
IV -1

 ABSTRACT
This chapter introduces the tools required for the
understanding, analysis and implementation of a
numerical control of industrial robots. The control
laws of the PID family as well as the nonlinear laws
based on dynamic models are presented. Trajectory
generation and interpolation are also covered.

Mohamed Bouri
Dec, 2022
Beta version

PART IV

Control of robots

Closed loop control,

Motion trajectories,

and Hardware

Mohamed Bouri, 2022

IV-2
Robot control

Contents

4.1 Introduction 5

4.2 General structure of the robot and its controller 5

4.2.1 Definitions 5

4.3 Mechanical components of a robot 6

4.3.1 The axis 6

4.3.2 The robot 8

4.4 Closed loop control algorithms 9

4.4.1 Regulation and servo-control aspects 9

4.4.2 Classic P, PD, PID controllers 9

4.4.3 Cascaded PID Controller 14

4.4.4 Control, measurement and quantification 15

4.4.5 Coupled model-based robot controls 18

4.4.5.1 MIMO system 18

4.4.5.2 Notion of coupling: 18

4.4.5.3 Robot models and control model 19

4.4.5.4 Methods for synthesizing control laws for robots 20

4.4.5.5 method by a priori torque compensation 20

4.4.5.6 Computed torque controller, known as nonlinear linearizing input output controller
 21

4.4.5.7 Exercise 4, Control of a robot axis by a priori and by the linearizing control 22

4.4.5.8 Principle of an adaptive control with input-output linearization: 23

4.4.6 Conditions for couplings to be considered as disturbances 23

4.4.7 The Be careful of the control tuning 24

4.5 Trajectory generation for manipulation robots 25

4.5.1 Reminder on the transformation of coordinates 25

4.5.2 Admissible trajectories 26

4.5.3 Geometric aspects of robot trajectories 26

4.5.4 Temporal aspects of robot trajectories 27

IV-3
Robot control

4.5.5 Continuous profile generation 28

4.1.1 Synchronization of axes 30

4.2 The hardware part of a robot control 31

4.2.1 Elements of a control cabinet 31

5.2.1.1 The cabinet 32

5.2.1.2 Acquisition boards, 32

4.2.2 Motor and fieldbus drives 33

4.2.3 The CANOpen (1Mbit/s) 35

4.2.4 The PROFIBUS (9.6 kbit/s to 12 Mbit/s) 35

4.2.5 Ethercat 35

4.2.6 Cascaded control using fieldbus motor drives 36

4.2.7 Advantages of fieldbuses 36

4.3 Software part of the control of a robot 38

4.3.1 The real-time operating system 38

5.3.1.1 Operating system 38

5.3.1.2 Real Time: Was Ist Das? 38

4.3.2 Tools for developing real-time embedded applications 39

4.3.3 Real-time communication mechanisms 40

4.3.4 List of real-time operating systems 40

4.3.5 The robot control application 41

4.3.6 The minimal controller: 42

4.4 Appendix 1: Calculation of trajectory profiles 43

4.4.1 Step-like position profile 43

4.4.2 Ramp-like position profile (Ramp) 44

4.4.3 Triangular Velocity Profile 44

4.4.4 Trapezoidal velocity profile 45

4.5 Appendix 2: Interpolation of trajectories 47

4.5.1 Linear path interpolation 47

4.5.2 Circular interpolation: 48

4.6 Appendix 3- Additional hardware aspects 49

4.6.1 Board buses 49

4.6.2 Les alimentations : 50

IV-4
Robot control

IV-5
Robot control

4.1 Introduction
Robot control, theory and applications, is an evolving discipline since the existence of the

concept of “robots”. This science of engineering enabled controlling robots and pilot them so that we
can use them for automated and autonomous tasks as much diverse as complex.

The term "Robot control" is very generic because it implies everything related to the control of the
robot. This term can just as well mean the robot control cabinet, the closed loop control algorithm of
the robot, the robot control software or all these definitions together.

Thus, “Robot control” concerns the algorithmic, software and hardware parts involved in carrying out
the tasks that the robot must perform.

4.2 General structure of the robot and its controller

4.2.1 Definitions
The figure below shows the example of a robot and its control cabinet linked by a connector.

Figure 4.1- The robot “Linear Delta” and its control cabinet

The robot is defined as being the poly-articulated mechanical structure by associating the motorization
and the instrumentation. The control cabinet includes the necessary electronic boards to control the
robot (processor cards, analog and digital input-output cards, security cards, etc.), amplifiers, power
supplies, fans, etc. To connect the robot to its cabinet There are two types of connectors: power
connectors and signal connectors (mainly related to sensors).

IV-6
Robot control

Figure 4.2- General structure of a robot associated with its numerical control

As shown in figure 4.2, the robot is at the center of the system (Robot, control, environment and the
operator). The operator expresses his requests to make the robot move to a defined position, outputs
to be piloted or tests to be carried out. These orders are processed in software. The hardware
interface, as the name (interface) suggests, is the intermediate element between this software part
and all the hardware components connected to the robot (mainly sensors and amplifiers). Finally, the
robot interacts with the environment through actions (open/close grippers, on-off pneumatic
actuators, etc.) and sensors (presence/absence of a part, closing, opening of a door, force sensor,
motion detector, etc.). The environment is very much related to the application the robot should be
part of; it can be simple positioning of objects, collaborative work around a part, welding, polishing,
deburring, or even machining of parts.

This chapter will thus be divided into three sub-chapters which will each introduce and detail the three
important parts of robot control, namely:

● Control algorithms.
● Hardware.
● Software.

4.3 Mechanical components of a robot

4.3.1 The axis
The basic element of a robot is the axis. An axis is a motorized mechanical element followed by a
transmission. If there is no transmission we will speak of a direct actuation (Direct drive in English).

There are two types of axes:

● A linear axis.
● A rotary axis.

IV-7
Robot control

The linear axis is either a simple direct drive type linear motor or an axis obtained with a rotary motor
and rotary-linear transmissions1.

Two examples of motors (ref. Etel) Linear motors with magnetic rod (ref. LinMot)

Figure 4.3, Examples of linear motors

Concerning transmissions, we mainly distinguish the following types:
o Screw-nut,
o Rack-pinions,
o Belt
o Chains are very little used because they are heavy and not synchronous (polygonal effect).

Linear axis with screw-Nut Linear axis with rack pinion mechanism Linear axis with belt

Figure 4.4, Examples of rotation-linear transmissions

And what else!
Here is the example of some slightly exotic translational systems dedicated to special applications. These systems are
not linear but curved:

Pneumatic curvilinear transfer (ref.

