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1. Describe the robot-

1. Identify the tool point (TCP) and the various joints.

2. Identify the robot segments.

2. Define the basic frame of reference of the robot.

3. Define the positive and negative directions of each joint.

4. Write the local Jacobians related to each segment.

5. Deduce the inertia matrix B(q) – slide 28

1. From the inertial elements of each segment (mass and inertia tensor)

2. From the Jacobians related to the segments (pnt 4)

6. Deduce the different components of the dynamic equation (Coriolis, Centrifugal and Gravity), Slide 31

Approach of Lagrange - Summary :
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Example: Two-Link 
Planar Arm



▪ Hypotheses:

• No friction

• Neglect motors inertia

• Links are infinitely rigids

• The two arms have, respectively:

▪ Lengths: 𝑙1, 𝑙2
▪ Mass: 𝑚1, 𝑚2

▪ Moments of inertia around the 𝒛 axis relative 
to the arm’s center of mass: 𝐼1,𝑧𝑧, 𝐼2,𝑧𝑧

▪ Generalized coordinates:
𝒒 = 𝑞1 𝑞2 𝑇 = 𝜃1 𝜃2

𝑇

▪ Gravitational acceleration vector:
𝒈 = 0 −𝑔0 0 𝑇

Example: Two-Link 
Planar Arm RR
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𝜞 = 𝑩 𝒒 ሷ𝒒 + 𝑮 𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝑭 𝒒, ሶ𝒒

▪ 𝚪: the generalized torque/joint torques

▪ 𝐁 𝒒 : the inertia matrix

▪ 𝑮 𝒒 : the gravity vector

▪ 𝑪 𝒒, ሶ𝒒 : the matrix of the centrifugal and Coriolis terms

▪ 𝑭 𝒒, ሶ𝒒 : the friction vector

IDM - Lagrange approach
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𝐁 𝒒 =෍

𝑖=1

𝑛

𝑚𝑖𝑱𝑃
𝑖 𝑇
𝑱𝑃
𝑖
+ 𝑱𝑂

𝑖 𝑇
𝑹𝑖𝑰𝑖

𝑖𝑹𝑖
𝑇𝑱𝑂

𝑖

▪ Local Jacobians reported to each segment:

• Links in translation: 𝑱𝑃
1 =

−
𝑙1

2
𝑠1 0

𝑙1

2
𝑐1 0

0 0

, 𝑱𝑃
2 =

−𝑙1𝑠1 −
𝑙2

2
𝑠1+2 −

𝑙2

2
𝑠1+2

𝑙1𝑐1 +
𝑙2

2
𝑐1+2

𝑙2

2
𝑐1+2

0 0

• Links in rotation: 𝑱𝑂
1
=

0 0
0 0
1 0

, 𝑱𝑂
2
=

0 0
0 0
1 1

Two-Link Planar Arm –
Inertia matrix (1)
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𝐁 𝒒 =෍

𝑖=1

𝑛

𝑚𝑖𝑱𝑃
𝑖 𝑇
𝑱𝑃
𝑖
+ 𝑱𝑂

𝑖 𝑇
𝑹𝑖𝑰𝑖

𝑖𝑹𝑖
𝑇𝑱𝑂

𝑖

▪ Link 1 for translation:

𝑚1𝑱𝑃
1 𝑇

𝑱𝑃
1
=

1

4
𝑚1𝑙1

2 0

0 0

▪ Link 2 for translation:

𝑚2𝑱𝑃
2 𝑇

𝑱𝑃
2
=
1

4
𝑚2

𝑙2
2 + 4𝑙1

2 + 4𝑙1𝑙2𝑐2 𝑙2
2 + 2𝑙1𝑙2𝑐2

𝑙2
2 + 2𝑙1𝑙2𝑐2 𝑙2

2

Two-Link Planar Arm –
Inertia matrix (2)
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𝐁 𝒒 =෍

𝑖=1

𝑛

𝑚𝑖𝑱𝑃
𝑖 𝑇
𝑱𝑃
𝑖
+ 𝑱𝑂

𝑖 𝑇
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𝑇𝑱𝑂

𝑖

▪ Link 1 in rotation:

𝑱𝑂
1 𝑇

𝑰1𝑱𝑂
1
=

0 0 1
0 0 0

𝐼1,𝑥𝑥 𝐼1,𝑥𝑦 𝐼1,𝑥𝑧
𝐼1,𝑦𝑥 𝐼1,𝑦𝑦 𝐼1,𝑦𝑧
𝐼1,𝑧𝑥 𝐼1,𝑧𝑦 𝐼1,𝑧𝑧

0 0
0 0
1 0

=
𝐼1,𝑧𝑧 0

0 0

▪ Link 2 in rotation:

