

Key for the corrections

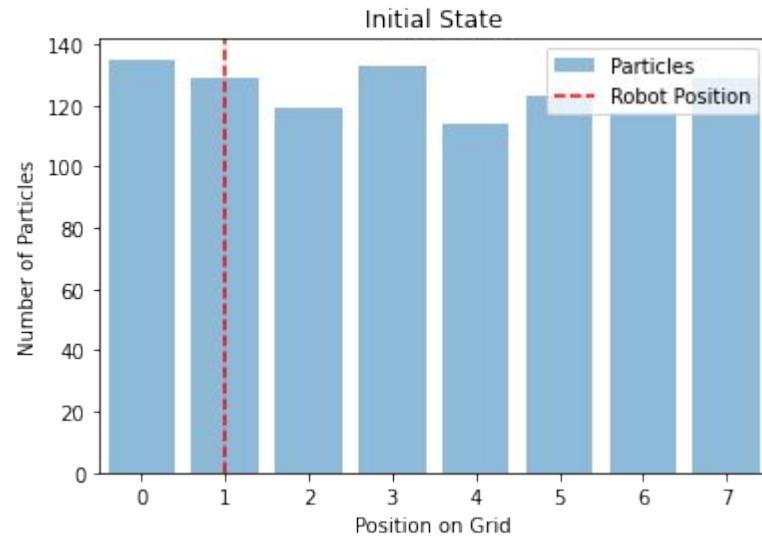
Particle filter Algorithm

- 1) **Initialize:** Randomly place particles across the map.
- 2) **Predict:** Move each particle based on control input and motion noise.
- 3) **Update:** Weigh each particle by how well it matches sensor data.
- 4) **Resample:** Select particles based on their weights to focus on high-probability areas.
- 5) **Repeat:** Iterate with new data for refined location tracking.

```
Algorithm Particle_filter( $\mathcal{X}_{t-1}, u_t, z_t$ ):  
   $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$   
  for  $m = 1$  to  $M$  do  
    sample  $x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]})$   
     $w_t^{[m]} = p(z_t | x_t^{[m]})$   
     $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$   
  endfor  
  for  $m = 1$  to  $M$  do  
    draw  $i$  with probability  $\propto w_t^{[i]}$   
    add  $x_t^{[i]}$  to  $\mathcal{X}_t$   
  endfor  
  return  $\mathcal{X}_t$ 
```

Initialization

The grid is **initialized** along with $N=1000$ particles randomly distributed. The robot's true position is also set.



Motion Update

Move particles similarly to the robot, with some noise

```
positions = []
robot_positions = []

for t in range(num_iterations):
    # Move the robot one step to the right
    robot_pos = (robot_pos + 1) % grid_length
    # Move particles similarly to the robot, with some noise
    movement_noise = np.random.choice([-1, 0, 1], N, p=[0.1, 0.8, 0.1])
    particles = (particles + 1 + movement_noise) % grid_length
```

Update weights

Update weights based on sensor reading

```
# Measurement model probabilities
prob_correct = 0.9
prob_incorrect = 0.1

# Sensor reading at the robot's true position
sensor_reading = grid[robot_pos]

# Update weights based on sensor reading
weights *= np.where(grid[particles] == sensor_reading, prob_correct, prob_incorrect)

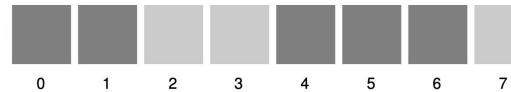
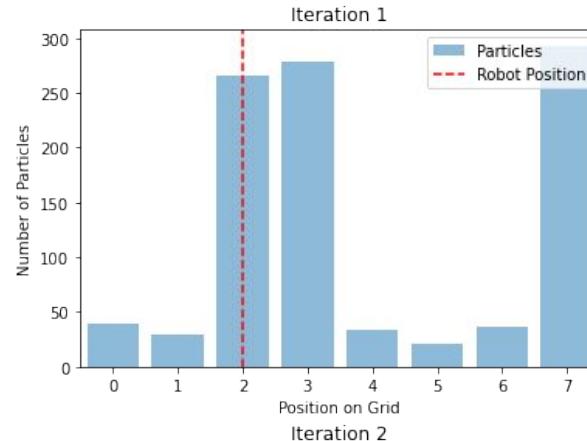
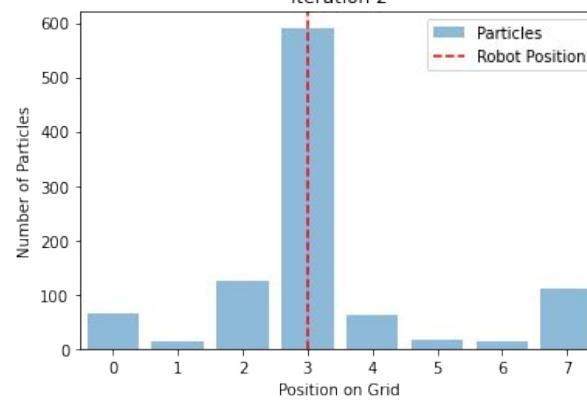
# Normalize weights
weights += 1.e-300      # Avoid division by zero
weights /= weights.sum()
```