SMC)
Curvilinear guidance (ref. THK) Example of a parallel robot with

curvilinear guidance (ref. Eclipse)

Figure 4.5, Examples of curvilinear translations

Rotary axes: Rotary axes are often composed of a motor and a transmission. This transmission mainly
includes elements such as a belt or gear reducers2; sometimes an angle transmission.

1 For more details see the chapter “actuators”
2 Gear reducers (gear stages, planetary, cycloidal, harmonic drives,…) are covered in the lecture “Applied and
Industrial robotics”.

IV-8
Robot control

Whether for linear or rotational transmissions, backlash compensation is an operation that is always
considered. It often involves additional prestressing, the effect of which on positioning accuracy will
be discussed later in this lesson chapter.

4.3.2 The robot
We defined the robot as a poly-articulated, motorized and instrumented mechanical structure of which
the axis is the basic component. The combination of the movements of the axes while respecting a
given kinematics gives rise to the robot.

Taking for example three separate linear axes, we can obtain the following different structures:
o three-axis robot Cartesian,
o a parallel robot like the Linear Delta or the Orion,
o any combination kinematic
o or even three completely independent axes.

Cartesian machine 3 axes XYZ Parallel robot Linear Delta (ref. Unimec).

Figure 4.6, Examples of robots

The construction of the structure, and therefore the choice of the kinematics, defines the type of
control required. We refer to axis control, multi-axis control, numerical control or even robot control.
All these terms are used; sometimes you get lost but what you have to remember is that they are all
valid.

So, Robots or not Robots.

A pithy turn of phrasing, any machine involving motorized and automated operations is commonly
referred to as a "robot". For instance, it may be loom robots such as weaving, cutting, folding robots,
etc. These robots are also well controlled with axis commands to control their motors in position or in
velocity according to the required mechanical operations.

Weaving robot Weaving robot Robot with press brake

Figure 4.7, Examples of professional robots

IV-9
Robot control

4.4 Closed loop control algorithms
The algorithmic part of robot control concerns the mathematical tools necessary for formalizing the
behavior of the robot with its control. This formalization is linked to the following two aspects:

• The adjustment algorithms,
• The generation of robot trajectories, i.e., the geometry of the generated trajectories and the

generation of the associated temporal profiles.

4.4.1 Regulation and servo-control aspects
The objective of a closed-loop control of a physical system is to reach a desired setpoint and to remain
as close as possible to it. The classic diagram of such a closed-loop control is as follows3:

Figure 4.8, Block diagram of the closed-loop control of a robot

The controller is the algorithm that uses the information of measured and desired positions to
guarantee the position to follow the desired setpoint (respectively of the speed).

Other terms for the controller:
● control, command, regulation, …
● controller, control unit, regulator,…

To control what?
● the position of an axis,
● the speed of an axis.
● the force (at the joints or at tool output).

Parenthesis
Robot motors are often direct current motors (DC for Direct current) brushed (brushed) or
brushless (brushless) motors. DC motors are controlled by voltage or current and we respectively
refer to speed or torque control modes, because the speed is proportional to the motor input
voltage; respectively the torque is proportional to the input current of the motor (via the speed
constant, respectively via the torque constant).

4.4.2 Classic P, PD, PID controllers
The controllers P, PD, PI and PID are the most classic controllers used for controlling a robot. These
controllers are composed of the proportional, derivative and integral contributions of the error on the
position4. The proportional contribution is proportional to the error. The derivative contribution is
proportional to the derivative of the error. The integral contribution is proportional to the integral of
the error.

3 Pay attention, this diagram does not include the power stage of the robot motors (power amplifiers).
4 In what follows we will exclusively interest in the generalized position variables. The reasoning with respect to velocities is
similar.

Controller

Desired
position +

-

+

 _
Measured
position

IV-10
Robot control

Here are the expressions of the different contributions:

Proportional contribution: 𝑢௣ = 𝐾௣ ∙ 𝑒

Derivative contribution: 𝑢ௗ = 𝐾ௗ ∙
ௗ௘

ௗ௧

Integral contribution: 𝑢௜ = 𝐾௜ ∙ ∫ 𝑒(𝜏)𝑑𝜏
௧

଴

The P controller includes only a proportional contribution,

The PD controller includes the proportional and derivative contributions and is written as follows:

 𝑢௉஽ = 𝑢௣ + 𝑢ௗ = 𝐾௣ ∙ 𝑒 + 𝐾ௗ ∙
ௗ௘

ௗ௧

Other writing 𝑢௉஽ = 𝐾௣ ∙ ቀ𝑒 + 𝑇ௗ ∙
ௗ௘

ௗ௧
ቁ

The PI controller includes the proportional and integral contributions and is written as follows:

 𝑢௉ூ = 𝑢௣ + 𝑢௜ = 𝐾௣ ∙ 𝑒 + 𝐾௜ ∙ ∫ 𝑒(𝜏)𝑑𝜏
௧

଴

Another writing 𝑢௉ூ = 𝐾௣ ∙ ቀ𝑒 +
ଵ

்೔
∙ ∫ 𝑒(𝜏)𝑑𝜏

௧

଴
ቁ

In this case we refer to the integration time constant Ti. Pay attention that the integrator effect is more
important as the observation of time Ti is small.

The PID controller includes the three contributions, the proportional, the derivative and the integral
contributions and is written as follows:

 𝑢௉ூ஽ = 𝑢௣ + 𝑢ௗ + 𝑢௜ = 𝐾௣ ∙ 𝑒 + 𝐾ௗ ∙
ௗ௘

ௗ௧
+ 𝐾௜ ∙ ∫ 𝑒(𝜏)𝑑𝜏

௧

଴

Another expression 𝑢௉ூ஽ = 𝐾௣ ∙ ቀ𝑒 + 𝑇ௗ ∙
௢௙

ௗ௧
+

ଵ

்೔
∙ ∫ 𝑒(𝜏)𝑑𝜏

௧

଴
ቁ

To understand the contributions of the proportional, derivative and integral terms, consider the torque
control of a DC motor. In this case, the calculated command is a torque (or a force for a translational
system). Here are the questions which will help to clarify our purpose:

Question: To which mechanical element corresponds the proportional action?

Answer: It is an element whose applied force is proportional to the elongation around a position of
equilibrium. So, it is a spring. This to say that the proportional action produces the same behavior
as a spring and the proportional gain Kp contributes to the stiffness of the control.
The natural frequency of the closed loop system is also directly related to this proportional action.

