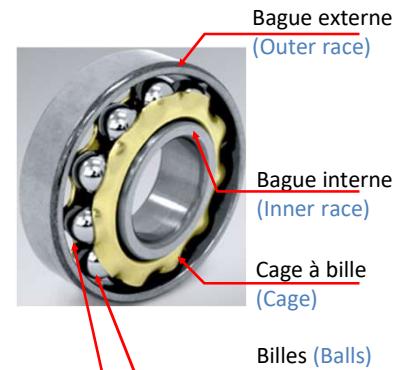


Guides - Ball bearings and linear guides


EPFL

Dr M. Bouri - 2023

Ball bearings

- 2 -

- The role of a motion bearing is to allow the movement **only in a privileged direction**
- A common motion bearing is the ball bearing

EPFL

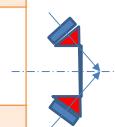
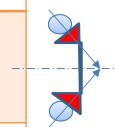
Dr M. Bouri - 2023

- 3 -

Examples of applications:

- Guiding a motor shaft
- Implementation of a pivot of a robot arm
- Implementation of a ball joint
- Guiding a transmission screw

EPFL



Dr M. Bouri - 2023

Some types of bearings

- 4 -

EPFL

Deep groove ball bearings		Most commonly used. Very good radial rigidity and low friction - High speed applications
Angular contact ball bearings		Improves axial rigidity (off-axis axial load carrying point)
Cylindrical Roller Bearings		More contact surface therefore more radial load. No axial loads. Suitable for large bearings and radial shock applications.
Needle Roller Bearings		Same principle as the roller bearing and ideal for applications with space constraints.
Angular Roller Bearings		Support good radial and axial loads and are less suitable for high speeds.
Spherical bearings Inventor- Sven Gustaf Wingqvist founder of SKF		Spherical type if alignment changes. Can correct constructional overconstraints

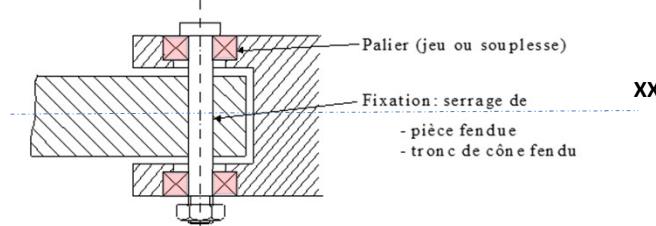
Dr M. Bouri - 2023

Various mountings:

- 5 -

The following link refers to a very interesting link from SKF with the different types of bearing mounts.

<http://www.skf.com/group/products/bearings-units-housings/ball-bearings/principles/application-of-bearings/bearing-arrangements/index.html>


EPFL

Dr M. Bouri - 2023

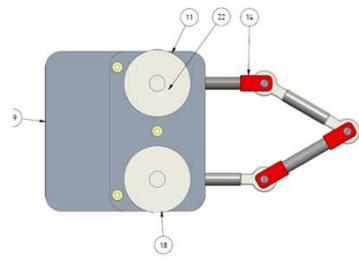
Exercice:

Calculation of the angular stiffness of a double bearing

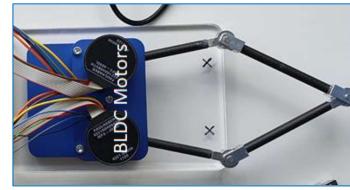
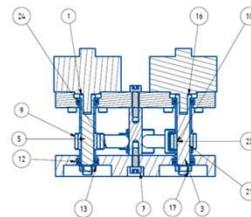
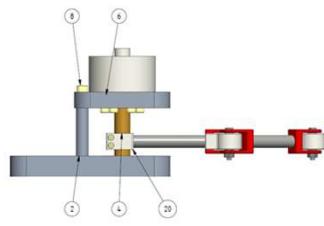
- 6 -

Construction of a joint by minimizing the influence of the play or flexibility of the bearings

K_1 and K_2 are the linear stiffnesses of the two bearings 1 and 2.

