in that it has a single global minimum. Unfortunately, the mutual information is difficult to
approximate and optimize on the basis of a finite sample of datapoints, and much research on ICA
has focused on alternative contrast functions. The earliest approach that optimizes for the
negentropy using the fast-ICA algorithm, see Section Error! Reference source not found., relies
on an adhoc set of non-linear functions. While not very generic, this approach remains
advantageous in that it allows estimating each component separately and in that it does the
estimation only on uncorrelated patterns.

Non-linear Case

We will here assume that the sources and the original datapoints have the same dimension and
these are zero-mean and white. In practice this can be achieved by performing first PCA and then
reducing to the smallest set of eigenvectors with best representation. Hence, given a set of

. -y j=L..M .
observation vectorsX={Xi’}_ o we will look for the sourcesS,....Sy, such that:
i=1,...

s,=Wx and W = AL Asin linear ICA, we do not compute A and then its inverse, but rather
estimate directly its inverse by computing the columns of W.

While the fast-ICA method in linear ICA relied on chosing one or two predefined non-linear functions
for the transformation, Kernel ICA solves ICA by considering not just a single non-linear function,

but an entire function space ® = {¢1(),¢2 (),} of candidate nonlinearities. The hope is that

using a function space makes it possible to adapt to a variety of sources and thus would make the
algorithms more robust to varying source distributions. Each function ¢1, ¢2,... goes from

) . -y i=L.M ]
R" — R. We can hence determine a set of N transformations ¢ :{Xi‘} —-®,i=1..N

with associated kernels K, =<¢iI ()¢ ()>, i=1...N. Beware that we are here comparing the

projections of the datapoints along the dimensions i =1,...N of the original dataset, which is

thought to be the same dimension as that of the sources. Each matrix K;is thenM xM .

In Section 5.4, when considering kernel CCA, we saw that one can determine the projections that
maximize the correlation across the variables using different sets of projections ¢l,¢2,.... This is

measured byp( K, ...Ky ) This quantity is comprised between zero and one. While CCA aimed

at finding the maximal correlation, kernel ICA will try to find the projections that maximize statistical
independence. We define a measure of this independence  through
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A(K,,...Ky ) =1-p(K,,....Ky ). This quantity is also comprised between 0 and 1 and is equal
to 1 if the variables X,,..., X, are pairwise independent. Optimizing for independence can be

done by maximizing /1( K, ...Ky ) . This is equivalent to minimizing the following objective function:
J (K Ky )=—log 2(K,,...Ky) (5.24)

This optimization problem is solved in an iterative method. One starts with an initial guess for W
and then iterates by gradient descent on J. Details can be found in Bach & Jordan 2002.
Interestingly, an implementation of Kernel-ICA, whose computational complexity is linear in the
number of data points, is proposed there. This reduces importantly the computational costs.
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5.6 Kernel K-Means

Kernel K-Means is one attempt at using the kernel trick to improve the properties of one of the
simplest clustering techiques to date, the so-called K-means clustering technique, see Section
3.2.2.

K-means builds partition the data into a finite set of K clusters Ck, k =1..K, (here, do not confuse

the scalar K with the Gram matrix seen previously). K-means relies on a measure of distance across
datapoint, usually the Euclidean distance. It proceeds iteratively by updating, at each iteration, the

centers f4,,...., f4, of the clusters until no update is required. Given a set of M datapoints

X = {Xi }izl, the K-means processus consists in minimizing the following objective function:

X1
J (,ul,....,,uK):i Z x! —,ukHZ with 2 :% (5.25)

k=1 xJeCk i

Where m. is the number of datapoints in cluster C'.

Since each cluster relies on a common distance measure, each cluster is separated from the other
by a linear hyperplane, as illustrated below:

To counter this disadvantage, kernel K-means first maps the datapoints onto a higher-dimensional
feature space through a non-linear map ¢ . It then proceeds as classical K-means and search for
hyperplanes in the feature space. To do this, kernel K-means exploits once more the kernel trick

and sets the kernelk(x,x'):<¢(x),¢(x')> as the dot product in feature space. Using the
observation that kernel K-means objective function can be expanded into a sum of inner product

LY

x1eck

across datapoints, i.e. ¢(,uk ) = yields:
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In kernel K-Means, the iteration stops when the change in J is sufficiently small. The kernel K-
means algorithm reads then as follows:

Kernel K-means algorithm is also an iterative procedure:
1. Initialization: pick K clusters

2. Assignment Step: Assign each data point to its “closest” centroid

(E-step).
23 k(x‘,x]) > k(xj,xf)

xleck + » eck

argmkind(xi,Ck):arg:nin k(x‘,x[)— p. (mk)z

3. Update Step: Update the list of points belonging to each centroid
(M-step)

4_Go back to step 2 and repeat the process until the clusters are stable.

As for all kernel methods, a clear bottleneck of kernel K-Means is that each iteration steps requires
O ( M 2)computation step. Smilarly to classical K-means, kernel K-Means is also very sensitive to

the initialization of the centers and may lead to poor partiotioning with a poor initialization, as shown
in Figure 5-5.

f...'. “.‘ o000 %o ...Q
e '\1 e .'0‘
' - (4 °
i ¥ -
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% g % L4

Pay gt ! Pag oo 4

Figure 5-5: A difficult clustering problem. Standard K-Means (left) is unable to correctly separate the three
clusters. Using a Gaussian kernel (gamma = 0.01) Kernel K-Means (right) successfully separates the three
clusters. [DEMOS\CLUSTERING\KERNEL-KMEANS.ML]
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5.7 Support Vector Machines
Adapted from "Learning with Kernels" by B. Scholkopf and A. Smola, MIT Press 2002, and "A Tutorial on Support
Vector Machines for Pattern Recognition”, by C.J.C. Burges, Data Mining and Knowledge Discovery, 2, 1998.

Support vector machine (SVM) is probably one of the most popular applications of kernel methods.
SVM exploits the kernel trick to extend classical linear classification to non-linear classification. It
has been shown to be very powerful at separating highly intertwined data. Its simplicity of use and
the large number of available software makes it easy to implement. We will here very briefly review
the principle and the derivation of the algorithm. We will highlight on the sensivity to some
hyperparameter so as to guide the potential user and ensure optimal use of the algorithm.

Linear Case

Let us first start by considering a very simple classification problem which illustrates well the
reasoning behind using Kernel methods for classification. Suppose we are given two classes of
objects. We are then faced with a new object, and we have to assign it to one of the two classes.
This problem can be formalized as follows:

i=l.M
Consider a training set composed of M input-output pairs where each input {X'} eR" is

i=l..M : .
associated with a label {y'} . The label y' denotes the class to which the pattern X' belongs.

In SVM, we consider solely binary classification problems, i.e.:
L yi=l.M
Xy e X x (1) (5.27)

Note that there exist extensions to multiclass SVM. We will here focus first on the binary
classification case.

Given this training set, we wish to build a model of the relationships across the input points and
their associated class label that would be a good predictor of the class to which each pattern
belongs and would allow us to do inference: that is, given a new pattern X, we could estimate the
class to which this new pattern belongs. In some sense, for a given new pattern X , we would choose

a corresponding y, so that the pair {X, y} is somewhat similar to the training examples. To this

end,we need a notion of similarity in X and in {il} :

Similarity Measures: Characterizing the similarity of the outputs {i‘l} is easy. In binary

classification, only two situations occur: two labels can either be identical or different. The choice
of the similarity measure for the inputs, on the other hand, is more complex and is tighly linked to

the idea of kernel. As we have seen previously in these lecture notes, the kernel K (X, X') gives a

measure of similarity across two datapoints X and X'. A natural choice for the kernel when
considering the simple linear classification problem outlined above is to take the dot product, i.e.:

k(x,x'):<x,x'>:ZN:xix'i (5.28)

i=1

The geometrical interpretation of the canonical dot product is that it computes the cosine of the
angle between the vectors X and X', provided they are normalized with length 1.
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A simple pattern recognition algorithm

We now have all the tools to derive a simple classification algorithm.
It is now possible, using the canonical dot product as a similarity measure in our dot product space

H to design a simple pattern recognition algorithm that will separate our input space into two
classes. The algorithm proceeds as follows:

1. Assign each point randomly to one of the two classes
2. Compute the means of the two classes in the feature space:

c+:i > x

m, 4
i (5.29)
1
C =" > X
M iyi=

Where m_and M_are the number of examples with positive and negative labels,
respectively. We assume that both classes are non-empty.

3. Reassign each point to the class whose mean is closest.

This geometric construction can be formulated in terms of the dot product <X, X > . Halfway between

C, and C._lies the pointC = (C+ +C7)/2 . We compute the class to which the point X belongs by

checking whether the vector connecting X —C encloses an angle smaller than 7 / 2 with the vector
W =C, —C_connectingthe class means. This leads to:

y =sgn((x—c,w))
=sgn((x—(c++c_)/2,c++c_>) (5.30)
=sgn(({x,c,)—(x,c_)+b).

_ 1 2 1.2
with oftset b ._5(||c_|| Je.IF)

The decision boundary indicated by the dotted line is a hyperplane, orthogonal to w, seeFigure 5-6.
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W X;>+b=+1 :
<W X,>+b =~

'\‘2 {x|<w,x>+b =0}
\ x

\
\ \
\ \

Figure 5-6: A simple geometrical classification algorithm. The decision boundary indicated by the dotted
line is a hyperplane orthogonal to w. (From Scholkopf & Smola 2002)

Let us now rewrite this result in terms of the input patterns X' , using thekernel k(.,.) to compute the
dot product. We get the decision function:

y =sgn L > <X,x‘>—i > (xx)+b (5.31)

m

+i=lyi=+1 - i=lyl=+1
=sgn L > k(x,x‘)—i > k(x,xi)+b (5.32)
m+ i=lyi=+1 m_ i=|yi=+1

Iszo, i.e. the two classes' means are equidistant to the origin, then k can beviewed as a
probability density when one of its arguments is fixed. By this, wemean that it is positive and has
unit integral,

jx k(x,x)dx=1 vXxeX

In this case, y takes the form of the so-called Bayes classifier separating the twoclasses, subject
to the assumption that the two classes of patterns were generatedby sampling from two probability
distributions that are correctly estimated bythe Parzen Windows estimator of the two class
densities,

1
= E K(X,Xx
er m+ ilyl=+1 (X " )

and

P ::mi > k(x,xi)

— i|yi:_1

where X€ X

Thus, given some point x, the class label is computed by checking which of thetwo values P, or

P- is larger. This is the best decision one can take if one hasno prior information on the data
distribution.
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5.7.1  Support Vector Machine for Linearly Separable Datasets

SVM consists of determining a hyperplane that determines a decision boundaryin a binary
classification problem. We consider first the linear case and then move to the non-linear case.

Linear Support Vector Machines

Let us assume for a moment that our datapoints Xlive in a feature space H. The class of
hyperplanesin the dot product spaceH is given by:

<W,X>+b=0,whereWeH,beR (5.33)

with the corresponding decision functions
f (x)=sign((w,x)+b) (5.34)
We can now define a learning algorithm for linearly separable problems. First, observe that

amongall hyperplanes separating the data, there exists a unique optimal hyperplane,distinguished
by the maximum margin of separation between any training pointand the hyperplane, defined by:

maximize,,,, ., MiN {Hx—xi H xeH,(w,x)+b=0, i=1..,M } (5.35)

While in the simple classification problem we had presented earlier on, it wassufficient to simply
compute the distance between the two cluster’ means todefine the normal vector and so the
hyperplane, here, the problem of findingthe normal vector that leads to the largest margin is slightly
more complex.