Resampling

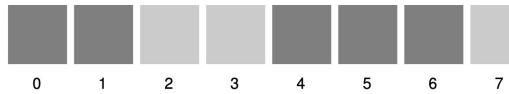
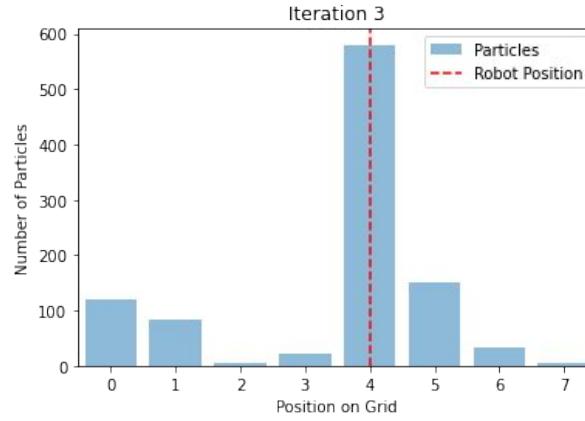
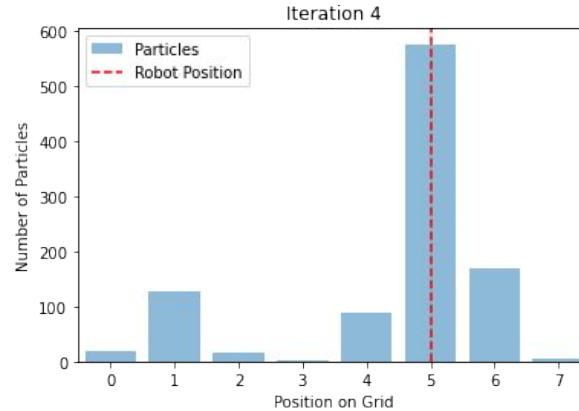
Particles are **resampled** according to their weights, focusing more on likely positions.

```
# Resample particles based on weights
indices = np.random.choice(N, N, p=weights)
particles = particles[indices]
```

Iterate



Iterate



Correction

Why is 'Resampling' crucial in a particle filter?

- To distribute particles uniformly
- To focus particles around the right position
- To distribute particles in Gaussian distribution
- To distribute particles in linear distribution

Correction

Why is 'Resampling' crucial in a particle filter?

To distribute particles uniformly

To focus particles around the right position

To distribute particles in Gaussian distribution

To distribute particles in linear distribution

Correction

The value of the weights is related to:

Size of the sample

Fit to measurement

Amplitude of movement

Correction

The value of the weights is related to:

Size of the sample

Fit to measurement

Amplitude of movement

Correction

How would adding more noise in the 'Motion Update' reflect the hardware features ?

- it correspond to less precise motor power control
- it correspond to less precise ground color sensor
- it correspond to less precise wheel motion encoder
- it correspond to more precise ground color sensor

How would adding more noise in the 'Motion Update' reflect the hardware features ?

- it correspond to less precise motor power control
- it correspond to less precise ground color sensor
- it correspond to less precise wheel motion encoder
- it correspond to more precise ground color sensor

Correction

How does the memory requirement of a particle filter compare to a histogram-based approach (=last exercise session with the Thymio) as the environment size increases?

- Particle filter memory increases slightly, while histogram-based increases exponentially.
- Both increase linearly with environment size.
- Particle filter memory decreases, while histogram-based increases.
- Particle filter memory increases linearly, while histogram-based remains constant.

Correction

How does the memory requirement of a particle filter compare to a histogram-based approach (=last exercise session with the Thymio) as the environment size increases?

Particle filter memory increases slightly, while histogram-based increases exponentially.

- Both increase linearly with environment size.
- Particle filter memory decreases, while histogram-based increases.
- Particle filter memory increases linearly, while histogram-based remains constant.

Correction

Say we are resampling over and over again, without any motion update. What will happen in the limit?

- A) The filter will spread out evenly across the grid
- B) The filter will maintain an equal distribution of particles across different states
- C) The filter will converge to a single position
- D) The filter will keep oscillating between different particles
- E) I don't know

Correction

Say we are resampling over and over again, without any motion update. What will happen in the limit?

- A) The filter will spread out evenly across the grid
- B) The filter will maintain an equal distribution of particles across different states
- C) The filter will converge to a single position
- D) The filter will keep oscillating between different particles
- E) I don't know

Comparison with Histogram-based Method

Particle Filters offer flexibility and can handle **non-linear, non-Gaussian problems**, ideal for complex, real-world scenarios.

In contrast, **Histogram-based** methods are simpler but struggle with **high-dimensional spaces** and assume linear, Gaussian noise.