𝑱𝑂
2 𝑇

𝑰2𝑱𝑂
2
=

0 0 1
0 0 1

𝐼2,𝑥𝑥 𝐼2,𝑥𝑦 𝐼2,𝑥𝑧
𝐼2,𝑦𝑥 𝐼2,𝑦𝑦 𝐼2,𝑦𝑧
𝐼2,𝑧𝑥 𝐼2,𝑧𝑦 𝐼2,𝑧𝑧

0 0
0 0
1 1

=
𝐼2,𝑧𝑧 𝐼2,𝑧𝑧
𝐼2,𝑧𝑧 𝐼2,𝑧𝑧

Two-Link Planar Arm –
Inertia matrix (3)
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𝐁 𝒒 =෍

𝑖=1

𝑛

𝑚𝑖𝑱𝑃
𝑖 𝑇
𝑱𝑃
𝑖
+ 𝑱𝑂

𝑖 𝑇
𝑹𝑖𝑰𝑖

𝑖𝑹𝑖
𝑇𝑱𝑂

𝑖

▪ Inertia matrix:

▪ 𝐁 𝒒 = 𝑚1𝑱𝑃
1 𝑇

𝑱𝑃
1
+ 𝑱𝑂

1 𝑇
𝑰1𝑱𝑂

1
+𝑚2𝑱𝑃

2 𝑇
𝑱𝑃
2
+ 𝑱𝑂

2 𝑇
𝑰2𝑱𝑂

2
=

𝑏11 𝑏12
𝑏21 𝑏22

• 𝑏11 =
1

4
𝑚1𝑙1

2 + 𝐼1,𝑧𝑧 +
1

4
𝑚2 𝑙2

2 + 4𝑙1
2 + 4𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧

• 𝑏12 = 𝑏21 =
1

4
𝑚2 𝑙2

2 + 2𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧

• 𝑏22 =
1

4
𝑚2𝑙2

2 + 𝐼2,𝑧𝑧

▪ 𝑏11, 𝑏12 and 𝑏21 are configuration-dependent

Two-Link Planar Arm –
Inertia matrix (4)
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▪ The elements 𝑔𝑖 = σ𝑗=1
𝑛 𝑚𝑗𝒈

𝑇𝑱𝑃,𝑖
(𝑗)

of the gravity vector are:

• 𝑔1 = 𝑚1𝒈
𝑇𝑱𝑃,1

(1)
+𝑚2𝒈

𝑇𝑱𝑃,1
(2)

= 𝑚1 0 −𝑔0 0

−
𝑙1

2
𝑠1

𝑙1

2
𝑐1

0

+

𝑚2 0 −𝑔0 0

−𝑙1𝑠1 −
𝑙2

2
𝑠1+2

𝑙1𝑐1 +
𝑙2

2
𝑐1+2

0

= −
𝑚1

2
+𝑚2 𝑙1𝑔0𝑐1 −

1

2
𝑚2𝑙2𝑔0𝑐1+2

• 𝑔2 = 𝑚2𝒈
𝑇𝑱𝑃,2

(1)
+𝑚2𝒈

𝑇𝑱𝑃,2
(2)

= 0 +𝑚2 0 −𝑔0 0

−
𝑙2

2
𝑠1+2

𝑙2

2
𝑐1+2

0

=

−
1

2
𝑚2𝑙2𝑔0𝑐1+2

𝑮 𝒒 =
−

𝑚1

2
+ 𝑚2 𝑙1𝑔0𝑐1 −

1

2
𝑚2𝑙2𝑔0𝑐1+2

−
1

2
𝑚2𝑙2𝑔0𝑐1+2

Two-Link Planar Arm –
Gravity vector
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▪ The elements 𝑐𝑖𝑗 of the matrix 𝑪 𝒒, ሶ𝒒 must satisfy the equation:

෍

𝑗=1

𝑛

𝑐𝑖𝑗 ሶ𝑞𝑗 =෍

𝑗=1

𝑛

෍

𝑘=1

𝑛
𝜕𝑏𝑖𝑗

𝜕𝑞𝑘
−
1

2

𝜕𝑏𝑖𝑘
𝜕𝑞𝑖

ሶ𝑞𝑘 ሶ𝑞𝑗

▪ The choice of matrix 𝑪 𝒒, ሶ𝒒 is not unique, there exist several matrices that satisfy this 
equation.

▪ The generic element of 𝑪 𝒒, ሶ𝒒 that satisfy this equation is:

𝑐𝑖𝑗 = ෍

𝑘=1

𝑛

𝑐𝑖𝑗𝑘 ሶ𝑞𝑘

Where 𝑐𝑖𝑗𝑘 =
1

2

𝜕𝑏𝑖𝑗

𝜕𝑞𝑘
+

𝜕𝑏𝑖𝑘

𝜕𝑞𝑗
−

𝜕𝑏𝑗𝑘

𝜕𝑞𝑖
are called Christoffel symbols of the first kind. Also, as 

𝑩 𝒒 is symmetric, 𝑐𝑖𝑗𝑘 = 𝑐𝑖𝑘𝑗.