; L . T(W
To construct the optimal hyperplane, we have to solve for the objective function ( ):

L 1, 2
minimize,_,, .7 (W) ZEHWH (5.36)
subject to the inequality constraints:
yi((w,xi>+b)21, vi=l1,..M (5.37)

Consider the points for which the equality in (5.37)holds (requiringthat there exists such a point is
equivalent to choosing a scale for w and b).These points lie on two hyperplanes

Hl(<w,xi>+b:1) H2(<W,X‘>+b=—l)
and with normal w and perpendicular distance from the

1-Db{/|w] d, =d_=1/|w 2/|w
origin| | ” ” Hence * - ” ||and the margin is simply ” ” Note that Hland H,
areparallel (they have the same normal) and that no training points fall betweenthem. Thus we can

2
W
find the pair of hyperplanes which gives the maximummargin by minimizing ” ” , Subject to

1

constraints (5.37) that ensures that the class label for a given XlwiII be +1, if y'=+ , and-1,for

Yi =-1

© A.G.Billard 2004 - Last Update October 2024



97

Let us now rephrase the minimization under constraint problem given by (5.36) and (5.37) in terms

a, 1=1..,1

ofthe Lagrange multipliers , one for each of the inequality constraints in (5.37). Recall

that the rule is that for constraints of the form G = O,the constraint equations are multiplied by
positive Lagrange multipliers andsubtracted from the objective function, in (5.36), to form the
Lagrangian. Forequality constraints, the Lagrange multipliers are unconstrained. This gives
theLagrangian:

Lo (W,b, )= %”W”2 _izlzl:aiyi ((w X' >+b)+2ai. (5.38)

i=1

We must now minimize Le with respect tow, b, and simultaneously requirethat the derivatives of

Le with respect to all the % vanish, all subject to theconstraints & . This is a convex quadratic
programming problem, since theobjective function is itself convex, and those points which satisfy
the constraintsalso form a convex set (any linear constraint defines a convex set, and a set of N
simultaneous linear constraints defines the intersection of N convex sets, whichis also a convex

set). This means that we can equivalently solve the followingdual problem: maximize Lp , Subject
to the constraints that the gradient of Le with respect to w and b vanish, and subject also to the

>
constraints that the @ = 0 .

Requesting that the gradient of Le with respect to w and b vanish

0 o i

i (5.39)
g ==Y ay = (5.40)
b P - i :
gives theconditions:
M
W= oy (5.41)
i=1
M
> ay =0. (5.42)
i=1

Since these are equality constraints in the dual formulation, we can substitutethem into(5.38) to
give:

1 o
Lo (a)zzaiy' —EZWZJY'W <X',XJ>- (5.43)
1 i,]
Note that we have now given the Lagrangian different labels (P for primal,D for dual) to emphasize

that the two formulations are different; P and L arise from the same objective function but with

diferent constraints; and thesolution is found either by minimizing Lp or by maximizing Lo . Note
also that if weformulate the problem with b=0, which amounts to requiring that all hyper-planes
contain the origin (this is a mild restriction for high dimensional spaces,since it amounts to reducing
the number of degrees of freedom by one), supportvector training (for the separable, linear case)
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then amounts to maximizing Lo with respect to the % , Subject to constraints (5.42) and positivity
of the * , withsolution given by (5.41). Notice that there is a Lagrange multiplier % for everytraining
point. In the solution, those points for which % > 0are called thesupportvectors and lie on one of

the hyperplanes Hy, HZ. All other training points have & = O, and lie on either side of Hlor HZ,
such that thestrict inequality in(5.37) is satisfied.

For these machines, the support vectors are the critical elements of the training set. They lie closest
to the decision boundary; if all other training pointswere removed (or moved around, but so as not

to cross Hlor HZ), and trainingwas repeated, the same separating hyperplane would be found.

Figure 5-7: A binary classification toy problem: separate dark balls from white balls. The optimal hyperplane
is shown as the solid line. The problem being separable, there exists a weight vector W and an offset b such

that y' (<W, X >+ b) >0 (i =1,..., m) : Rescaling W and b such that the points closest to the hyperplane
satisnyW, X! >+ b‘ =1, we obtain a canonical form (W, b) of the hyperplane, satisfying
y! (<W, X >+ b) >1. Note that, in this case, the margin (the distance to the closest point to the hyperplane)

equalsl/ ||W|| . This can be seen by considering two points X*, X? on opposite sides of the margin, that is,

<W, X > +b =1,<W, X? > +b = -1, and projecting them onto the hyperplane normal vector w/ ”W” . The

support vectors are the points on the margin (encircled in the drawing).

The generic minimization problem when one does not assume that the hyperplanegoes through

the origin (i.e. b= 0) can be found by solving the so-called KKT(Karush-Kuhn-Tucker) conditions.
These state that, at each point of the solution, the product between the dual variables and constraints has to
vanish, i.e.:

y ((w,xi>+b)—120, i=1.,M (5.44)
a, 20, Vi=1..M (5.45)
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ai(yi (<w,xi>+b)—1)=0, Vi=1..M (5.46)

The KKT conditions are necessary for w,b, 2 to be a solution.

With all of the above, we now can determine the variables of the SVM problem. w is explicitly
determined by(5.41). The threshold b is determinedby solving the KKT "complementarity" condition

given by(5.46): by choosing any ifor which % * 0, one can computeb (note that it is numerically
safer to take themean value of b resulting from all such equations).

Figure 5-8:Linear separating hyperplanes for the non-separable case.

5.7.2  Support Vector Machine for Non-linearly Separable Datasets

The above algorithm for separable data, when applied to non-separable data,will find no feasible
solution: this will be evidenced by the objective function (i.e.the dual Lagrangian) growing arbitrarily
large. In order to handle non-separabledata, one must relax the constraints(5.37). This can be done

by introducing positiveslack variables Ginl =1...M , in the constraints, which then become:
WX +b>+1-¢& for Yi = +l (5.47)
Wx +b<-1+& for y, =-1 (5.48)
& 20 Vi (5.49)

5

Thus, for an error to occur the corresponding ®i must exceed unity, so Z‘ "isan upper bound on
the number of training errors. Hence a natural way toassign an extra cost for errors is to change
the objective function to be minimizedto include a cost function, such as

) » CU¥
min| w|"+—=) & |,
M(n l M;gj

Where C is a parameter to be chosen by the user, a larger C corresponding toassigning a higher
penalty to errors. As it stands, this is a convex programmingproblem and the Wolfe dual
problembecomes:
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max L, (@)=Y o, —%Zoziozjy‘yj <Xi,X1> (5.50)
a i ij
subject to:
C
0<og <— (5.51)
M
Zaiyi = (5.52)

The solution is again given by:
NS
W= ay'X (5.53)
i=1

where N, is the number of support vectors (to recall, the support vectors areall the points X for
which the corresponding Lagrange multiplier o >0 ; thesepoints lie exactly on the margin). Thus

the only diference from the optimalhyperplane case is that the % nowhave an upper bound with

C

i

Once again, we must use the KKT conditions to solve the primal minimization of Le and the KKT
complementary conditions to find b.

5.7.3 Non-Linear Support Vector Machines

Let us now consider an extension of the linear type of classifier we consideredbefore to tackle non-
linear classification problem, such as the one highlighted inFigure 5-9.

Figure 5-9: Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

>
LS LS
degree = 3

... )
e 2 o8y

degree = 1 degree = 2 degree = 4

Figure 5-10: Classification using a polynomial kernel with different degrees (SVM). The data is not linearly

separable (left). By increasing the degree of the polynomial, the separation plane becomes non-linear and is
able to correctly separate the data.[DEMOS\CLASSIFICATION\SVM-POLY.ML]
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Following the same rational as presented earlier on, let us first map the dataonto an Euclidean
space H, using a mapping¢:
¢ X—H

<> 6(X) (5.54)

N o <Xi’xJ>_(Xi)TXi .
Assume that the training problem is in the form of dot products . Inthis case,
the training algorithm in the mapped space would only depend on thedata through dot products

XI ,¢ XJ >
inH, i.e. on functions of the form< ( ) ( ) . Ifwe can define a "kernel function" k suchthat
k()= (o))

know¢ .

, thentraining depends only on knowing k and would not require to

The optimization problem consists then to maximize the following quantity:
1 M ' M , M '
- ( —a, )(ai _ai)k(xi,xj)—EZ(Oti -, )*ZY‘ (ai ~q, ) (5.55)
i=1 i=1

! '
subject to izl(ai 4 )_ 0 a,a; €0, A], ceR

as follows:

and . In this case, the classlabel is computed

M
y:sgn(Zaik(x,xi)mj (5.56)

Each expansion corresponds to a separating hyperplane in a feature space. Inthis sense, the %
can be considered a dual representation of the hyperplane'snormal vector. A test point isclassified
by comparing it to all the trainingpoints with non-zero weight.

57.4 Nu-SVM

Chosing the right parameter C may be difficult in practice. nu-SVM is an alternative that
optimizes for the best tradeoff between model complexity (the largest margin) and penalty on the
error automatically. To this end, it introduces two other parameters v and p. v > 0is an open

parameter while o will be optimized for. The objective function becomes:

M
min[||w||2 _vp+iz§i],
w,& M i=1
(5.57)

subjectto y' (<W x‘>+b) >p—&
and & >0, p>0.
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To understand the role of o, observe first that when the points are well classified, the margin has

now been changed to 2p/||W||. The larger p the larger the margin. Since points within the margin
may be misclassified, one can compute the margin error, i.e. the number of points that are within
the margin while misclassified. v varies the effect of this increase in the margin error while
optimizing for a large value of p . One can show that:
e vis an upper bound on the fraction of margin error (i.e. the number of datapoints
misclassified in the margin)
e vis alower bound on the number of support vectors
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5.8 Support Vector Regression

In SVM, we have consider a mapping from the input data X onto a binary output y = =+1. Support
Vector regression (SVR) extends the principle of SVM to allow a mapping f to a real value output:

f:X—>R

5.58

x—y="f(x) (5.59)
SVR starts from the standard linear regression model and applies it in feature space. Assume a
projection of the data into a feature space X — ¢(X ) € H . Then, SVR seeks a linear mapping in

feature space of the form:

f(x)=(w,¢(x))+b, weH,beR (5.59)

To recall, SVM approximates the classification problem by choosing a subset of data points, the
support vectors, to support the decision function. This sparsification of the training dataset is the
key strength of the algorithm. When considering non-separable datasets, SVM introduced a slack
variable to give room for imprecise classification. SVR proceeds similarly and tries to find the
optimal number of support vector while allowing for imprecise fitting. The allowed imprecision of

the fitting through f is measured by a parameter & > 0 and is measured through an [J-loss function:

[y (x)], =max{o,|y~ f ()|, (5.60)

Points with a non-zero O-loss function lie outside the O-insensitive tube that surrounds the function
f , seeFigure 5-11.