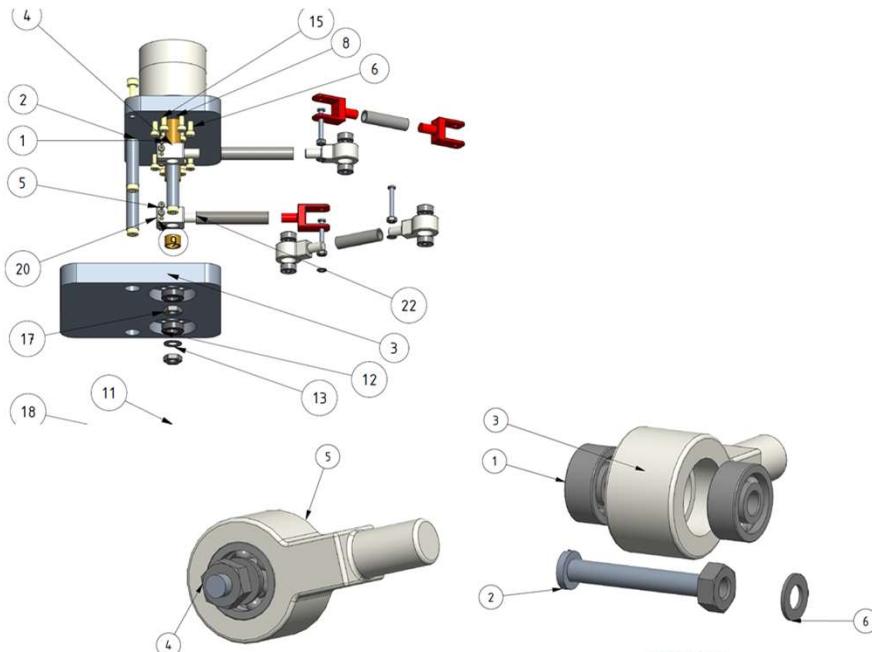

- **What is the resulting angular stiffness about the central axis XX?**

EPFL




Dr M. Bouri - 2023

Example of a double SCARA - TP Pantograph haptic

- 7 -

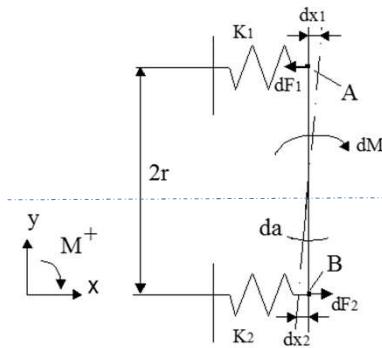

ITEM	PART NUMBER	QTY	DESCRIPTION	NOTES
1	ARBRE	1	arbre.prt	
2	ARBRE_SUPPORT	2	arbre_support.prt	
3	COUSSINET_1	2	coussinet_1.prt	
4	COUSSINET_2	2	coussinet_2.prt	
5	ISO14579-M2X16-8.8	4		
6	ISO14579-M3X8-8.8	12		
7	ISO14579-M4X12-8.8	4		
8	ISO14579-M4X16-8.8	2		
9	ISO4034-M2-14H	8		
10	LIAISON_PIVOT	3	liaison_pivot.asm	
11	MOTEUR	1	motor.prt	
12	MR1482Z	4		
13	PCIMAK_D11_V8_TO_5	2		
14	PIVOT	3	pivot_1.prt	
15	PIOTS	1	o_gabaril.prt	
16	PROT016	1	arbre.prt	
17	SDI439BM65509006000	10		
18	SUPPORT	1	support.prt	
19	SUPPORT_1	2	support_1.prt	
20	SUPPORT_2	2	support_2.prt	
21	TIGE_4	1	tige_4.prt	
22	TIGE_CARBONNE	1	tige_carbone.prt	
23	TIGE_CARBONNE_1	1	tige_carbone_1.prt	
24	TIGE_CARBONNE_2	1	tige_carbone_2.prt	

EPFL

Dr M. Bouri - 2023

- 8 -

ECHELLE 3,000


EPFL

Dr M. Bouri - 2023

- 9 -

Answer:

Raideur d'un axe retenu par 2 éléments élastiques

Axe retenu par 2 liaisons élastiques.