Two-Link Planar Arm –
Christoffel symbols (1)
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▪ Reminder: the coefficients 𝑏11, 𝑏12 and 𝑏21 of matrix 𝑩 𝒒 are configuration dependent:

• 𝑏11 =
1

4
𝑚1𝑙1

2 + 𝐼1,𝑧𝑧 +
1

4
𝑚2 𝑙2

2 + 4𝑙1
2 + 4𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧

• 𝑏12 = 𝑏21 =
1

4
𝑚2 𝑙2

2 + 2𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧

▪ We compute the Christoffel coefficients:

• 𝑐111 =
1

2

𝜕𝑏11

𝜕𝑞1
+

𝜕𝑏11

𝜕𝑞1
−

𝜕𝑏11

𝜕𝑞1
=

1

2

𝜕𝑏11

𝜕𝑞1
= 0

• 𝑐112 = 𝑐121 =
1

2

𝜕𝑏11

𝜕𝑞2
= −

1

2
𝑚2𝑙1𝑙2𝑠2 = h 𝑞2

• 𝑐122 =
𝜕𝑏12

𝜕𝑞2
−

1

2

𝜕𝑏22

𝜕𝑞1
= −

1

2
𝑚2𝑙1𝑙2𝑠2 = h 𝑞2

• 𝑐211 =
𝜕𝑏21

𝜕𝑞1
−

1

2

𝜕𝑏11

𝜕𝑞2
=

1

2
𝑚2𝑙1𝑙2𝑠2 = −h 𝑞2

• 𝑐212 = 𝑐221 =
1

2

𝜕𝑏22

𝜕𝑞1
= 0

• 𝑐222 =
1

2

𝜕𝑏22

𝜕𝑞2
= 0

Two-Link Planar Arm –
Christoffel symbols (2)
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▪ Using the Christoffel symbols, we compute the terms of the matrix 𝑪 𝒒, ሶ𝒒 :

• 𝑐11 = σ𝑘=1
2 𝑐11𝑘 ሶ𝑞𝑘 = 𝑐111 ሶ𝑞1 + 𝑐112 ሶ𝑞2 = h 𝑞2 ሶ𝑞2

• 𝑐12 = 𝑐121 ሶ𝑞1 + 𝑐122 ሶ𝑞2 = h 𝑞2 ሶ𝑞1 + ሶ𝑞2
• 𝑐21 = 𝑐211 ሶ𝑞1 + 𝑐212 ሶ𝑞2 = −h 𝑞2 ሶ𝑞1
• 𝑐22 = 𝑐221 ሶ𝑞1 + 𝑐222 ሶ𝑞2 = 0

𝑪 𝒒, ሶ𝒒 =
h 𝑞2 ሶ𝑞2 h 𝑞2 ሶ𝑞1 + ሶ𝑞2
−h 𝑞2 ሶ𝑞1 𝟎

▪ Finally, we find the vector of centrifugal force and Coriolis terms:

𝑪 𝒒, ሶ𝒒 ሶ𝒒 =
h 𝑞2 ሶ𝑞2 h 𝑞2 ሶ𝑞1 + ሶ𝑞2
−h 𝑞2 ሶ𝑞1 𝟎

ሶ𝑞1
ሶ𝑞2

=
h 𝑞2 ሶ𝑞2

2 + 2h 𝑞2 ሶ𝑞1 ሶ𝑞2
−h 𝑞2 ሶ𝑞1

2

• h 𝑞2 ሶ𝑞2
2, −h 𝑞2 ሶ𝑞1

2 respectively represent the centrifugal effect induced on joint 1, 2 by the 

velocity of joint 2, 1

• 2h 𝑞2 ሶ𝑞1 ሶ𝑞2 represent the Coriolis effect induced on joint 1 by the velocities of joints 1 and 2. 

Two-Link Planar Arm –C 
Vector of centrifugal and 
Coriolis effect (2)
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▪ Friction vector:

• 𝑭 𝒒, ሶ𝒒 =
0
0

, we considered no friction.