Figure 5-11: Effect of a non-linear regression through SVR. The tightness of the [-insensitive tube around the
regression signal varies along the state space as an effect of the distance in feature space between the
support vectors (the support vector are plain circles). Datapoints within the O-insensitive tube do not influence
the regression model and are indicated with un-filled circles.
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In SVM, we found that minimizing ||W|| was interesting as it allowed a better separation of the two

classes. Scholkopf and Smola argue that, in SVR, minimizing ||W|| is also interesting albeit for a
different geometrical reason. They start by computing the 0-margin given by:

m, (f):=inf {H¢(x)—¢(x')”, vx, X', st [ f(x)-f (X')HZZE} (5.61)

e 00

+& | "

g-margin g-margin

Figure 5-12: Minimizing the & -margin in SVR is equivalent to maximizing the slope of the function f.

Similarly to the margin in SVM, the [J-margin is a function of the projection vector w. As illustrated
inFigure 5-12, the flatter the slope w of the function f, the larger the margin. Conversely, the steeper
the slope is, the larger the width of the -insensitive tube. Hence to maximize the margin, we must

minimize |W| (minimizing each projection of w will flatten the slope). The linear illustration in Figure
5-12 holds in feature space as we will proceed to a linear fit in feature space.

Finding the optimal estimate of f can now be formulated as an optimization problem of the form:

min annz LR ]} 5.62)

w

Where R® [ f ] is a regularized risk function that gives a measure of the e-insensitive error:

(5.63)

£

Re[f]:%%“‘yi_f(xi)

C in (5.62)is a constant and hence a free parameter that determines a tradeoff between minimizing
the increase in the error and optimizing for the complexity of the fit. This procedure is called [1-
SVR.
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Formalism:

The optimization problem given by(5.62) can be rephrased as an optimization under constraint
problem of the form:

.. .1 2
minimize =|w|
2
(w.p(x))+b-y' <& (5.64)

—<W’¢(Xi)>—bs‘g‘ vi=1..M

Minimizing for the norm of W, we ensure a) that the optimization problem at stake is convex (hence
easier to solve) and b) that the conditions given in (5.64) are easier to satisfy (for a small value of

||W|| the left handside of each condition is more likely to be bounded above by ¢&).

subject to

Note that satisfying the conditions of(5.64)may be difficult (or impossible)for an arbitrary small 0,
one can once more introduce the set of slack variables & and & (i =1...M) for each datapoint,

to denote whether the datapoint is on the left or righthandside of the function f 3. The slack

variables measure by how much each datapoint is incorrectly fitted. This yields the following
optimization problem:

ool CY .
minimize E||w|| + M;(; +&)
<w,¢5(xi)>+b—yi <e+é
subject to y‘—<w,¢(xi)>—b£g+§f

520, &>

(5.65)

Again, one can solve this quadratic problem through Lagrange. Introducing a set of Lagrange
multipliers «;,77, = Ofor each of our inequalities constraints and writing the Lagrangian:

< i(nfw.é )

1, 2 Cd
L(wg.gnb)= Jhf + 3(6+8)- 1o

—iai (.9+§i+y‘—<w,¢5(xi )>—b) (5.66)
—ﬁ;ai*(g+§i*— y' +<w,¢(xi )>+b)

3 We will use the shorthand §i(*) when the notation applies to both & and & .

© A.G.Billard 2004 - Last Update October 2024



106

Solving for each of the partial derivatives: — =0; oL =0; 8L* =0
ow " og”
o X . )
_b:izzll(ai —a, ):o, (5.67)
M .
@:W_Z(ai*_ai (x'):o; (5.68)

—.*=——Oti - =0 5.69
PERy " (5.69)

Substituting in (5.66) yields the dual optimization under constraint problem:

_%i(a:_ai)(a’;—aj).k(x‘,xi)

i,j=1
max
M M

| et a) v a) s

i=1 i=1

i M. . C
subjectto )" (; — )=0 and o, e{o,m}

i=1

Solving for the above optimization problem will yield solutions for the Lagrange multipliers a*, a.

These can then be used to construct our estimate of the best projection vector Wby replacing
in(5.68):

w=§:(ai*—ai)¢(xi) (5.71)

i=1

To determine the value of the offseth , one must further solve for the Karush-Kuhn-Tucker (KKT)
conditions:

a, (5+§i + yi —<W,¢(X‘ )>—b)=0,
ai*(g+cfi*—y‘ +<W,¢(X‘)>+b)=0,

and (5.72)
(%—a: jé.* ~0

The above optimization problem can be solved using interior-point optimization, see (Scholkopf &
Smola, 2002).
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It is worth spending a little bit of time looking at the geometrical implication of conditions (5.72). The

last two conditions show that, when the Lagrange multipliers take value ¢ O = M the
: . ) : . :
corresponding slack variable &, * can take arbitrary value and hence the corresponding points can

*) C
be anywhere, including outside the U-insensitive tube. Vice-versa, whenga; € }O,M{ , we have
*)
& =0. These become the support vectors.
Note that since we never have the projections ¢5(Xi ) , we cannot compute explicitly w in (5.71). We

can however once more exploit the kernel trick to compute f . Using

we can compute an estimate of our regression function through:

M

f(x)=Z(ocf—ozi )k(x‘,x)+b (5.73)

i=1

Observe that the computation costs for the regression function grow linearly with the number M
of datapoints. As for SVM, computation can be reduced importantly if one reduces the number of
datapoints for which the elements in the sum are non-zero, the so-called support vectors.This is

the case when (ai* —Q, ) =0. Note that for all points within the O-insensitive tube ai* =a, =0(so

as to satisfy the KKT conditions given in (5.72).
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Examples:

Figure 5-13 illustrates the application of SVR on the same dataset (these data were generated
using MLdemos). When using a linear kernel with a large [0, one can completely encapsulate the
datapoints, while still yielding a very poor fit. Using a Gaussian kernel allows to fit better the non-
linearities. This is however very sensitive to the choice of penalty given to poor fit through parameter
C. A high penalty will result in a smoother fit.

T
,.»7" == . -
s a0, P = ,-/',.,.,—-—
- . = s - o
& e " - Tren, -
: — — \." - ¢ .—-“r{;.. .
e - .
= i ;
-
- o / /
= -M‘\ -f"/ o s Y r2
e S 2 N

Figure 5-13: Example of 0-SVR on a two-dimensional datasets. Datapoints are shown in plain dot. The
regression signal is in solid line. The boundaries around the O-insensitite tube are drawn in light grey lines.
using a linear kernel (top) and a Gaussian kernel (bottom). TOP: effect of the increasing the O-tube with
(0=0.02 (left) and 0=0.1 (right). BOTTOM: effect of increasing parameter C (from left to right, C=10, 100 and
1000) that penalies for poorly fit datapoints.

SVR as all other regression techniques remain very sensitive also the choice of hyperparameter
for the kernel. This is illustrated in Figure 5-14. Too small a kernel width will lead to overfitting of
the data. Too large may lead to very poor performance. The latter effect can be compensated by
choosing appropriate value for the hyperparameters of the optimization function, namely C and [,
see Figure 5-15. The small kernel width that had led to a poor fit in Figure 5-14 is compensated by
relaxing the constraints using a large [000and smaller C. We also see that reducing the constraints
and widening [0 decreases the number of support vectors. While the very tight fit in Figure 5-14
used almost all datapoints as support vector, the looser fit in Figure 5-15 used much less.
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Figure 5-14: Effect of the kernel width on the fit. Here fit using C=1000, [1=0.01, kernel width=0.01 (top), 0.1
(bottom). The points encircled represent the support vectors.

Figure 5-15: Reduction of the effect of the kernel width on the fit by choosing appropriate hyperparameters.
Gaussian SVR fit using C=100, [0=0.03, kernel width=0.1.
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5.8.1 Nu-SVR

The Oparameter in J-SVR determines the desired accuracy of the approximation. Determining a
good 00 may be difficult in practice. J0O0SVR is an alternative method that suppresses the need topre-
specifying the free parameter C in (5.65), by introducing (yet another!) parameter 00 0OThe idea if
that this new parameter will make it easier to estimate [Jas one finds a tradeoff between model
complexity and slack variables.

By introducing a penalty through v > 0, the optimization of (5.65) becomes:
N+b-y' <e+&
> y e+ (5.74)

Notice that we now optimize also for the value of (1[1[1The term v¢ in the objective function is now
a weighting term that balances a growth of & and the effect this has on the increase of the poorly
fit datapoints (last term of the objective function).

This last new equality constraint on [ yields a new Lagrange solution with associated Lagrange
multiplier £ . One can then proceed to the same steps as done when solving J-SVM, i.e. write the

Lagrangian, take the partial derivatives, write the dual and the solution to KKT conditions (see
Scholkopf & Smola 2002 for details). This yields the following OOSVR optimization problem:

For v>0,C>0

(5.75)

subjectto )" (e —a,)=0,

1
ij=1

ai(*) € {O, E}
M

i,j=1

The regression estimate then takes the same form as before and is expressed as a linear
combination of the kernel estimated on each of the data point with non zero ai(*) (the support
vectors), i.e.:

f(X)zZ(a.*—ai)k(xi,X)+b. (5.76)
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As we did before solely for, we can now also findb and & by solving the KKT conditions.

To better understand the effect that [ has on the optimization observe first that if v >1then the
second and third conditions in (5.75) are redundant and hence all values of O greater than 1 will
have the same effect on the optimization. One should then work solely with values ranging between
0<v<l.

Interestingly, a number of properties can be derived:
e [0is an upper bound on the fraction of error (i.e. the proportion of datapoints with

&9 >0),

e [Ilis a lower bound on the fraction of support vectors.
These two properties are illustrated in Figure 5-17.

In summary, 00-SVR is advantageous over 0J-SVM in that it allows one to automatically adjust the
sensitivity of the algorithm through the automatic computation of 0. To some extent, this is
equivalent to fitting a model of the noise on the data (assuming a uniform noise model). This is
illustrated in Figure 5-16.

Figure 5-16: Effect of the automatic adaptation of ¢ using v-SVR. (Top) Data with no noise. (Bottom) Same
dataset with a white noise. In both plots, v-SVR was fitted with C=100, v=0.05, and a Gaussian kernel with
kernel width=0.021.
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Figure 5-17: Increase of the number of support vectors and of the proportion of datapoints outside the e-
sensitive tube when increasing v. From top to bottom, vtakes value 0.08, 0.1 and 0.9. v-SVR was fitted with
C=50 and a Gaussian kernel with kernel width=0.021.
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5.9 Gaussian Process Regression
Adapted from C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine
Learning, the MIT Press, 2006.

In Section Error! Reference source not found., we introduced probabilistic regression, a method
by which the standard linear regressive model y =w'x+ N (O, az)was extended to building a

probabilistic estimate of the conditional distribution p(y | X). Then for a new query point x*, one
could compute an estimate y* by taking the expectation of Y givenX, y=E { p(y | X)} . Further,

using the assumption that all training points are i.i.d. and using a Gaussian prior with variance ZW

on the distribution of the parameters W of the model, we found that the predictive distribution is
also Gaussian and is given by:

p(y X, X,y)=N (iz X2, Xy, XT X, X*j (5.77)
O

where X is NxM and Yis 1xN are the matrix and vector of input-output training points. Next,

we see how this probabilistic linear regressive model can be extended to allow non-linear
regression, exploiting once more the kernel trick.