Notes:

● The higher the gain Kp, the stiffer the system (conversely, the lower Kp, the more compliant or softer
the system).
● The higher the gain Kp, the higher the natural frequency of the system and the system responds quickly
(the system time constant is lower).
● The higher the gain Kp, the lower the control sampling period must be (due to the low time constant).
● The higher the gain Kp, the more the closed loop system is likely to oscillate because of the saturation
of the control variable which implies that the system operates in open loop during the saturation.

IV-11
Robot control

Question: To which mechanical element corresponds the derivative action?

Answer: It is an element whose applied force is proportional to the derivative of the elongation
around a position of equilibrium. It is therefore a viscosity or a viscous friction. This to say that the
derivative action produces the same effect as a damper whose damping coefficient is Kd.

Notes:

● The higher the Kd gain, the more the system is braked and damped.
● The higher the Kd gain, the slower the system becomes.
● A compromise must be found in order to ensure the best possible dynamic behavior (a

damping coefficient equal to 1 corresponds to the critical regime: see figure).
● The bypass operation amplifies the noise. Particular attention must be given to the static

behavior when the setpoint is constant and the quantization of the speed becomes
predominant (see paragraph 3.1.4).

● A high Kd gain may cause chatter in behavior due to velocity quantization.
● The derivative action is an anticipation on the dynamic behavior (because of the information

of increase and decrease of the error). This information is additional to the simple error
information, which modulates the value of the command as proportional to the velocity to
improve the dynamic behavior.

Figure 4.9, Responses of a typical second-order system

Question: To which element corresponds the integral action?

Answer: The integration operation is an accumulation operation, i.e. analog to that of a capacitor
which charges when it is put under direct voltage. Integral action therefore amounts to
accumulating the command quantity as long as the error is not canceled out. When there is a static
difference, the proportional action has no effect (because the difference is static and the
proportional contribution therefore remains constant). The derivative action is zero (within a
quantification error). There is only the integral action which can have effect to cancel this static
variation. The integrator is a perturbation is perturbation estimator that dynamically compensates
for the estimated perturbation, till converging in the steady state to the right value which is at the
origin of the steady state error. (ref, additional document P / PD and PID control on Moodle).

Critic
behaviour

Pure oscillatory
behaviour Good compromise

Overshoot of 4.5%

IV-12
Robot control

Notes:

● The higher the Ki gain, the faster the static error is reduced.
● The higher the Ki gain, the greater the integral action and the faster the integrator is charged.
● If the integrator loads quickly, you will have to pay attention to changes in direction that

require the integrator to unload. A limitation of the maximum load of the integrator is
necessary: “Anti-Reset Windup” (ARW) operation.

Exercise 4.1. Current control of a direct current motor (DC, Direct Current)

Consider a DC motor with torque constant kt and inertia Jm. This motor is current
controlled to rotate an inertial load JL through a gear reducer n.
● Establish the dynamic model of the motor with and without viscous friction of

coefficient fv (current-position relationship)
● Prove that in the absence of viscous friction, that it is impossible to control the

position of the motor with simple proportional feedback?
● Loop the motor with a PID and determine the closed loop transfer function.

IV-13
Robot control

Exercise 4.2. Effect of Dry Friction

Consider a DC motor with torque constant kt and inertia Jm. This motor is current-
controlled to rotate an inertial load JL. This system presents a dry friction of torque dry.
The figure below shows how dry friction acts (ω is the speed of the motor)

Figure 4.10, Coulomb model of dry friction

• Show that in the presence of dry friction, the command in position of the PD

automatically induces a static deviation on the position.
• What solution do you propose? Show the effectiveness of the proposed solution.
• Is it the same in the case of any disturbing torque?

dry



sta

dyn

IV-14
Robot control

4.4.3 Cascaded PID Controller
Another technique that is also widely used is the technique of cascaded position control with velocity
control.
The following diagram represents a PI speed loop of a motor;

Figure 4.11, PI speed loop of a DC motor

This technique is widely used because of the availability of speed loops on all motor drives currently
available on the market. It then suffices only to implement a additional cascaded position control loop.
Fr instance, the fast speed loop can be on the motor drive and the position loop on the computer, or
both on the motor drive. The following block diagram illustrates a cascaded position / velocity control
loops.

Figure 4.12, PI speed loop cascaded with a P loop in the position of a DC motor

To improve this loop two a priori contributions can be added: the speed a prior and the torque a
priori. This gives the following control diagram:

Figure 4.13, Position-speed cascaded loop with a speed a priori and a torque a priori

IV-15
Robot control

The expression of the cascaded PID control law with a speed and torque prior is given as follows:

𝛤 = 𝛤௥ + 𝛤௔௣ = 𝐾௣௩ ∙ 𝑒ఠ + 𝐾௜ ∙ න 𝑒ఠ(𝜏)𝑑𝜏 + 𝛤௔௣

Where: 𝑒ఠ = 𝜔௥ + 𝜔ௗ − 𝜔

𝜔௥ is the contribution of the position regulator Pposition, 𝜔௥ = 𝐾௣௣(𝑞ௗ − 𝑞)

𝜔ௗ is the target speed of the robot trajectories.

𝜔 is the measured joint velocity.

Note:
Depending on how the mechanical system is implemented (motorisation, transmission, load and
disturbance), one can imagine that the position and speed loops are both PIDs. It is therefore
necessary to be very careful with the errors of quantifiation of the speed (paragraph below).

4.4.4 Control, measurement and quantification
The sensors used for measurement, their resolutions and their technologies are important aspects for
the positioning accuracy.

Parenthesis
The sensor resolution is the smallest value that can be measured.
Accuracy or the reachable precision concerns the entire system, ie the mechanics, the electronics,
the sensors and the used control algorithms. The accuracy is at best equal to twice the resolution
of the sensors.

A few reminders about position sensors

To measure the position of robots, incremental encoders or resolvers are most often used. In most
cases, the signals are transmitted from the sensors to the numerical controller in a differential way to
reduce noise. Moreover, the incremental encoders are transmitted by digital pulses which makes them
quite robust to classic analog noise.

Signals from an incremental sensor SIN/COS sensor

Figure 4.14, Position sensors

Analog sensors of the potentiometric type are not recommended for servo operations because they
are very sensitive to noise and their resolution is limited.

IV-16
Robot control

Exercise 4.3

Consider a 10-turn multi-turn potentiometer powered between +/- 10 volts. The
acquisition is carried out using a 12-bit analog-to-digital converter.

● What is the position resolution of this sensor?
● Is there a possibility to improve this resolution? Discuss your proposal.

A few reminders on velocity sensors

The velocity used for robotic servo-control is most often obtained by digital derivation of the position
(the analog tachometric signal being too noisy).

Let us consider

● Ts be the control sampling period.
● R(θ): the position resolution.
● R(ω): the velocity resolution.