Lorsque $M = 0$, $\alpha = 0$ Relation entre dM et $d\alpha$ fonction de K_i et de r ?**EPFL**

Dr M. Bouri - 2023

- 10 -

Equations d'équilibre:

$$\left\{ \begin{array}{l} \sum F_x = 0 : -dF_1 + dF_2 = 0 \\ \sum M_A = 0 : dM - dF_2 \cdot 2 \cdot r = 0 \end{array} \right. \rightarrow dF_1 = dF_2 = \frac{dM}{2 \cdot r}$$

$$d\alpha = \frac{dx_1 + dx_2}{2 \cdot r} \quad dx_1 = \frac{dF_1}{K_1} \quad dx_2 = \frac{dF_2}{K_2}$$

$$d\alpha = \frac{dM}{4 \cdot r^2} \cdot \left(\frac{1}{K_1} + \frac{1}{K_2} \right)$$

→ $K_\alpha = \frac{dM}{d\alpha} = 4 \cdot r^2 \cdot \left(\frac{K_1 \cdot K_2}{K_1 + K_2} \right)$

Cas Particulier: $K_1 = K_2 = K$

(1) This result is **very important** : it shows how far it is possible to increase the angular stiffness of two combined bearings (function of the square of the distance).
 PS, this calculation assumes that the stiffness of the segment between the two bearings is of infinite stiffness.

EPFL

$$K_\alpha = 2 \cdot K \cdot r^2$$

Dr M. Bouri - 2023

Linear guides

- 11 -

- **Dovetail sliding guides** (manual machine tools)
- **Recirculating ball bearing guides**
- **Ring guideways** with and without re-circulating balls
- **U-shaped** roller guides
- **V-shaped** roller guides

EPFL

Dr M. Bouri - 2023

The role of a linear guideway : Only the linear blue direction is free.

All the other directions **in red** are **blocked** :

- linear radial and normal,
- Tilting (roll and pitch) and Yaw

- 12 -

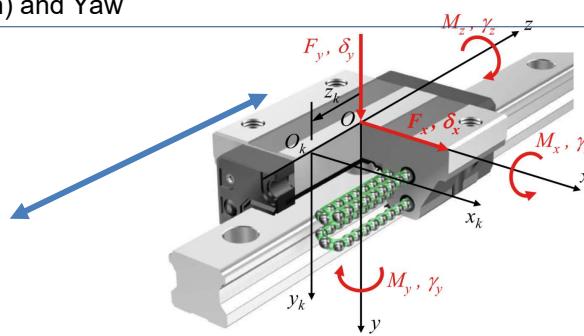
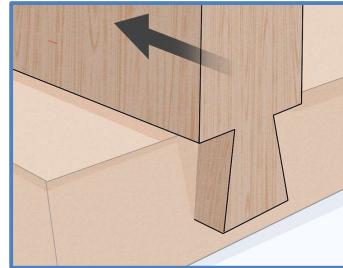


Fig. 1. A linear guide with loadings shown using a global coordinate system. Here, the carriage is subjected to external loads $\{F\}^T = \{F_x \ F_y \ M_x \ M_y \ M_z\}$ resulting in displacements $\{\delta\}^T = \{\delta_x \ \delta_y \ \gamma_x \ \gamma_y \ \gamma_z\}$. The cross-section by plane (x_k, y_k) located at axial coordinate z_k is also shown.


Tong, Van-Canh, et al. "Construction and validation of a theoretical model of the stiffness matrix of a linear ball guide with consideration of carriage flexibility." *Mechanism and Machine Theory* 140 (2019): 123-143.

EPFL

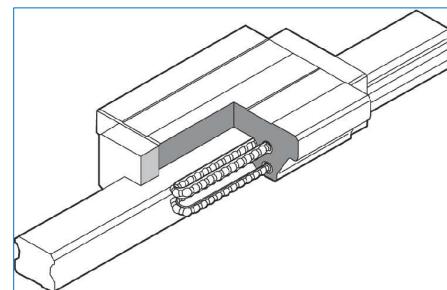
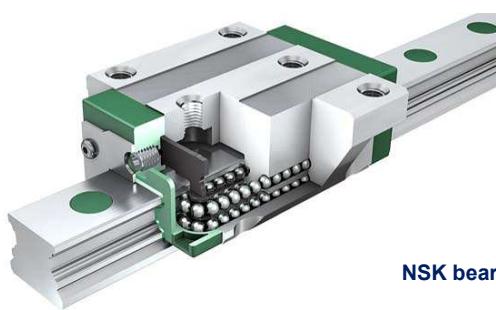
Dr M. Bouri - 2023

- 13 -

- Dovetail sliding guides (manual machine tools)

- Easy to use, for manual machine tools
- Non-backlash compensation

EPFL



Dr M. Bouri - 2023

- 14 -

Recirculating ball bearing guideways

The most used because of their good rigidity and their speed of operation

EPFL

Dr M. Bouri - 2023

Recirculating ball bearing guideways
Mini Rails Schneeberger

- 15 -

EPFL

Dr M. Bouri - 2023

EPFL

Dr M. Bouri - 2023

Ring recirculating ball bearing guideways

- 17 -

Ring guideways, with recirculating ball bearing (ring without blocking the orientation)

Requires a second rail to lock the orientation and function as a linear guide.