Non-linear Case
Assuming a non-linear transformation into feature space through the function ¢(X) , that maps each

N-dimensional datapoint x into a D-dimensional feature space, and substituting everywhere in the
linear model, the predictive distribution for the non-linear model becomes:

p(y X, X,y)=N (%gﬁ(x*)T A‘ch)(X)y,gzﬁ(x*)T A‘1¢(x*)*j

with A=o2®(X) D (X) +3,}

(5.78)

CD(X ) is a matrix whose columns are composed of each projection ¢(X)of each training point

X € X . While the expression of this density is quite simple, in practice computing the inverse of
the matrix A may be very difficult as its dimension is proportional to the dimension of the feature
space that may be quite large.

5.9.1 What is a Gaussian Process
The baysian regression model given by (5.78) is one example of Gaussian Process.

In its generic definition, a “Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution”.

Assume that the real process you wish to describe is regulated by the function f (X) where X
spans the data space. Then, a Gaussian Process (GP) estimate of the function f is entirely defined
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by its mean m(X)and covariance function k(X, X') (k is defined for each pair of point x, x’ that
span the data space):

(5.79)

For simplicity, most GP assume a zero-mean process, i.e. m(x) =0. While the above description

may be multidimensional, most regression techniques on GP assume that the output f (X)is
unidimensional. This is a limitation in the application of the process for regression as it allows
making inference solely on a single dimension, sayny(x), yT]R. For multi-dimensional

inference, one may run one GP per output variable.

Using (5.79) and (5.78) and assuming zero-mean distribution, the baysian regression model can
be rewritten as a Gaussian process defined by:

= A £ =o
o) = () ()= ) B} Ae)= Aol 5, 1()

We are now endowed with a probabilistic representation of our real process f. The value taken by
f at any given pair of input x, X' is jointly Gaussian with zero mean and covariance given by k (X, X ')

(5.80)

. This means that the estimate of f can be drawn only from looking conjointly at the distribution of
f across two or more input variables. In practice, to visualize the process, one may sample a set

«yM*
X * of M* of data points X* = {X‘ } and compute f* a M*-dimensional vector of estimates of f,
i=1

such that:

fr~ N(O,K(X*,X*)) (5.81)

Where K(X*, X *) is a M *xM *covariance matrx, whose elements are computed using

K(X*, X *)ij = k(xi , X! ), Vi, j=1...M *. Note that if M*> D, i.e. the number of datapoints
exceed the dimension of the feature space, the matrix is singular as the rank of K is D.

Generating such a vector is called drawing from the prior distribution of f as it uses solely
information on the query datapoints themselves and the prior assumption that the underlying
process if jointly Gaussian and zero mean, as given by (5.81). A better inference can be made if
one can make use of prior information in terms of a set of training points. Consider the set

M
X = {xi } ) as the training datapoints, one can then express the joint distribution of the estimates
i=

f and f* associated with the training and testing points respectively as:

{f }N N K(X.X) K(Xx*X)

f* K(X,X*) K(X*X*) o
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One can then use the above expression of the joint distribution over f and f* to compute the posterior
distribution of f* given the training and testing sets X, X * and our prior on f ~ N(O,K(X,X))
which yields:

FHIX5X, [~ NK (X5, X)K(X,X) 1,
(5.83)
K (x5, x#)- K (x5, X)K(X,X) K (xX,X*)

One can then simply sample from this posterior distribution by evaluating the mean and covariance
matrix from (5.83) and generating samples as done previously for the prior distribution on f.

Figure 5-18 shows three examples of such sampling. In all three plots the shaded area represents
the pointwise mean plus and plus/minus the standard deviation for each input value (corresponding
to the ~97% confidence region), for the posterior distribution. We used the square exponential

: 1 2
covariance function given by k(X, X )= exp(—5|x— X | j We plot in light grey the area around

the regression signal that corresponds to +/- one standard deviation (using the covariance given
by (5.83)). This gives a measure of the uncertainty of the inference of the model. Areas with large
uncertainty are due to lack of training points covering that space. From left to right, we see the
effect of adding one new point (in red) in areas where previously there were no training points on
decreasing locally the variance.

Figure 5-18: The confidence of a Gaussian Process is dependent on the amount of data present in a specific
region of space (left). Regions of low data density have lower confidence. By adding points in those regions,
the confidence increases (center), but the regression function will change to adapt to the new data (right).
[DEMOS\REGRESSION\GPR-CONFIDENCE.ML]

The previous model assumed that the process f was noise free. However, when modeling real data, it is usual
to assume some noise superposition. As in the case of the linear regression mode, we can assume that the
noisy version of our non-linear regression model follows:

y="f(x)+e

5.84
e~N(0,0) 5849

Where the noise & follows a zero mean Gaussian distribution.
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In this case the covariance of the prior becomes: ny = COV(f(X) + 6’) = K(X, X) +S%], wherey is

a matrix whose columns Y',i=1....M, correspond to the projection of the associated training point X' through
(5.84).

As done previously, we can express the joint distribution of the prior y (now including noise in the estimate of
prior on the training datapoints) and the testing points given through f*:

{y } K(X,X)+0’1 K(X*X)
_ , (5.85)
[ K(X,X*) K(X*X*)

Again, one can compute the conditional distribution of f* given the pair of training datapoints X,
the testing datapoints X* and the noisy prior y.

S*1 X%, Xy~ N(f*.cov(f*))
F*=E{f*| x*X,y}= K(X*,X)[K(X,X)+621T y (5.86)
cov(f*)=K(X*X*)- K(X*,X)[K(X,X)+0'21T K(X,X*¥)

We are usually interested in computing solely the response of the model to one query point X*.
In this case, the estimate of the associated output Y *is given by the following:

7~ *= E{f*|x% Xy} = k(X*,X)T[K(X,X)+521]_1y (5.87)
k (x*, X ) is the vector of covariance k (x*, X ) between the query point and the

M training data points x', i =1...M.

Since all the training pairs (x‘ Y ), i =1...M are given, these can be treated as parameters to
the system and hence the prediction on y* from Equation (5.87) can be expressed as a linear

combination of kernel functions Kk (X*, X ) :

yr~f*= E{f*lx*,X,y}:ZM:aik(x*,x')
i=1 (5.88)
with a = [K(X,X)+$2]]_1y

We have M kernel functions for each of the M training points X' .
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5.9.2 Equivalence of Gaussian Process Regression and Gaussian Mixture Regression

The expression found in Equation (5.88) is somewhat very similar to that found for Gaussian
Mixture Regression, see Section 4.2.2 and Equation(4.14). The non-linear term k(x*,x‘)is

equivalent to the non-linear weights W; (X*) in Equation (4.14), whereas the parameters ¢;
somewhat correspond to the linear terms stemming from local PCA projections through the Cross-

i ; P - i i i \1 i\ )
covariance matrices of each Gaussian in GMM (given by u, o+ ZYX (ZXX ) (X—,ux ) in Equation
(4.14)).

The difference between GPR and GMR lies primarily in the fact that GP uses all the datapoints to
do inference, whereas GMM performs some local clustering and uses a much smaller number of
points (the centers of the Gaussians) to do inference. However, the two methods may become
equivalent under certain conditions.

Assume a normalized Gaussian kernel for the function k (X*, X )and a noise free model, i.e.c =0
. Let us further assume that for a well chosen kernel width, k(xj , X ) is non-zero only for data

points deemed close to one another according to the metric k(.,.) and is (almost) zero for all other
pairs. As a result, the matrix K is sparse. We can hence define a partitioning of the datapoints

through a set of m<<M (not necessarily disjoint) clusters
C' :{Xi e X, st. k(X',X')>5}, | =1...m, centered on m datapoints X' e X. 0 >0 is an

arbitrary threshold that determines the closenest of the datapoints. How to choose the m datapoints
is core to the problematic of most clustering techniques and we refer to reader to Chapter 3.2 for a
discussion of these techniques.

Rearranging the ordering of the datapoints so that points belonging to each cluster are located on

adjacent columns and duplicating each column of datapoints for points that belong to more than
one cluster one can create the following block diagonal Gram matrix:

) G (5.89)

where the elements K| = k(x"i,x">’) ofthe K'matrix are composed of the kernel function applied

on each pair of datapoints (x”,x”) belonging to the associated cluster.

Using properties for the inverse of a block diagonal matrix, we obtain a simplified expression for:
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1
A~——|

li:l[|Ki| (O I [(K'”)_l} y’” (5.90)
L1

a-=—
L~

Where yl is composed of the output value associated to the datapoints X'

For each cluster C', one can then compute the centroid U = {,u' ,,u'y} of the cluster and a measure

of the dispersion of the datapoints associated to this cluster around the centroid, given by the

. T
covariance matrix X} = E {(X' —,ui [ )(X' —,u'x I ) } of the matrix X' of datapoints associated to

the cluster. Further, for each set of datapoints X' , one can use the associated set of output value

T T
yl nd compute the crosscovariance matrix Slyx = ((yl) - /77’]) (Xl - /7711) .

If we further assume that each of local kernel Matrix is approximatively a measure of the covariance,
-1
-1 T T T
e [K'] {(Xl . mf,I) (X’ _ /nf_])} andk (%, X' )" ~ (X' = 1) x*.
Replacing in Equation (5.88) yields:

F*= ! i[K’T V(e X) (5.91)

Zm:‘Ki I=1

i=1

Observe that our prediction is now a non-linear combination of m linear projections of the datapoints

-1
through[Kl] yl. If the number of cluster m is composed of a single datapoint, we obtain a

degenerate Gaussian Mixture Model with a unitary covariance matrix for each Gaussian.

Similarly when the clusters are disjoints, the prediction f *can be expressed as the product of the

conditional on each cluster separately and the equivalence with GMM is immediate. In the more
general case, when the clusters contain an arbitrary number of datapoints and are not disjoints, the
full Gaussian Process takes into account influence from all datapoints. In a GMM the interactions
across all datapoints are conveyed in part through the weighting of the effect of each Gaussian.
Note also that the centers of the Gaussians are chosen so as to best balance the effect of the
different datapoints through E-M.
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5.9.3 Curse of dimensionality, choice of hyperparameters

The above showed that when considering particular condition on the form of the kernel matrix for
GP, GPR and GMR become equivalent. In its generic form, however, GP is not equivalent to GMM
and offers a more powerful tool for inference.

Unfortunately, this is done at the expense of being prohibitive in its computation steps. Indeed,
Gaussian Process is a very expensive method as inference grows with the number of datapoints

withO(Ms). Advances in the field investigate sparsifying technigques to decrease in a clever

manner the number of training points. Unfortunately, most methods are based on some heuristics
to determine which points are deemed better than others. As a result the gain of doing a full GP
inference with heuristic-driven sparsification over GMM is no longer obvious.