Obtaining the velocity by numerical derivation of the position at time (kTe) is as follows:

𝜔(𝑘𝑇௘) =
𝜃(𝑘𝑇௦) − 𝜃((𝑘 − 1)𝑇௦)

𝑇௦

Which, gives the resolution of the following velocity: 𝑅(𝜔) =
ோ(ఏ)

ೞ்

In steady state, the control value should be constant. This assumption is not always true because the
control value will fluctuate according to the position and velocity quantization errors (these
quantization values correspond to the resolutions of the position and velocity measurements). The
amplification effect of the digital derivation, because of the division by Ts multiplied by the derivative

action, increases the noise of the derivative action: 𝐾ௗ ∙
ௗ௘

ௗ௧
= 𝐾ௗ

௘(௞ ೞ்)ି௘((௞ିଵ) ೞ்)

ೞ்
.

Let udq, be the control value corresponding to the effect of the derivation quantization noise. udq is
expressed as follows:

𝑢ௗ௤ = 𝐾௣ ⋅ 𝑇ௗ ⋅ 𝑅(𝜔) = 𝐾௣ ⋅ 𝑇ௗ ⋅
𝑅(𝜃)

𝑇௘

Therefore,

● the more we want to dampen our system (high Td), the more this quantization control noise
𝑢ௗ௤ increases.

● The more we want the system to be dynamic or rigid (high Kp), the more this quantization
control noise 𝑢ௗ௤ increases.

This noise is unfavorable because it may excite the natural frequencies of our mechanics, cause
limit cycles or even harm our mechanical components. To reduce this noise, suggested solutions
are as follows:

IV-17
Robot control

● Reduce the resolution of the sensor; which has a direct impact on the complete system and
its cost.

● Reduce dynamics or damping; which has a direct impact on dynamic performance.
● Increase the sampling period which also implies reducing the dynamics by the increasing the

response time constraint. A possible solution would be to operate with two sampling
periods: this approach is called oversampling. A faster sampling rate is used to calculate the
proportional and integral actions and a slower sampling rate to calculate the derivative
action.

● Use derivative filters or derivative estimators, different from the Euler filter. A good
compromise would be to carry out a derivative over 2 sampling periods as follows:

𝜔(𝑘𝑇௘) =
𝜃(𝑘𝑇௘) − 𝜃൫(𝑘 − 2)𝑇௘൯

2 ⋅ 𝑇௘

Which, gives the following resolution of the velocity: 𝑅(𝜔) =
ோ(ఏ)

ଶ⋅ ೐்

Exercise 4.4. Quantization noise

Consider a motor with a -velocity gear reducer n = 32, and a 500-line incremental
encoder. This motor is controlled with a PD controller at a sampling rate of 1 kHz.

• What is the positional resolution of this axis?

The velocity is obtained by numerical derivation.
• What are the velocity resolutions when the derivation are respectively

implemented over 1 or 2 sample periods?

• The gear backlash is about 0.5 degrees. Please comment?

• What is the quantization noise reported on the current?

IV-18
Robot control

4.4.5 Coupled model-based robot controls

4.4.5.1 MIMO system
In this section we consider robot controllers based on coupled dynamic models. These models are
multi-input and multi-output models (MIMO, Multi Inputs Multi Outputs).

Figure 4.15, Delta MIMO robot with three inputs and three outputs (i1, i2 and i3 are the motor currents
and θ1, θ2 and θ3 are the motor positions)

4.4.5.2 Notion of coupling:

Figure 16, Representation of dynamic couplings

Dynamic couplings concern the influence of the movement of one axis on another. These couplings
are function of the robot positions and velocities. The dynamic model of a robot can be represented
as follows:

𝛤 = 𝐵(𝑞). 𝑞̈ + 𝐺(𝑞) + 𝐶(𝑞, 𝑞̇) + 𝐹(𝑞, 𝑞̇) + 𝐾(𝑞)

Matrix of Inertia

Gravity Centripetal and
Coriolis Friction

Stiffnes

Generalized
torque

IV-19
Robot control

4.4.5.3 Robot models and control model
We put the above model in the following form: 𝛤 = 𝐵(𝑞). 𝑞̈ + 𝐻(𝑞, 𝑞̇)

This writing gives rise to different other model writings according to the knowledge of the system

parameters and as required.

 𝑞̈ = (𝐵(𝑞))ିଵ(𝛤 − 𝐻(𝑞, 𝑞̇)) Is the second-order differential dynamic model of the robot

⇒ 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥). 𝑢 Is the state dynamic model of the robot

𝑞̈ = ቀ(𝐵௠௢ௗ)ିଵ൫𝛤 − 𝐻௠௢ௗ̇()൯ቁ Dynamic model of the robot obtained during the first modeling

𝑞̈ = (𝐵∗(𝑞))ିଵ(𝛤 − 𝐻∗(𝑞, 𝑞̇)) Simplified dynamic model

𝑥̇ = 𝑓∗(𝑥) + 𝑔∗(𝑥). 𝑢 State model for simulation

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥). 𝑢 Simplified state model for control

𝑞̈ = (𝐵(𝑞))ିଵ(𝛤 − 𝐻(𝑞, 𝑞̇)) Robot model of the second order for the control

Example

Figure 4.17, inverted pendulum

Representation model:

𝜃̈ =
𝑘௖

𝐽
𝑖 −

𝑚𝑔𝑙

𝐽
𝑠𝑖𝑛(𝜃) −

𝛼௩௜௦(𝜔, 𝜃)

𝐽
𝜔 −

Γௗ௥௬

𝐽
−

Γ௣௘௥௧

𝐽

Γ௣௘௥௧ is a perturbation torque function of the play, temp, wear,
etc.
Simplified model

𝜃̈ =
𝑘௖

𝐽
𝑖 −

𝑚𝑔𝑙

𝐽
𝑠𝑖𝑛(𝜃) −

𝛼௩௜௦
∗

𝐽
𝜔 −

Γௗ௥௬

𝐽

State model for simulation
𝑥̇ଵ = 𝑥ଶ

𝑥̇ଶ = −
௠௚௟

௃
𝑠𝑖𝑛(𝑥ଵ) −

ఈೡ೔ೞ
∗

௃
𝑥ଶ −

୻೏ೝ೤

௃
+

௞೎

௃
𝑖

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡. (𝑥ଵ, 𝑥ଶ) = (𝜃, 𝜔) 𝑒𝑡 𝑢 = 𝑖

State model for control

𝑥̇ଵ = 𝑥ଶ

𝑥̇ଶ = −
𝑚𝑔𝑙

𝐽
𝑠𝑖𝑛(𝑥ଵ) −

𝛼௩௜௦
∗

𝐽
𝑥ଶ +

𝑘௖

𝐽
𝑢

Masse m



IV-20
Robot control

4.4.5.4 Methods for synthesizing control laws for robots
Several control techniques exist for controlling robots. We have cited in the previous paragraphs the
classic techniques which do not take into account the couplings between the axes of the robot (PD, PI,
PID and cascaded PID loops).