▪ Generalized torque:

𝜞 = 𝑩 𝒒 ሷ𝒒 + 𝑮 𝒒 + 𝑪 𝒒, ሶ𝒒 ሶ𝒒 + 𝑭 𝒒, ሶ𝒒

• 𝛤1 = 𝑏11 ሷ𝑞1 + 𝑏12 ሷ𝑞2 + 𝑔1 + h 𝑞2 ሶ𝑞2
2 + 2h 𝑞2 ሶ𝑞1 ሶ𝑞2 = ቀ

ቁ

1

4
𝑚1𝑙1

2 + 𝐼1,𝑧𝑧 +
1

4
𝑚2൫

൯

𝑙2
2 + 4𝑙1

2 +

4𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧 ሷ𝑞1 +
1

4
𝑚2 𝑙2

2 + 2𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧 ሷ𝑞2 −
𝑚1

2
+𝑚2 𝑙1𝑔0𝑐1 −

1

2
𝑚2𝑙2𝑔0𝑐1+2 −

𝑚2𝑙1𝑙2𝑠2 ሶ𝑞1 ሶ𝑞2 −
1

2
𝑚2𝑙1𝑙2𝑠2 ሶ𝑞2

2

• 𝛤2 = 𝑏22 ሷ𝑞2 + 𝑏21 ሷ𝑞1 + 𝑔2 − h 𝑞2 ሶ𝑞1
2 =

1

4
𝑚2𝑙2

2 + 𝐼2,𝑧𝑧 ሷ𝑞2 +
1

4
𝑚2 𝑙2

2 + 2𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧 ሷ𝑞1 −
1

2
𝑚2𝑙2𝑔0𝑐1+2 +

1

2
𝑚2𝑙1𝑙2𝑠2 ሶ𝑞1

2

Two-Link Planar Arm –
Generalized torque (IDM)
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• 𝛤1 =
1

4
𝑚2 𝑙2

2 + 2𝑙1𝑙2𝑐2 + 𝐼2,𝑧𝑧 ሷ𝑞2 −
𝑚1

2
+𝑚2 𝑙1𝑔0𝑐1 −

1

2
𝑚2𝑙2𝑔0𝑐1+2 −

−
1

2
𝑚2𝑙1𝑙2𝑠2 ሶ𝑞2

2

Two-Link Planar Arm –
Generalized torque (IDM)
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𝑐11 = ෍

𝑘=1

2

𝑐11𝑘 ሶ𝑞𝑘 = 𝑐111 ሶ𝑞1 + 𝑐112 ሶ𝑞2 = 𝐡 𝒒𝟐 ሶ𝒒𝟐

𝑐12 = 𝑐121 ሶ𝑞1 + 𝑐122 ሶ𝑞2 = h 𝑞2 ሶ𝑞2
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How to proceed with simulation ?
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𝒙

𝒚

𝑚1, 𝐼1,𝑧𝑧

𝑚2, 𝐼2,𝑧𝑧

𝜃1

𝜃2

𝐴 𝑥, 𝑦, 𝑧

𝒛

𝒈

𝑙1

𝑙2

Simulation, without the  analytical model
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Joints BodiesSimmechanics

Or SimScape is a toolbox of matlab,

To model Dynamics

Robots are sets of 

• Joints
• Bodies
• Frames

Frames
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Frame
Visualization Body segment 1

Joint, controlled by motion
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Le, H. N., & Vo, N. T. (2024). Modeling and analysis of an RUU Delta Robot using 
SolidWorks and SimMechanics. International Journal of Dynamics and Control, 1-13.

Frame & 
Basic referential

Actuators
(pivots)

Arms
(segments)

Forearms 
6x (spherical joints + parallel bar + spherical joint) 
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Simscape

22

Bodies: 
• Weights
• Lengths
• Inertia: uniform, ...

Joints:
• Rotation axis
• Dimension: 0 

Such as actuation:
• Motors (joints)
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Required specifications 

• Pick-up and place of a 1 kg load

• 15g acceleration when (loaded) and 30g (unloaded) 

• A rate of 3 to 4 Hz, 300 mm / h25mm travel



M. Bouri, November, 2024

Models – Sizing and validation approach

• Analytic model

– known

Different models

• Simscape

Simulink

• ProEngineer

(Creo)

25
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• Scenario 1, IGM available

Simmechanics

Traj. Gen. IGM Simscape: articulations
Torques_simscape

MDI
Torques

26

Models – Sizing and validation approach
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• Visualisation

Simscape

27

Models – Sizing and validation approach

DD_El_X_15g_1kg.avi
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Traj. Gen. Simscape: nacelle Simscape: articulations
Torques_simscape

Virtual cartesian
Robot 1: IGM

Robot Delta: IDM

• Scenario 2, IGM not available
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– Cardans

ProEngineer (Creo)

29

Models – Sizing and validation approach
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• Visualisation

ProEngineer (Creo)

30

Models – Sizing and validation approach
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Torques for an elliptic pick and place

Acceleration: 15g

Load : 1kg

31

Moteur 1
[Nm]

Moteur 2
[Nm]

Moteur 3
[Nm]

Models – Sizing and validation approach
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Context of Simulation : control
Simulation of a PID control with an a priori

32
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Robot torques
Load ≈ 1kg
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Errors @Load ≈ 1kg
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Robot torques
Load = 0kg