Another drawback lies in the choice of the kernel function and in particular of the kernel width. This
is illustrated in Figure 5-19. Too small a kernel width may lead to poor generalization as it allows
solely points very close to one another to influence inference. On the other hand too large a kernel
width may smooth out local irregularities. In this respect, GMM is a more powerful tool to provide
generalization outside areas not covered by the datapoints, while still encapsulating the local non-
linearities. |

gamma = 0.01 gamma = 0.001

gamma = 1.0 gamma = 0.5 gamma = 0.05 gamma = 0.01

Figure 5-19: Effect of the width of a gaussian kernel on a classification task (SVM, top) and regression (GPR,
bottom). When the kernel width (gamma) is very small, the generalization becomes very poor (i.e. the system
overfits the data and is unable to estimate correctly on samples that have never been seen). Choosing
appropriate parameters for the kernel depends on the data and is one of the main challenges in kernel
methods.

[DEMOS\CLASSIFICATION\SVM-KERNEL-WIDTH.ML] [DEMOS\REGRESSION\GPR-KERNEL-WIDTH.ML]
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5.10 Gaussian Process Classification

Generative versus Discriminative Approaches

To recall, there are two approaches to classification. One can either follow a so-called generative
approach whereby one first learns the joint distribution p(X Y ) that associates the set of datapoints

X :{xl,....x“"} to a set of labelsY :{yl,..., yM } where each class label denotes the associated

class numbering. Using the joint distribution, one can then compute the conditional distribution
p(Y | X) to predict the class label for each datapoint. Alternatively, one can follow a discriminative

approach in which one estimates directly the conditional distribution p(Y | X). In the previous

section, we showed how to perform regression using a Gaussian Process, it seems hence intuitive
to extend this to classification and to this end to take a discriminative approach.

Given that there are the generative and discriminative approaches, which one should
we prefer? This is perhaps the biggest question in classification, and we do not
believe that there is a right answer, as both ways of writing the joint p(y, x) are correct.
However, it is possible to identify some strengths and weaknesses of the two
approaches. The discriminative approach is appealing in that it is directly modelling
what we want, p(y|x). Also, density estimation for the class-conditional distributions is
a hard problem, particularly when x is high dimensional, so if we are just interested
in classification then the generative approach may mean that we are trying to solve a
harder problem than we need to. However, to deal with missing input values, outliers
and unlabelled data missing values points in a principled fashion it is very helpful to
have access to p(x), and this can be obtained from marginalizing out the class label

y from the jointas p(x)=Y_p(y)p(x|y) inthe generative approach. A further factor
y

in the choice of a generative or discriminative approach could also be which one is
most conducive to the incorporation of any prior information which is available.
(Quote from C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine
Learning, the MIT Press, 2006.)

Linear Case

As for all other kernel methods send in this class, we will first start with the linear case and then
extend it to the non-linear case by exploiting the kernel trick.

One problem when performing multi-class classification is to compare the predictions of each class.
It would be easier if the output of the density could have a direct probabilistic interpretation. In the
simply binary classification problem where the label y takes either value +1 or value -1, i.e.

y' e [—1; +1], i =1...M , a probabilistic readout of the the conditional p(yi | xi) can be obtained easily
by using, for instance, the logistic regressive model and compute:

p(y =+1Ix )= ——

iy )TW (5.92)
l+e

By extension, the probability of the label -1 is p(yi =-1|x ) =1- p(yi =+1] x‘) .
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The weight w determines the slope of the sigmoid function. This is an open parameter which should
be chosen so as to ensure optimal classification, or conversely minimal penalty due
misclassification. We now have all the tools to proceed to Gaussian Process classification.

As in Gaussian Process Regression, we can start by putting a Gaussian prior on the distribution of
the parameterw, i.e. w~ N (O,ZW) and compute the log of the posterior distribution on the weight

given our dataset X = {xl,....x“"} with associated labelsY = {yl,..., yM } ;

1 L 1
log p(w| X,Y):—EWTZWW+Z|09— (5.93)

=14 e_<xi)TW

Unfortunately the posterior does not have an analytical solution, a contrario to the regression case.
One can however observe that the posterior is concave and hence its maximum can be found using
classical optimization method, such as Newton’s methods or conjugate gradient descent. Figure
Figure 5-20 illustrates nicely how the original weight distribution is tilted as an effect of fitting the
data.
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Figure 5-20: a) Contours of the prior distribution p(w) = N(O, 1). (b) dataset, with circles indicating class +1
and crosses denoting class —1. (c) contours of the posterior distribution p(w|D). (d) contours of the predictive
distribution p(y_=+1|x_), adapted from C. E. Rasmussen & C. K. |. Williams, Gaussian Processes for Machine
Learning, the MIT Press, 2006.
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Non-linear case

The non-linear case of classification using Gaussian Process proceeds similarly to Gaussian
Process Regression. Instead of putting a prior on the weight as in the linear case, we put a prior

on the latent function f (x) such that we have

p(y:+llx)::|__+_e—_f(>() (594)

This has for effect to ensure that the output is bounded between 0 and +1 and can hence be
interpreted as a probability (as in the linear case), see Figure Figure 5-21

fix)
sigrnoidifix))

04 L L L L L L L L L
a 01 02 03 04 05 0B 07 08 08 1

X

Figure 5-21: Example of an arbitrary prior function f(x) (here composed of the superposition of two Gaussian).
Applyinhg the sigmoid function on f(x) flattens the function, while normalizing between 0 and +1.

One now can build an estimate of the class label y* for a query point X" by computing the posterior
distribution of the function f (x) applied on our query point. If we make this a distribution that is a

function of the training datapoints, we have p(f (x) | X", X ,Y) and the posterior distribution we want
to compute is given by:

p(yIx, X,Y):Isigmoid(f (X*))p(f (x)1x, X,Y)df (5.95)
The integral on the righthandside compute all values on our prior on f (x) . While in GPR there was
an analytical solution, in the classification case, the integral is usually analytically intractable. To

solve this, one must use either an analytic approximations of integrals, or solutions based on Monte
Carlo sampling.
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Figure 5-22: Example of successful classification with Gaussian Process classification, adapted from C. E.
Rasmussen & C. K. |. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006.Panel a
shows the location of the data points in the two-dimensional space [0, 1]. The two classes are labelled as open
circles (+1) and closed circles (- 1). Panels (b)-(d) show contour plots of the predictive probability Eq[_(x_)|y]
for signal variance f = 9 and length-scales " of 0.1, 0.2 and 0.3 respectively. The decision boundaries between
the two classes are shown by the thicker black lines. The maximum value attained is 0.84, and the minimum

is 0.19.
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6 Markov-Based Models

Except for ICA, recurrent neural networks and continuous Hopfield network, these lectures notes
have covered primarily methods to encode static datasets, i.e. data that do not vary in time. Being
able to predict patterns that vary in time is fundamental to many applications. Such patterns are
often referred to as time-series.

In this chapter, we cover two models to encode time-series based on the hypothesis of a first-
order Markov Process, which we describe next.

6.1 Markov Process

A Markov Process is by definition discrete and assumes that the evolution of a system can be
described by a finite set of states. If X, is the state of the system at time, then X can take only N

particular values {Sl, Sy } ,i.e. X€ {51,...SN }

A first-order markov process is a process by which the future state of the system can be determined
solely by knowing the current state of the system. In other words, if one has made T consecutive

observation of the state X of the system: X = {Xt }Ll, the probability that the state of the system

at the next time step X;,, take any of the N possible value is determined solely by the current state,
ie..

DXt =55 1 X0 X o X ) = P (X0 =55 %) (5.96)

When modeling time-series, to assume that a process description is first-order markov is
advantageous in that it simplifies greatly computation. Instead of computing the complete

conditional on all previously observed states X, X ;,....,X;, one must solely compute the

conditional on the last state. We will see how this is exploited in two different techniques widely
used in machine learning next.
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6.2 Hidden Markov Models

Hidden Markov Models (HMMs) are used to model the temporal evolution of a complex problem of
which one can have only a partial description. The goal is to use this model to predict the evolution
of the system in the future. One may be provided solely with the current state of the system or with
several of the previous states of the system.

Take for example the problem of predicting traffic jams. This seems to be a very intricate problem,
especially as one can usually only observe part of the problem. One may have video cameras and
other type of sensors monitoring the traffic at every single junction. However, one cannot know
what individual path each car will follow. While one may suddenly measure an increase in traffic at
all points and one may hence infer that there are good chances that a traffic jam may be created.
It is very difficult to determine when and on which particular road the traffic jam will happen, if any.
The underlying process leading to traffic jam is stochastic and highly complex. HMM-s aim at
encapsulating such stochasticity and complexity in a partially observable problem.

HMM are used widely in speech recognition and gesture recognition. In speech recognition, they
are used to model the temporal evolution of speech pattern and to recognize either complete words
or parts of the words, such as phonemes. In gesture recognition, HMM are used to recognize
patterns of motions (from either video data or from recording joint motion through e.g. exoskeleton
or motion sensors). One usually builds one HMM per gesture and one uses a measure of the
likelihood that a new observed gesture was generated by a particular HMM to recognize this
newspecific gesture (e.g. stop motion, waving motion, pointing motion, etc). These motions can
either be computed from searching for body features in an image or through the use of an
exoskeleton to measure directly displacement of each body segment.

6.2.1 Formalism

HMM extends the principle of first-order Markov Process and assumes that the observed time
series was generated by an underlying hidden process. This hidden process is assumed to consist
of stochastic finite state automata where the states sequence is not observed directly. Each state
has an underlying probabilistic function describing the distribution of observable outputs. Two
concurrent stochastic processes are involved, one modeling the sequential structure of the data,
and one modeling the local properties of the data. A typical graphical representation of this process
is given in Figure 6-1.

T .
Let O = {0t }H be the set of observations. These correspond to the set of values for all parameters
describing the system which one recorded over a time period T. Each observation is usually

— N
multidimensional, e.g. 0, I R?. The set S = {Si}._1 of N hidden states is finite.
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Finite State Process composed of 7 Hidden States, fully connected

aqq aqo ago

5 time steps sequence of observations {04, ...0;} and the associated sequence of
transitions across states {S51,52,51,53,53}

DD D@

0, 0, 0; 0, 05

Figure 6-1: Schematic illustrating the concepts of a HMM. The process is assumed to be composed of 7 hidden
states. All transitions across all states are possible (fully connected). Note that for simplicity, we show only
arrows across adjacent states. The schematic at the bottom shows a particular instance of transition across
states over five time steps. Transitiosn across each state leads to an observation of a particular set of values
for the system’s variables. As we see, the system rotates first across states 1 and 2 and then stays for two
time steps on state 3.

Transitions across states are described as a stochastic finite automata process. The stochasticity
of the process is represented by computing a set of transition probabilities that determine the
likelihood to stay in a state or to jump to another state. Transition probabilities are encapsulated in

a N x N matrix A, whose elements {aij}_ N represent the probability of transiting from state |
i,j=1...

to state J , i.e. a; = p(sj |Si)' The sum of all elements in each row of A equals 1. Each state is
associated an initial probability 7, i =1,..N that represents the likelihood to be in that state at any

given point in time. In addition, one assigns to each state | a density bi (O) , So-called the emission
probability that determines the probability of the observation to take a particular value when in state
S,. Depending on whether the observables take discrete versus continuous values, we talk about

a discrete versus continuous HMM. When continuous, the density may be estimated through a
Gaussian Mixture Model. In this case, one associates a GMM per state. HMM are used widely in
speech processing. There, often, one uses very few hidden states (at maximum 3!). The complexity
of the speech is then embedded in the GMM density modeling associated at each state.
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b, : probability distnibution of the observables for state s,
4+ The prob. that observable o, takes value v, 1s given by:

p(o, =V, [8;) = p(0,; =V, 1,0,, =V, 5, 0,3V 5[8))

== vV,
Vi
0, 0, 0

T,

b,: Emission probability at state 1

Figure 6-2: Schematic illustrating the concept of emission probabilities associated to each state in a HMM. O,

is the observable at time t. It can take any value V € R3.