Other techniques are based on coupled models of robots and sometimes differ according to the chosen
representation model. Three types of dynamic representations exist:

● Second-order robot models (ref, previous paragraph)
● Nonlinear model, first-order state space model.
● Linear state space model, obtained from a tangent linearization. In this case, the linear control

techniques are applicable (stabilizing state feedback, linear decoupling controls, RST, adaptive
controls, etc.).

Figure 4.18, Summary of some robot control techniques

4.4.5.5 method by a priori torque compensation
Principle,

The a priori torque is the torque calculated using the inverse dynamic torque model according to the
desired trajectories (positions, velocities and accelerations) . If the model is perfect (ie there is no
modeling error), controlling the robot with this a priori will involve finding exactly the desired
trajectories (ie q = qd).

Figure 4.19, robot controlled in open-loop with its inverse dynamic model

Nonlinear state space representations

u).x(g)x(fx 

Modèles de commande

   )q,q(H)q(Bq 1    

Second order robot model

• A prori torque control,
• Computed torque control,
• Adaptative control,
• Predictive control,
• ...

• Feedforward control,
• Nonlinear linearizing input-output control,
• Adaptative control,
• Predictive control,
• ...

State space representation (after tangent linearization)

u.Bx.Ax 

 Robot
 q Inverse Dynamic

Model

qd

IV-21
Robot control

It is unfortunately not possible to drive the robot in an open loop in this way because the models are
never perfect and the slightest external disturbance will lead to unknown and undesirable behaviors
due to the lack of feedback sensors. This a priori torque is helpful but not sufficient. The a priori is a
tool which is used to improve the dynamic performance of positioning because it takes into account
the couplings according to the desired positions, velocities and accelerations.

The model of the robot does not correspond to reality!

The following control diagram highlights the use of the inverse dynamic model as an a priori to
compensate (in a priori) the known non-linearities and couplings. The rest of the imperfections are
compensated by the linear controller added to this a priori.

Figure 4.20, A priori torque control diagram.

4.4.5.6 Computed torque controller, known as nonlinear linearizing input output
controller

This control technique is also called the linearizing input-output control technique. The robot is a
physical system with a non-linear input-output dynamic with motor torques as Input vector and motor
positions as Output vector (The only special case is that of Cartesian robots which are decoupled linear
systems). The input-output linearization control technique amounts to compensating for the non-
linearities by looping and making the behavior linear with respect to a new input. More precisely, the
dynamics with respect to this new input is equivalent to a double integrator for each joint.

From the following nonlinear model:

𝑞̈ = (𝐵(𝑞))ିଵ(𝛤 − 𝐻(𝑞, 𝑞̇))

Let the double integrator of the position variable be written as follows:

𝑞̈ = 𝑣

v is a new input and the system (input-output) which is (v, q) is a linear system with a dual

integrator.

IV-22
Robot control

How to achieve this linearization?

By the following loop: 𝛤 = 𝐵(𝑞). 𝑣 + 𝐻(𝑞, 𝑞̇)

Which leads to the following closed loop expression:

𝑞̈ = (𝐵(𝑞))ିଵ(𝐵(𝑞). 𝑣 + 𝐻(𝑞, 𝑞̇) − 𝐻(𝑞, 𝑞̇)) = 𝑣

Figure 4.21, Linearizing loop (left) to transform the system into a cascade of double integrators (right)

It is now necessary to stabilize the double integrators by a linear loop of the type, PD, PID, or any other
advanced controller (adaptive, sliding mode, ...)

Figure 4.22, Linearizing looping and stabilizing adjustment

4.4.5.7 Exercise 4, Control of a robot axis by a priori and by the linearizing control

Figure 4.23, inverted pendulum

Consider a DC motor actuated robot axis- kt
and Jm are respectively the torque constant
torque and moment of inertia of the motor.
We consider the current control mode.
• Establish the dynamic model of the motor

with and without viscous friction (current-
position relationship). What is the transfer
function?

• Loop the motor with a PD and an a priori
torque command.

• Loop the motor with a PD and a command
with the linearizing command.

IV-23
Robot control

4.4.5.8 Principle of an adaptive control with input-output linearization:

The linearizing loop studied previously is expressed as follows: 𝛤 = 𝐵(𝑞). 𝑣 + 𝐻(𝑞, 𝑞̇).

Adaptive control techniques address the unknown terms of the model and come out to using
estimators which identify these unknown terms by iterative algorithms. For the models of robots, one
of the techniques peculiarly focus in the identification of the terms of the inertial matrix B(q) and the
term 𝐻(𝑞, 𝑞̇).

Let 𝐵෨(𝑞) and 𝐻෩(𝑞, 𝑞̇) these terms to be identified. The model to be estimated is then expressed as:

𝛤 = 𝐵෨(𝑞). 𝑣 + 𝐻෩(𝑞, 𝑞̇).

The basic diagram of this control technique is given by the following figure:

Figure 4.24, Self-adaptive linearizing
looping and stabilizing adjustment

4.4.6 Conditions for couplings to be considered as disturbances
Whatever the robot considered, the dynamic equation for each joint i can be written as follows:

𝑞̈௜ = 𝑘௖௜. 𝑖௜ − 𝑓௩௜ . 𝑞̇௜ − Γ௖௢௨௣௟௜௡௚௦(𝑞௜, 𝑞௝, 𝑞̇௜, 𝑞̇௝)

• 𝑘௖௜is the torque constant of each joint actuator i,

• 𝑓௩௜is the coefficient of viscosity at each joint i,

• ii is the motor current at joint i,

• Γ௖௢௨௣௟௜௡௚௦(𝑞௜, 𝑞௝, 𝑞̇௜, 𝑞̇௝) is the effect of the other joints on the considered joint i.

In some cases, the couplings Γ௖௢௨௣௟௜௡௚௦൫𝑞௜, 𝑞௝, 𝑞̇௜, 𝑞̇௝൯ can be considered as constant or quasi-constant
disturbances and thus be compensated either by an integral action (term I of the PID) or a disturbance
estimator implemented thanks to an observer or a parametric identification. This is possible if the
following conditions are verified:

• the dynamic couplings are weak. This can take place for example if the reduction ratios of the
motors are so high that the inertia brought back to the actuators are very low (therefore the
inertial torques),

• The couplings are very slightly variable (thanks to a low dynamic) so that their effects can be
eliminated by an integral action

IV-24
Robot control

4.4.7 The Be careful of the control tuning
• Always specify the type of adjustment and the conditions of implementation:

• PI, PID, linear or not, with dynamic model or not,

• Uses of certain artefacts such as dead zone, filtering,

• Always specify the sample period used. Sometimes, several sampling periods are used as in
the case of a cascaded velocity/position loops-

• When making comparisons, always compare the comparable by specifying:

• the scales,

• the working areas,

• the values of the amplitudes,

• the desired time constants.