EPFL

Dr M. Bouri - 2023


Ring ball bearing guideways

- 18 -

With ball ring without recirculation - without blocking the orientation

Requires a second rail to lock orientation and function as a linear guide

With grooved and recirculating ball bearing ring - Works only for linear guidance and requires a second rail to lock in place the orientation

→ *The guide is more rigid and can support greater loads at higher speeds*

EPFL

Dr M. Bouri - 2023

- 19 -

Exercice .Consider the normal stiffness K of single carriage guideway.

Obtain the following stiffnesses :

- Stiffness (normal) of a double guideway
- Stiffness (Normal) and (angular about the axis of motion) of a double guideway / each single carriage .
- Calculate the corresponding mobility of the dual guide configuration.
- Identify other carriage arrangements.

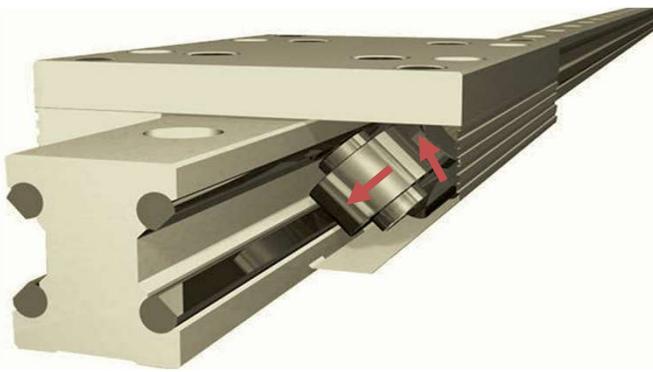
Dr M. Bouri - 2023

EPFL***V shaped roller Guidways (Sorted by increasing stiffness)***

- 20 -

V-shaped roller guide - 1 row

V-shaped roller guide - 2 rows

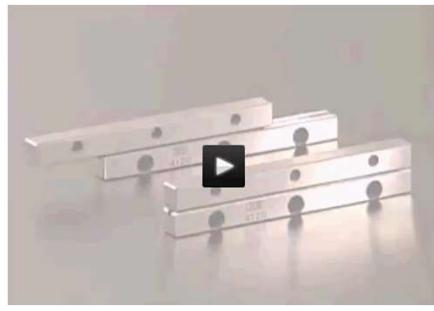
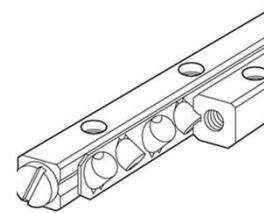

V2-shaped roller guide - 2 oblique rows

EPFL

Dr M. Bouri - 2023

- 21 -

V-shaped roller guide - 2 rows with alternately crossed and slanted rollers

EPFL

Dr M. Bouri - 2023

- 22 -

**Roller guides for micro positioning applications -
Space and precision constraints.
Single row with crossed rollers**

EPFL

Dr M. Bouri - 2023

Some references:

- 23 -

SCHNEEBERGER
LINEAR TECHNOLOGY**IKO****THK****FAG****SCHAEFFLER****SKF****INA****HIWIN**

Motion Control and System Technology

NB Corporation**EPFL**

Dr M. Bouri - 2023

Example: Rack and pinion with bearing guide.
Reference **HepcoMotion**

- 24 -


HepcoMotion

*Good reference for large
linear motion*

Example: Rack with roller guide
Reference **WMH Herion**

EPFL

Dr M. Bouri - 2023

Plain bearing guides / dry guideways**- 25 -****EPFL**

Dr M. Bouri - 2023

V slot linear-motion bearing (source Openbuilds)**- 26 -****EPFL**

Dr M. Bouri - 2023

V slot linear-motion bearing (source Openbuilds) - Video**- 27 -****EPFL**

Dr M. Bouri - 2023

**V slot linear-motion bearing (source Openbuilds)
Rack and pinion assembly****- 28 -****EPFL**

Dr M. Bouri - 2023