6.2.2 Estimating a HMM

Designing an HMM consists in determining the hidden process that explains at best the
observations. The unkown variables in a HMM are the number of states, the transitions and initial
probabilities and the emission probabilities. Since the matrix A is quite large, sometimes, often
people chose a sparse matrix, i.e. they set to zero most of the probabilities hence allowing only
some transitions across some states. The most popular model is the so-called left-right model that
allows transitions solely from state 1, to state 2, and so forth until reaching the final state.

Estimating the parameters of the HMM is done through a variant of Expectation-Maximization called
the Baum-Welch procedure. For a fixed topology (i.e. number of states), one estimates the set of
parameters A = (A, B, ) by maximizing the likelihood of the observations given the model:

PO )= &P©O|q.NPq| D (5.97)

where (= {ql, ey qT} is one particular set of expected state transitions during the T observation
steps. In the example of Figure 6-1, the set q is {q1 =5,0,=5,,0;=5,,0, =S;,0; = 83} :

Computing all possible combinations of states in Equation (5.97) is prohibitive. To simplify
computation, one uses dynamic programming through the so-called forward-backward
computation. The principle is illustrated in Figure 6-3 left. It consists of propagating forward in time

the estimate of the probability of being in a particular state given the set of observations. At each
time step, the estimate of being in state i is given by:

a,()=P(0,..0,,0, =5, | 1) (5.98)
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alphay_4(1)

.......... * Initialization: «()=7zb(o) 1<i<N

\bjop  « Induction:

a‘(j){ia,_l(i)ayjbj(o!) 2<I<T,1<j<N

i=1

M

a, ()= Lz @, () aiijj (o)

i=1

» Termination: LA
PO | 1)=2 ey (i)

i=1

Figure 6-3: The Forward Procedure used in the Baum-Welch algorithm for estimating the HMM parameters

The forward procedure is thus iterative with an initialization step, an induction step (typical of
dynamic programming) and a termination step, see Figure 6-3 right.

It is easy to see that the same principle can be extended backwards and, thus, that one can infer
the probability of being in a particular state by starting from the last state and building one’s way
back in time. This is referred to as the backward procedure and is illustrated in Figure 6-4.

ﬁt(i)ZP(OHI'“OT ‘Qt = Si,/l)

betay, 4(1)

betay,((2) . byloy, 1)

bylor, ) " : « Initialization: Gr(@)=1, 1<i<N
= » Induction:
""" & 1
‘‘‘‘‘ . y o) o pt(f):E aybj(om)ﬂm(j)J t=T-1l.L1<i<N
N . . N
J:10) {Z ab,(0,.)p. U)J * Termination: p|2)=3"z, A
J=1 i=1

Figure 6-4: The backward procedure in the Baum-Welch algorithm for estimating the HMM parameters

While solving with Equation (5.97) would take on the order of 2T*NT computation steps, the forward

or backward procedures reduce this computation greatly and take instead on the order of N2T
computation steps each. One may wonder what the advantage would be to do the computation
either forwards or backwards. There is no direct advantage to do either. These two procedures are
however crucial to the estimation of the parameters of the HMM. It is easy to see that, if one can
compute the probability to be in state i at time t with the forward procedure and the probability to
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be in state j at time t+1 with the backward procedure, then one can combine these two quantities
to compute the probability & (i, ) of transiting from i to j at time t. This is illustrated in Figure 6-5.

£G1)=P(g,=5,q,,=5,10,2)

O O

betay (i)

.a . a

alphay(i)

t1 o Oty Oty
é: (1 J) — af (l) ai,_] bj(ot+1)ﬁt+1(j)
PWACERACIY M)

i=1 j=1

Figure 6-5: Combining the forward and backward procedure to estimate the transition probability across the
arc joining state i and state j.

The probability of being in the state i at time t can then be inferred by simply summing over all the
transition probabilities and is given by:

9.()= & x(i)) (5.99)

j=1.N

From the computation of both & (i, j) and 7, (i) for each state, i.e.i, j =1...N , one can now derive

the update rule for all open parameters. HMM re-estimation of the parameter hence starts from an
estimate of the parameters A = (A, B, ) and updates these iteratively acoording to:

The initial probabilities follow immediately from the computation of the probability to be in any given
state at time t=1:

p,=9,0) (5.100)

The transition probabilities are then given by computing the sum of probabilities of transiting to this
particular state over the course of the whole sequence. This is hormalized by the probability of

being in any state (the reader will here recognize the Bayes rule, with éij being the conditional
probability of being in j when being in j):
o T-1 L.
. _a X))
a STera1 o (5.101)
a._ g.0)

i
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Finally, the emission probabilities in the discrete case are given by computing the expected number
of times one will be in each particular state and that the observation took a particular value V, , i.e.

0, =V,:
é‘{t:ol:vk}gl (l)
a _g,0)

b(v,)=

(5.102)

A

In the continuous case, one builds a continuous estimate of the bl., e.g. by building a GMM for
each state.

The ~ symbol in each of the above designates the new estimate of the values for each of the
HMM parameter.

6.2.3 Determining the number of states

A crucial parameter to HMM (and similarly to GMM) is the number of states K. Increasing K
increases the number of parameters and so computation. Of course, increasing the number of
states allows a finer description of the density and hence increases the likelihood of the model
given the data. This increase may however be negligeable in contrast to the increase in
computation time due to the increase of parameters. One must then find a tradeoff between
increasing the number of parameters and improving the likelihood of the model. This is
encapsulated in the Aikaike Information Criterion (AIC):

AIC=-2InL+2K (5.103)

where L is the likelihood of the model.

This criterion was however lately replaced by the Bayesian Information Criterion that also weights
the fact that the estimate of the number of parameters depends on the number of data points.
Sparsity in the data may require a lot of parameters to encapsulate non-linearities in these. As the
number of datapoints M increases, so does the influence of the number of parameters.

BIC:—2InL+KIn(M) (5.104)

An alternative to the above two criteria is the Deviation Information Criterion (DIC)
DIC = E{D(K)}-D(E{K}) with  D(K)=-2Inp(X|K)  (5.105)

Again the smaller the DIC, the better the model fits the data. DIC favors a good fit, while penalizing
models by measuring the effective number of parameters required for a similar level of fit.
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6.2.4 Decoding an HMM

There are two ways to use a HMM once built. It can be used either for classification or for prediction.

Classification: assume that you have trained two different HMM-s on the basis of two classes of
time series (say you trained a HMM to recognize a waving gesture and another HMM to recognize
a pointing gesture on the basis of ten examples each). One can use these two HMM-s classify the
observation of a new times series (a new movement) to determine whether it belonged more to the
first or second type of time series (i.e. whether the person was waving or rather pointing). This can
be done by computing the likelihood of the new times series given the model and determining
simply which model is most likely to explain this time series. If the new times series is X', the set

of parameters of each model are J' = (4", B",p"), I* =(A4°,B%,p?) respectively, then the

likelihoods of X’ to have been generated by each of these two models are p(X'| ll), p(X'| IZ)
. These likelihoods can be computed using either the forward or backward procedure.

One can then decide which of model 1 and 2 is most likely to have explained the time series by
directly comparing the two likelihoods. That is, model 1 is more likely to have generated X’ if:

p(X'| 11) > p(X'| 12) (5.106)

Such a comparison is however difficult as the value of the likelihood is unbounded (recall that pdf
are positive functions with no upper bound). It can take very large values just as an effect of one
model having much more parameters than the other. Hence, in practice, one sometimes normalizes
the likelihood by the number of parameters of each model. Since one only compares two values,
one has no idea how well any of the two models actually explain the data. It could be that both
likelihoods are very low and that hence the observed time series belongs to neither of these two
models. In speech processing, people avoid this problem by creating a “garbage” model that
ensures that, if a times series is not well represented by any of the meaningful model, then it will
be automatically classified in the garbage model. Building a garbage model requires training the
model on a large variety of things that cannot be the pattern one is looking for (e.g. noise from cars,
doors shutting down, etc). Generating such a large set of non-class samples is not very practical.
An alternative is to retain a value of the average likelihood obtained with the training examples for
each model, and use this to ensure that the likelihood of the new time series is at least as big as
that seen during training (or within some bounds).

Prediction: Once built a HMM can be used to make prediction about the evolution of a given time
series if provided with part of the time series. Clearly the farther back in time one can go, the better
the prediction.

Say that you have built a HMM to represent the temporal evolution of the weather day after day
taking into account the seasons and the particular geographical area, one can then use the model
to predict the weather for the following couple of days. The farther in the future the prediction, the
less reliable it may be.

To perform prediction one uses the Viterbi algorithm. The viterbi algorithm aims at generating the
most likely path. Given a HMM model with parameters /£ = (A4, B, p), one looks for the most likely

state sequence Q = {q1,1/4, qT} for T time steps in the future, i.e. one optimizes for:

O =argmax P(Q'|0, 1) (5.107)
o

To do this, one proceeds iteratively and tries to find the optimal state at each time step. Such an
iterative procedure is advantageous in that, if one is provided with part of the observations as in
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the above weather prediction example, one can use the observations {o ,ot}made over the

e
first t time steps to guide the inference.

The optimal state at each time step is obtained by combining inferences made with the forward and

a,(1),()

backward procedures and is given bygt(j) = , see also Equation(5.99).

o
Aa,(i)b (1)
i=1
The most likely sequence is then obtained by computing:
q(t) =arg max(gt(i)) (5.108)
1£iEN

The state sequence maximizing the probability of a path, which accounts for the first t observations
and ends in state j is given by:

d.(j)=max p(q,.--q, ,,9, = J;0,--0,) (5.109)

xRy

Computing the above quantity requires taking into account the emission probabilities and the
transition probabilites. Again one proceeds iteratively through induction. This forms the core of the
Viterbi algorithm and is summarized in the table below:

Viterbi Algorithm
* Initialization: § (/)= zb(0,), 1<i<N
Induction: &,(j)= ﬁg‘a o, () a[j]bj (0,)

X
<N
|

w.()) :i_argmaxé;l(i)aijj 2<1i<T,1<j<N

I<isN

« Termination: p~ =max &, (i) g, = argmax &, (i)
1<icN 1<i<N

Path backtracking: q: =y, (q:ﬂ) t=7T-1..,1

Hence, when inferring the weather over the next five days, given information on the weather for the
last ten days, one would first compute the first 10 states sequence (,.....q;, using (5.109) and then

one would use (5.108) to infer the next five states ,,.....0,;. Given(,.....0,s, one would then

draw from the associated emission probabilities to predict the particular weather (i.e. the particular
observation one should make) for the next 15 time slots.
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6.2.5 Further Readings

Rabiner, L.R. (1989) “A tutorial on hidden Markov models and selected applications in speech
recognition”, Proceedings of the IEEE, 77:2

Shai Fine, Yoram Singer and Naftali Tishby (1998), “The Hierarchical Hidden Markov Model”,
Machine Learning, Volume 32, Number 1, 41-62.
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7 Annexes

7.1 Brief recall of basic transformations from linear algebra

7.1.1 Eigenvalue Decomposition

The decomposition of a square matrix A into eigenvalues and eigenvectors is known as
eigen decomposition. The fact that this decomposition is always possible as long as the
matrix consisting of the eigenvectors of A is square is known as the eigen decomposition
theorem.