• Specify the difficulty of the choice of the parameters of the adjustment and the way in which
they were sized.

IV-25
Robot control

4.5 Trajectory generation for manipulation robots

Robot trajectory generation addresses trajectory patterns which connect two points of the robot
workspace, as well as the way in which the velocity and the acceleration evolve over time.Trajectory
generation is therefore associated with the following two aspects:

 Geometric aspect, which considers the description of the set of intermediate points from the
starting to the ending point.

 Temporal aspect, which considers the description over time of the evolution over time of each
generalized coordinate and its derivatives (velocity and acceleration). These evolutions as a
function of time will later be called respectively acceleration, velocity and position profiles.

The geometric and temporal aspects of a trajectory are definitely dependent, because any spatial
(geometric) error induces a temporal error and vice versa. The shapes of the paths are very important
and the time profiles must therefore be well chosen so as not to accelerate or decelerate anywhere
on these paths. A good example to that is a circular path implemented at a constant velocity. The
constant velocity along this circular path will induce a non-null acceleration, which is the centripetal
acceleration V2/R, R is the ray of the implemented circle.

4.5.1 Reminder on the transformation of coordinates
The transformation of robot coordinates, also called geometric model, is very important in trajectory
generation. The transformation of the coordinates of the robot is the relation which links the joint
space and the tool apace of the robot. Regardless particular cases, the path of the robot is defined in
its tool space where the operational task is defined, and the control of the motors is implemented in
its joint.

Figure 4.25, Joint and tool spaces (left) and direct and inverse coordinate transformations (right)

IV-26
Robot control

Summary of the uses of each model:

 Inverse Geometric Model Direct Geometric Model
Use Control of a robot, by calculating

the joint coordinates from defined
trajectories in tool coordinates.

● Initialization of the robot by the
deduction of the operational
starting point.

● Learning points by measuring
operational coordinates.

● Control in operational space by
measuring operational
coordinates.

4.5.2 Admissible trajectories

A trajectory is admissible if:

• it is geometrically feasible; it does never leave the robot workspace,

• it is temporally feasible; the velocities and accelerations can be achieved by the motors.

To that, it is necessary that:

• The power electronics is appropriate to perform the required motor voltage and current.

• The hardware is appropriate for data acquisition and computing the required control in the
convenient sampling period.

• The control algorithm is appropriate for the required performance and its parameters are
well adjusted.

• The motorization is adequate for the required dynamic performance (velocities and torques).

4.5.3 Geometric aspects of robot trajectories

The basic patterns used to define a robot’s trajectory are the straight line and the arc of a circle. The
term interpolation is a very common term to describe a robot or machine tool path.

What is path interpolation in the CNC world? In the case of trajectory generation, we refer to
interpolated axes when the movements of these axes are geometrically dependent.

The basic known interpolations in the world of multi-axes machines and robots are:

 linear interpolation,

 circular interpolation (clockwise and counterclockwise).

Other interpolations also exist:

 spiral interpolation,

 helical interpolation,

IV-27
Robot control

Here, are some typical trajectories for picking up and depositing objects (pick and place):

Figure 4.26, Typical pick-and-place trajectories

4.5.4 Temporal aspects of robot trajectories
To characterize the trajectory of the robot over time, we refer to profiles. The profile defines the time
curve of the desired position, the desired velocity, or the desired acceleration. We generally refer to
velocity profiles and acceleration profiles, the position profile is automatically deduced from that of
the velocity by integration.

The simplest profile, to define the desired position, is the step profile. It is a 0-order profile that is
discontinuous in position, which means that we require the robot to instantaneously move from one
defined point to another point. The position step profile, commonly used in the theory of control to
deduce transfer functions, is too aggressive and generates a lot of oscillations and is not appropriate
for tracking.

Figure 4.27, Step position to position trajectory, interpolation of order 0.

The most known and used profile is the trapezoidal velocity profile (also called Bang-Bang in
acceleration and parabolic in position).

a

Figure 28, Trapezoidal profile in velocity (Bang Bang in acceleration)

IV-28
Robot control

Unfortunately, the trapezoidal velocity profile also
implies a too brutal solicitation of the mechanics
because of the instantaneous transition in the
acceleration, thus of the motor torque. To avoid this,
we simply smooth the acceleration rise by adding a jerk
phase (the jerk is the derivative of the acceleration).
This new profile corresponds to a trapezoidal
acceleration profile, which is smoother for the
mechanics and is also called parabolic in velocity profile
(ref. side figure).

Figure 4.29, Trapezoidal profile in acceleration, or
parabolic in velocity

Figure 4.30, Parameters of the trapezoidal profile in
acceleration

4.5.5 Continuous profile generation

Let us consider the points A, B, C,
D, E and F that define a path from
point A to point D. The common
path of a robot from point A to
point F amounts to traversing the
intermediate positions with a
stop at each point (Figure 4.31).

Figure 31, fittings with stop at each
intermediate position

Acceleration
max

Velocity
max

Deceleration max

Jerk time

IV-29
Robot control

In machine tools and in certain robotics applications (such as welding or painting), it is not necessary
to stop at intermediate positions. Continuous profiles are thus used with a starting phase, phases at
constant velocity and a braking phase (figure 4.32).

Figure 4.32, Continuous connected velocity profiles without stops at intermediate positions

Continuous profiles (continued): management of connections:

To reduce the effects of high accelerations at the intermediate positions, we may respectively
decelerate then accelerate, for example by modulating the acceleration and deceleration depending
on the angle at these transition points. This will make the acceleration smoother.

Figure 33, Continuous transitions with management of accelerations and decelerations at intermediate

positions

IV-30
Robot control

4.1.1 Synchronization of axes
In some multi-axes implementations, geometric dependencies do not exist, by considering for example
two rotary axes of a tool changer, two independent linear axes, two conveying axes, etc. In that cases,
multi-axes trajectory interpolation does not apply and we have to consider multi-axes synchronization
to generate the desired trajectories.

To illustrate this situation, consider two axes x1 and x2, the movement from position 1 defined by the
coordinates (p1_x1, p1_x2) to position 2 (p2_x1, p2_x2), can be performed either by:

▪ Sequentially moving the axes 1 and 2, one after the movement ending of the previous one.

▪ Independently moving the two axes, ie each axis moves according to its own dynamics defined
by the its velocity profile.

▪ Synchronizing the movement of the two axes, by constraining their movements to the slowest
velocity profile.

The following figure illustrates the three operating modes for trajectory generation:

Figure 4.34, Types of axis synchronization (left on the right, sequential, independent, synchronized)

Notes:
● The interpolation of the axes concerns the geometry of the robot trajectories.
● Synchronization of the axes does not define any geometry of the path and it is only related

to the management of the velocities and acceleration profiles.

IV-31
Robot control

4.2 The hardware part of a robot control

4.2.1 Elements of a control cabinet
The control cabinet is made up of the following elements:

● Processor board, which embeds all the software modules of the controller.
● Electronic boards, to acquire sensor signals, as:

● Acquisition of digital signals for on/off sensors.
● Acquisition of analog signals, for example to measure forces, temperature, etc.
● Acquisition of specific signals such as quadrature counters for incremental encoders.
● …

● Electronic output boards, to set electric signals, as:
● Analog signals, to control the motor drives, etc.
● Digital signals, to control relays, grippers, etc.
● Miscellaneous signals, such as pulse generation, PWM, sine, etc.

● Card buses.
● Power supplies.
● Fans.
● Connectors, electrical terminals and cables.

Figure 4.35-a, Robot Controller: Architecture overview

IV-32
Robot control

Figure 4.35-b, Robot Controller: Example of a motherboard-based architecture

Figure 4.36, Examples of industrial numerical controller. From Left to right, EPFL robot controller, Adept
controller and ABB controller

5.2.1.1 The cabinet
The cabinet is the first hardware component of the controller. It is the casing in which all the other
components of the control are fixed.

Figure 4.37, Examples of control cabinets

5.2.1.2 Acquisition boards,
which we also call input-output (IO) boards (Acquisition boards, Input-Output (IO) boards) are the
hardware interface between the robot and the processor card. All types of interfaces may be required
(analog, digital or other). The minimum structure necessary for controlling a robot requires the
following components:

IV-33
Robot control

1. Analog outputs for controlling the motors via their analog drives (for torque control or for velocity
control).

2. Incremental encoder inputs which consist of quadrature counters.
3. Digital inputs and outputs for controlling relays and reading digital sensors (presence/absence of

parts, door closing, end, etc.)

Acquisition cards for controlling robots (often designated by axis boards) exist in all bus formats: PCI,
Compact PCI and VME.

Figure 4.38, Examples of axis boards, from left to right, PCI (sensoray 626), PCIe (Sensoray 826) and CPCI NI

4.2.2 Motor and fieldbus drives
In the case of analog control, the motor drives are controlled by an analog setpoint which imposes the
value of the voltage or the current to respectively fix the motor output velocity or torque (Figure 39).

Figure 4.39, Example of wiring a Maxon servo amplifier (description in table below)

Signal Type Value Description
Vset Analog -10V to 10V Torque or velocity reference according to drive configuration
Gnd Analog 0V Ground
Enable Discrete 5V Amplifier activation (Enable)
Ready On/Off 5V Amplifier status (Ok or not)
M+, M- Analog -- Brushed motor terminals
Vcc Analog 50V/5A DC drive power supply

 Table: Outline of the connections in the figure 4.39

Digital communications are appropriate to communicate between a computer board and a remote
device, or between 2 computers. The most common digital communication interfaces may be
enumerated as follows:

Mot

Vset

Gnd

Enable

Ready

Gnd

Gnd

V

M+

M-

IV-34
Robot control

• Serial communication (as RS232, RS422 , and RS485)
• Ethernet
• USB
• Wireless ethernet
• Bluetooth

However, industrial communication needs industrial-compliant buses: Fieldbuses.
Fieldbuses are communication buses for industrial automation. Each Fieldbus is defined by its physical
layer, is associated with a bus protocol, and has a topology. The International Electrotechnical
Commission (IEC) as IEC 61784/61158 describes the standardization of the fieldbuses.

Fieldbuses are increasingly used. They are a great alternative to analog technology and only use digital
communication. Fieldbuses (fieldbuses) are used in the field of industrial automation mainly to
improve the interconnection of components. They are all built around serial digital communication of
data between a main automation unit and several input/output components. The connection
configuration between components is called bus topology. The most frequent topology is that in
“Daisy-Chain” with a master and several remote modules which interconnect in chain one after the
other.

In this chapter, we will introduce 3 Fieldbuses: CANopen, Profibus, and EtherCAT. They all have a daisy
chain topology.

Figure 4.40, Principle of Daisy chain topology

The input-output components affect all the automation functions (analog reading, reading of digital
inputs, relays, stepper motor control, motor drive, etc.) and allow not only deport the input-output
function from the master component but also to distribute the functions according to the needs of the
automation of the robot and its components.

The following paragraphs give a brief overview of the main field buses used for motion control. These
field buses all have a protocol dedicated to the control of electric motors which enables to control the
position of the axes either in “point mode” or in “profile generation mode”. In all cases, the position
control loop is located in the motor drive.

● Profile generation mode: This mode makes the axis module totally autonomous in its profile
generation. The positioning path between the home position and the target position is generated
in the drive. It is a simple and ideal mode when the axes are independent or when there is no
need for interpolation or synchronization.

● Point-to-point mode: In this mode the points of the path are updated from the master at each
sampling period. This period often varies between 250us and 2ms depending on the type of bus
and the nature of the application. Synchronization and interpolation of the axes is ensured by the
control software used at the master level.

IV-35
Robot control

4.2.3 The CANOpen (1Mbit/s)
The CAN open bus is a serial bus which reaches a transfer rate of 1Mbit/sec. It is an extension of the
CAN bus. Its implementation on a master computer unit requires the use of a CANOpen master card.
Compared to other field buses, CANopen is very slow and is not the best choice for operating modes
requiring interpolations or synchronization of axes. Its topology is the Daisy chain. The example below
shows an implementation with CANopen modules.

EPOS 24/5 and DC motor
Figure 4.41, Example CAN Open implementation, using the ePOS module from Maxon

4.2.4 The PROFIBUS (9.6 kbit/s to 12 Mbit/s)
This serial bus allows transmission rates faster data transfer (up to 12 Mbit/sec). It was initiated and is
promoted by Siemens. However, its specifications are open to other manufacturers in order to be able
to interconnect components from various suppliers. Its topology is the Daisy chain. The example below
shows an implementation with a 5-axis parallel robot. In this case, the position loop was implemented
on the PC, which requires the use of a Profibus master card.