Let A be a linear transformation represented by a matrix A . If there is a vector
veR" #0such that

Av = Av (6.1)

for some scalar A, then Ais called the eigenvalue of Awith corresponding (right)
eigenvector V.

Letting A be a N x N square matrix:

&y 8y, - Ay
a, a, ..aN
21 7722 (6.2)
dyg Ay, - Ay
with eigenvalue A, then the corresponding eigenvectors satisfy
all a12 aiN Vl Vl
a,, d, ..ad V V
21 722 2N 2 :i 2 (6.3)
aNl a'N2 aNN VN VN
which is equivalent to the homogeneous system
ail'/l a, e Ay v 0
a a,-A ... a Vv 0
21 22 2k 2 — (6.4)
ay, ay, e QA || Yy 0

Equation (6.4) can be written compactly as
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(A-Al)v=0 (6.5)

where | is the identity matrix. As shown in Cramer's rule, a linear system of equations has
nontrivial solutions iff the determinant vanishes, so the solutions of equation (6.5) are given
by

det(A—41)=0 (6.6)

This equation is known as the characteristic equation of A, and the left-hand side is known
as the characteristic polynomial.

For example, for a 2x 2 matrix, the eigenvalues are

1
Ay =E[(a11+a22)i\/4a12a21+(a11_azz)z:| (6.7)

If all N eigenvalues are different, then plugging these back in 6.5 gives N —1 independent
equations for the N components of each corresponding eigenvector, and the system is said
to be nondegenerate. If all or some of the eigenvalues are identical, then the system is said
to be degenerate and the eigenvectors are not linearly independent. In such cases, the
additional constraint that the eigenvectors be orthogonal,

N\T .
(e') el =0 (6.8)
can be applied to yield additional constraints, thus allowing solution for the eigenvectors.
If all the eigenvectors are linearly independent, then the eigenvalue decomposition
A=VAV™? (6.9)

Where the columns of V are composed of the eigenvectors of A and A is a diagonal matrix
composed of the associated eigenvalues.

7.1.2 Singular Value Decomposition (SVD)

When the eigenvectors are not linearly independent, then V does not have an inverse (it is
thus singular) and such decomposition does not exist. The eigenvalue decomposition
consists then in finding a similarity transformation such that:

A=UAV (6.10)

with U,V two orthogonal (if real) or unitary (if complex) matrices and A a diagonal matrix.
Such decomposition is called singular value decomposition (SVD). SVD are useful in sofar
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that A represents the mapping of a N-dimensional space onto itself, where N is the
dimension of A.

An alternative to SVD is to compute the Moore-Penrose Pseudoinverse A’ of the non
invertible matrix A and then exploit the fact that, for a pair of vectors z and ¢, z = A"C is

the shortest length least-square solution to the problem AZ = C .Methods such as PCA that
find the optimal (in a least-square sense) projection of a dataset can be approximated using
the pseudoinverse when the transformation matrix is singular.

7.1.3 Frobenius Norm

The Frobenius norm of an mxn matrix A is given by:

1AL = > fay[ (6.11)

i=1 j=1

7.2 Recall of basic notions of statistics and probabilities

7.2.1 Probabilities
Consider two variables x and y taking discrete values over the intervals [Xu,..., Xm] and

[y,..., yn] respectively, then
P(x =) is the probability that the variable x takes value x;, with:

i) 0<P(x=x)<1 Vi=1..,M,
ii) iP(x=xi)=l

The same two above properties applies to the probabilities P(y =y, ), Vj=1...N.

Some properties follow from the above:
Let P (X = a) be the probability that the variable x will take the value a. If P (X = a) =1x

is a constant with value a. If x is an integer and can take any value a between [1,N]e N

1
with equal probability, then the probability that x takes value ais P(X=a) = W

Joint probability:
The joint probability that the two events A (variable x takes value a) and B(variable y
takes value b) occuris expressed as:

P(AB)=P(AnB)=P((x=a)n(y=b)) (6.12)
Conditional probability:
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P(A] B) is the conditional probability that event A will take place if event B already took
place

P(Ar\ B)
P(A|B)=————~¢ .
(AIB) p(8) (6.13)
It follows that:
P(AmB):P(A|B)P(B) (6.14)
By the same reasoning, we have:
P(AmB)=P(B|A)P(A) (6.15)
Hence,
P(A|B)P(B):P(B|A)P(A) (6.16)
Bayes' theorem:
P(A|B)=—P(B|A)P(A) (6.17)
P(B)

Marginal Probability:

The so-called marginal probability that variable x will take value xi is given by:

N
PX(X:Xi):ZP(X:Xi’ y= yj)
j=1
(6.18)

To compute the marginal, one needs to know the joint distribution of variables x and y.
Often, one does not know it and one can only estimate it.Note that if x is a
multidimensional random variable, then the marginal is a joint distribution over the
random variable spanned by x.

The joint distribution is far richer than the marginals. The marginals of N variables taking
K values corresponds to N(K-1) probabilities, while their joint distribution corresponds to
KN-1 probabilities.

7.2.2 Probability Distributions, Probability Density Function

p(X) is the probability density function of the variable X € R . p(x) is continuous, Lebesgue
integrable, non-negative and normalized:
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p(x) >0, Vx
o (6.19)
f p(x)dx =1
7.2.3 Expectation
If x an take a set if discrete value in X and follow with probability P(x), then:
p=E{x}=> xP(x) (6.20)
xeX
The expectation of x, E{x}, is the mean & of its distribution:
U= E{x}=J-X X- p(x)-dx (6.21)

7.2.4 Variance and Covariance

The variance o2 of a distribution measures the amount of spread of the distribution around
its mean:

o’ =Var{x}=E{(X—/1)2}=E{X2}—[E{X}]2 (6.22)
o is the standard deviation of x.

For two random variables x and y, one can measure the level of correlation between the
two variables through the co-variance:

cov(x,y)=E{x,y}-E{x} E{y} (6.23)

E {x, y} = I xyp(x, y)dxdy is the expectation of the joint distribution.

7.2.5 Distribution Function or Cumulative Distribution Function

The distribution function DX (X*) = P(X < X*) also called the cumulative distribution

function (CDF) describes the probability that a random variable x takes on value less
than or equal to a number x*.

If p(x) is the probability density function of x then:

P(x<x)=D,(x) :I p(x)dx (6.24)
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p(x) dx ~ probability of x to fall within an infinitesimal interval [x, x + dx].

The probability that the variable x takes a value in the subinterval [a,b] is equal to:
b
P(a<x<b)=] p(x)dx
a

7.2.6 Joint and Conditional Probability Distribution

For two random variables x and y with joint distribution p(x,y), the conditional probability
of y given x is given by:

|D(Y|X):%<:> D(VIX)=%)X§()/) (6.25)

7.2.7 Marginal Probability Distribution or Marginal Density

For two random variables x and y with joint distribution p(x,y), the marginal density of x is
given by:

p,(x)=] P(x,y)dy

7.2.8 Statistical Independence

If x and y are two random variables, generated by the distribution p(x) and p(y), then x and
y are said to be mutually independent, if their joint density p(x,y) is equal to the product of
their density functions:

p(x,y) = p(x)p(y) (6.26)

7.2.9 Uncorrelatedness

x and y are said to be uncorrelated, if their covariance is zero, i.e. COV(X, y) =0. If the

variables are generated by a distribution with zero means, then uncorrelatedness is equal
to product of their separate expectations:

cov(x,y)=E{x,y}-E{x}E{y} =0

o E{xy}=E{x E{y} (627

Independence is in general a much stronger requirement than uncorrelatedness. Indeed,
if the variables are independent, for any transformation f1 and f2

E{1,(0) £.(9)}=E{L () E{L.(x) 629

7.2.10 Uniform and Gaussian PDF

We here recap the definition of the uniform and Gaussian distribution, the two most
classical parametric distribution probabilities. These distributions are parametric because
their equation is known and depends only on a finite set of parameters. Using such
distribution to model arbitrary distribution is advantageous as it amounts to determine only
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the parameters of the distribution. In contrast, non-parametric distribution require to keep
in memory all datapoints to perform a precise estimate of the distribution.

e The Uniform distribution is usually defined over an interval where the random
variable takes the same uniform density of probability.

0 if a<x
p(x)= ﬁ if a<x<b, withx a beR (6.29)
0 otherwise
P(X) D.(x') |
)LII\ x );. 0.0 ‘ x* r

Figure 7-1: Pdf and Cumulative Distribution for the Uniform Distribution

The uniform pdf is unbounded above and can reach infinity as the b-a interval
goes to zero.

e Inone dimension, the Gaussian distribution, usually called Normal
distribution

p(x)= L e[(xz_:z)z] (6.30)

oN2r

To emphasize that the Gaussian pdf depends on two parameters, the mean and

variance, one sometimes writes p(X;,u, 6), or equivalently p(X | ,u,a).

e The multi-dimensional Gaussian or Normal distribution has a pdf given by:
1 (e =)
N1

(27)2 [Z]2

if x is N-dimensional, then

p(xuX)= (6.31)

w1 is a N —dimensional mean vector
2. isaNxN covariance matrix
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Figure 7-2: A 2-dimensional Gaussian distribution. The 2D oval-shape representation (left) is obtained by
projecting the density onto the 2D axes of the random variable X. The color code represent surfaces of 1
standard deviation (std) in red, 2 std in light blue, 3 std in darker blue, etc.

The marginal and conditional distribution in a multivariate Gaussian distribution are all
Gaussian distributions, see Figure 7-3. This result is quite important and is used extensivly
in machine learning to exploit the fact that the marginal and conditional can be
parametrized and their parameters can be estimated through techniques applied to
Gaussian distribution, such as expectation-maximization.

Jjoint density of
wand y

(]

E

conditional density of
¥, Qi en x=ig

marginal density of ¥

fy

) ) =g
marginal density of x

Figure 7-3: How the Joint, Marginal, and Conditional distributions are related in a bi-dimensional Gaussian
distribution over the random variable x and y.

7.2.11 Likelihood Function

The likelihood function L (usually simply called the likelihood) is an important quantity in
statistics and in machine learning. It determines the total probability of observing the set,
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M
X = {X'}, L of M observation of the random variable X given that x follows a distribution
1=

p(x) .

L(X)= p(xl, xz,...,x“") (6.32)

M
For a set X of M datapoints X ={X'}_ l,Where each datapoint is identically and

independently distributed (i.i.d) according to the density p(X), the likelihood is given by:

L(x):]i[ p(x‘) (6.33)

The likelihood is used to help to determine how to improve the parameter of the model of
the pdf to increase the likelihood that the particular choice of parameter (and of density)
represent the set of data.

For a parametrized density p(x;y, a), with parameters u, o, the Likelihood Function is
the likelihood of the data X given the parameters: L (x, 0| X )= p(X | u,0).

7.2.12 Kullback-Leibler Distance

The most common method to measure the difference between two probability
distributions p and q is to us the Kullback-Leibler distance (DKL), sometimes known as
relative entropy:

D(p||q):jp(x)logmdx (6.34)

a(x)

DKL is always positive D( p || q) >0. Itis zero if and only if p=q, i.e. ifthe variables are
statistically independent. Note that in general the relative entropy or DKL is not symmetric
under interchange of the distributions p and g: in general D(p||q)= D(q|| p). Hence,

DKL is not strictly a distance. The measure of relative entropy is very important in pattern
recognition and neural networks, as well as in information theory, as will be shown in other
parts of this class.
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7.3 Estimators

7.3.1 Maximum Likelihood

Machine learning techniques often assume that the form of the distribution function is
known and that sole its parameters must be optimized to fit at best a set of observed
datapoints. It then proceeds to determine these parameters through maximum likelihood
optimization.

The principle of maximum likelihood consists of finding the optimal parameters of a given
distribution by maximizing the likelihood function of these parameters, equivalently by
maximizing the probability of the data given the model and its parameters, e.g.:

The method of maximum likelihood is a method of point estimation that uses as an
estimate of the parameters of the distribution by maximizing the likelihood function. If z is

ANY
the parameter of the density and X = {X' }H the set of observed instances of the random
variable x, the probability of having observed the set X given the underlying distribution

p(x| 42) is:
L(ulX)=P(X|u) (6.35)

the value of X that maximizes L(,u) is the maximume-likelihood estimate of . In

oL
order to find the maximum, one will compute the derivative of L: 6_ =0. Often, it is
u
simpler to compute the derivative of the logarithm of the likelihood function, the log-
likelihood.

If p(x) is a multi-dimensional Gaussian function, with parameters £, Y. The mean and
covariance matrices can be estimated in closed-form by Maximum-Likelihood:

max L(u,2| X):rr)jizx P(X|uX)

0 (6.36)

8
2 p(X|1,2)=0 and — p(X|w%X)=0
8ﬂlO( |1,2)=0 an 829( | 11, %)

In most problems, it is not possible to find an analytical expression for /. One, then, has

to proceed to an estimation of the parameter through an iterative procedure called
Expectation-Maximization (EM), see next.

7.3.2 EM-Algorithm

EM is an algorithm for finding maximum likelihood estimates of parameters in probabilistic
models, where the model depends on unobserved latent variables. EM alternates between
performing an expectation (E) step, which computes the expected value of the latent
variables, and a maximization (M) step, which computes the maximum likelihood estimates
of the parameters given the data and setting the latent variables to their expectation. It is
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used in a vast variety of Machine Learning techniques, such as K-means, Gaussian Mixture
Models and Hidden Markov Models.

M K
If X = {X'}if1 is the set of M observed data, Z = {Z'}_ , the set of K discrete variables

and O the set of parameters of the pdf function, the likelihood is:
L(®| X,Z)= P(X,Z |®)

At first, it may not be very clear why one should distinguish between the parameters ©
and the latent variables Z . The notion of latent variable offers a mean to express the fact
that the distribution of the observables can be explained by a finite set of distributions. Each
observable X' may have been generated by one or a combination of the K distributions
associated to each of the K latent variables. Introducing Latent variables allows to proceed

to a reduction of the original problem. The expression of the density P (X) can be reduced

to a finite set of densities. For instance, in Gaussian Mixture Models, the density p(X) is
expressed as a weighted linear combination of K Gaussian functions:

K
p(X%0)=> P, (x;yk,Z") with © ={«',=",..“, 2"}, o, €[0,1]..
k=1

Each Gaussian function represents a latent variable with associated parameters (mean
and Covariance matrix). In Hidden Markov Models, the latent variables correspond to the
hidden states. Each hidden state is associated two pdf to explain the probablity of the
observation and the probability of transiting across states.

In E-M, the number of latent variables Z is fixed during the entire E-M process. Only the
parameters are updated. However, the latent variables play a role in the computation of
the likelihood.

The EM-algorithm is an iterative process that aims at updating the:

e Step 0: Make an initial estimate of the parameters ® and of the latent variables
Z. (Initialization)

A

e Using current ®, compute the expectation of the complete data likelihood
L((:)| X,Z) . (E-step)

e Find (and update) O to maximize the expectation (M-step).

EM stops when there is no improvement in Likelihood above some threshold. Of course,
this all depends on the threshold. Since the likelihood function is unbounded, fixing this
threshold requires some care. Even when taking the log of the likelihood function, variation
in the likelihood are hard to quantify and depend on the number of datapoints and type of
density used. Good practice is to plot the decrease in the log of the likelihood and determine
visually a plateau, which one can then translate in a numerical value.

EM is a description of a class of related algorithm, not of a particular algorithm. EM is a
recipe or meta-algorithm, which is used to devise particular algorithms. The Baum-Welch
algorithm is an example of an EM algorithm applied to Hidden Markov Models. Another
example is the K-means clustering algorithm.

It can be shown that an EM iteration does not decrease the observed data likelihood
function, and that the only stationary points of the iteration are the stationary points of the
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observed data likelihood function. In practice, this means that an EM algorithm will
converge to a local maximum of the observed data likelihood function.

EM proceeds thus iteratively and is particularly suited for parameter estimation under
incomplete data or missing data situations. By using the EM procedure, the so-called

marginal (or incomplete-data) likelihood L(®| X ) = P(X |®) is obtained by
computing the average or expectation of the complete-data likelihood with respect to the

missing data using the current parameter estimates (E-step), then the new parameter
estimates are obtained by maximizing the marginal likelihood (M-step).

For a complete description of EM, we refer the reader to: Moon, Todd K. "The expectation-
maximization algorithm." Signal processing magazine, IEEE 13.6 (1996): 47-60.

7.3.3 Gradient descent
(from Mathworld)

Gradient descent is an incremental hill-climbing algorithm that approaches a minimum or
maximum of a function by taking steps proportional to the gradient at the current point.

An algorithm for finding the nearest local minimum of a function, which presupposes that
the gradient of the function can be computed. The method of steepest descent, also called

the gradient descent method, starts at a point P, and, as many times as needed, moves

from P to P,, by minimizing along the line extending from —Vf (F’I) the local downhill

gradient.
fix)
3
L
—J-0.5 | 0.5 1 1.5 2 2.5"
-1
Flx) xp ==2
2t
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When applied to a 1-dimensional function f(x), the method takes the form of iterating

X =X, —&f(x,) (6.37)
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from a starting point X,for small & > Quntil a fixed point is reached. The results are
illustrated above for the functions f (X) =x>-2x*+2 with ¢ =0.1and starting point

X, = 2 and 0.01, respectively.

This method has the severe drawback of requiring a great many iterations for functions,
which have long, narrow valley structures. In such cases, a conjugate gradient method is
preferable.

7.3.4 Conjugate Gradient descent

The conjugate gradient method is an algorithm for finding the nearest local minimum of a
function of n variables, which presupposes that the gradient of the function can be
computed. It uses conjugate directions instead of the local gradient for going downhill. If
the vicinity of the minimum has the shape of a long, narrow valley, the minimum is reached
in far fewer steps than would be the case using the method of steepest descent.

The conjugate gradient method is an effective method for symmetric positive definite
systems. It is the oldest and best-known non-stationary method. The method proceeds by
generating vector sequences of iterates (i.e., successive approximations to the solution),
residuals corresponding to the iterates, and searches directions used in updating the
iterates and residuals. Although the length of these sequences can become large, only a
small number of vectors need to be kept in memory. At each iteration step of the method,
two inner products are performed in order to compute update scalars that are defined to
make the sequences satisfy specific orthogonality conditions. On a symmetric positive
definite linear system these conditions imply that the distance to the true solution is
minimized in some norm.
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State-of-the-art

State-of-the-art research in Machine Learning can be found in the proceedings of the
International Conference in Machine Learning (ICML) and the Neural Information
Processing Symposium (NIPS), but also in publications in major journals such as the
Machine Learning Journal, the IEEE Transactions on Signal processing, |IEEE
Transactions on Pattern Analysis, IEEE Transactions on Pattern Recognition, the Journal
of Machine Learning Research.

State-of-the-art research in Neural Networks can be found in the proceedings of the
International Conference on Artificial Neural Networks (ICANN), the Internation Joint
Conference on Neural Networks (IJCNN), the European Conference on Artificial Neural
Networks (ECANN) and in major journals such as Neural Networks, Neural Computation,
IEEE transactions on Neural Networks, Neurocomputing. We list major sites for on-line
resources in ML next.

8.1.1 ML Resources:

One most prominent resource for machine learning is found at the official website of the
machine learning society http://www.machinelearning.org/index.html

This website keeps a repository of all papers published at International Machine Learning
Conference (ICML), one of the two major venues for research papers in ML.
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Below is a list of other repositories which the interested reader is invited to visit to keep up
to date on research advances in ML and for getting access to various databases for

benchmarking the development of new algorithms.

ML List
http://www.ics.uci.edu/~mlearn/MLList.html

ML Repository
http://www.ics.uci.edu/~mlearn/MLRepository.html

MLnet
http://www.mInet.org/

KDnet
http://www.kdnet.org/control/index

NIPS
http://nips.cc/

Pascal
http://www.pascal-network.org/

"Archives of the Machine
Learning List"

"This is a repository of
databases, domain theories
and data generators that are
used by the machine learning
community for the empirical
analysis of machine learning
algorithms."

Machine Learning network
online information service.
"This site is dedicated to the
field of machine learning,
knowledge discovery, case-
based reasoning, knowledge
acquisition, and data mining."

"The KDNet (= Knowledge
Discovery Network of
Excellence) is an open Network
of participants from science,
industry and the public sector.
The major purpose of this
international project is to
integrate real-life business
problems into research
discussions and to collaborate
in shaping the future of
Knowledge Discovery and Data
Mining."

Neural Information Processing
Conference — on-line repository
of all research papers on
theoretical ML

Network of excellence on
Pattern Recognition, Statistical
Modelling and Computational
Learning

Major venues for publishing research on machine learning are:

Journals:

*  Machine Learning

» |EEE Transactions on Signal processing
* |EEE Transactions on Pattern Analysis

+ |EEE Transactions on Pattern Recognition
» The Journal of Machine Learning Research

+ Data Mining and Knowledge Discovery

«  ACM Transactions on Information Systems

* Neural Networks
* Neural Computation
» Biological Cybernetics
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Conferences:

ICML: Int. Conf. on Machine Learning
NIPS: Neural Information Processing Conference

COLT: Annual Conference on Learning Theory
IJCAI: Int. Joint Conf. on Atrtificial Intelligence

ICANN: Int. Conf. on Artificial Neural Networks

ESANN: European Conf. on Artificial Neural Networks
IJCNN: Int. Joint Conf. on Neural Networks
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