Figure 42, Using the Profibus bus – Example of an implementation with a 5-axis parallel robot

4.2.5 Ethercat
Ethercat is currently the most widely used Fieldbus for both automation and motion control. It was
developed by the company Beckhoff and it allows transmission rates of up to5 100Mbits/sec. Its
attractiveness is linked to two important elements:

● Ethercat uses the Ethernet component on standard computers and processor boards and
therefore does not need an additional master card. Only change the native Ethernet
component driver to an Ethercat driver and it works.

● The high transmission rate of the bus enables to have sampling refresh rates reaching 250s.

Some numbers (2018);

o 256 digital I/O in 11 μs
o 200 analog I/O (16 bit) in 50 μs, 20 kHz Sampling Rate
o 100 Servo-Axis (each 8 Byte IN+OUT) in 100 μs = 0.1 ms

5 The new EtherCAT G moves the maximum data rate up to 1 Gbit/s and 10 Gbit/s (ref. Beckhoff)

IV-36
Robot control

Figure 4.43, Using the Ethercat bus – Example of an implementation with a Delta robot

4.2.6 Cascaded control using fieldbus motor drives
Position and velocity control loops can be setup either on the computer or on the motor drive.
However, with the clearly improved capacities of the drives, the most interesting configuration is the
following:

Figure 4.44, Example of distribution of servo loops between the drive and the central

Furthermore, if the refresh period of the position setpoints is not sufficient, many drives are able to
interpolate the position setpoints between two consecutive refresh times. This allows to reduce
position setpoint discontinuities; e.g. by replacing the setpoint steps with ramps.

4.2.7 Advantages of fieldbuses
• Reduction of wiring.
• Distribute input-output functions according to automation needs.
• Dissociate the control from the trajectory generation, thus dissociate the businesses and the

solution providers.
• Increase the quantity of information to send to the motor drives. It is indeed possible to update

the parameters of the control loops at each refresh period (fig 4.45), or even calculate the a priori
dynamic model and send it through the bus, to consider a priori coupling compensations (fig 4.46).

IV-37
Robot control

Figure 4.45, Fieldbus – Control loops with variable parameters according to the position of the robot

Figure 4.46, Fieldbus – Control loops with implementation of a prior torque

IV-38
Robot control

4.3 Software part of the control of a robot
In this part of the course, we consider the software components necessary to build (develop) a robot
control.

4.3.1 The real-time operating system

5.3.1.1 Operating system
An operating system is:

• An orchestra conductor who manages all the hardware
and software resources of the system in question
(processor board and associated boards).

• A software application running under a given family of
hardware (processors).

The control application will work thanks to this conductor who will manage all the tasks that
implements our control software.

5.3.1.2 Real Time: Was Ist Das?
At first, to control a robot we must master time. To formalize this mastery of time, we say that the
operating system must be real time (or have the characteristic of real time). This mastery of time is
also called determinism.

A real-time operating system is specified as follows:

1. supports multitasking
2. supports synchronization events,
3. is deterministic in the execution of tasks,
4. is deterministic in the consideration of interrupts,
5. is deterministic in handling events.

The resources to be managed are:
 Physical memory allocation.
 Allocation of processor availability.
 Interrupt management and start of associated routines.
 Management of task execution priorities
 Management of communication events between tasks

When we master time with regard to its orders of magnitude (minutes, seconds, ms, s...), we will
say that we operate in real time.

IV-39
Robot control

Figure 4.47, Real-time application

Note: Windows operating systems (8, 10, and 11) and Linux operating systems (Ubuntu, Red
Hat,..) are not real-time operating systems although they are able to ensure appropriate operations
about the ms when they are not over loaded. Some use them to develop non-critical real-time
applications (ie. which do not obey the above requirements!).

4.3.2 Tools for developing real-time embedded applications
Every real-time OS (Operating System) comes with its own development system.

Development keywords:

• The host is the machine on which the developments are carried out

• The target is the machine on which the robot control application runs,

• Cross development, means to develop on a central unit called Host (of type PC for example) for
another machine called target which contains the control software,

• Cross compilation, means to compile an application on a processor for another processor (see also
another family of processors)

• Upload the application onto the target after cross-compiling it.

• The Shell is a remote-control command interface that runs on the Host,

• The terminal, is an application to view the exchanged information between the host and the target.

Real time is a software specificity of applications when the reaction to the occurring events
is realized in a deterministic way. By event we mean:

 an interruption (software or hardware),
 the periodic launching of an operation,
 the access to a memory for reading or writing.

IV-40
Robot control

Figure 4.48, Example of a robot control application with its cross-development tools

4.3.3 Real-time communication mechanisms
A real-time OS is a multitasking OS. A real-time application is built around several tasks or processes.
The processes use communication mechanisms (IPC: Inter Process Communication mechanisms) to
synchronize and exchange data.

These mechanisms are:

• Binary semaphores: objects that can be exchanged and are consumed or provided.
• Counter semaphores: are initialized to a given number and are consumed or supplied until

the stock is exhausted.
• Mutexes are semaphores that are either available or in use by a resource.
• Shared memories are memory zones.
• Messaging to exchange character strings.

4.3.4 List of real-time operating systems
Real time operating systems (RTOS)

 VxWorks from WindRiver
 QNX OS by QNX Software,
 LynuxWorks by LynxOS Inc. for embedded and real-time systems,
 MS Windows .net by Microsoft,

Real-time extensions for non-real-time operating systems
 RTX from IntervalZero Inc. is a real-time extension for systems running Microsoft OS,
 RTLinux real-time extension for Linux,
 Others for Linux (such as RtaiLib),
 Others for MS Windows such Hyperkernel, InTime,….
 ROS2, includes REAL TIME CAPABILITIES, while the first version ROS is a "Robot Operating"

framework – ROS2 extends to Linux
Kay, J., & Tsouroukdissian, A. R. (2015). Real-time control in ROS and ROS 2.0. ROSCon15.

Microcontroller Operating Systems
 FreeRTOS for Atmel, Microchip, ARM7, ARM9, Cortex-M3, MSP430, MicroBlaze,
 PIC32, 32-bit, RTOS for Microchip Technology's Microcontrollers from Express Logic.
 Linux,
 ARMOS, BeRTOS, Apache MyNewt (ARM, Cortex-M3, ARM ARM7TDMI,)

A complete list can be found in:
 https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

IV-41
Robot control

4.3.5 The robot control application
The robot control software contains all the functional blocks previously studied, namely those
represented by the figure below:

Figure 49, Components of the control software

High-level orders, concern all functions that manage the man-machine interface, high-level orders but
also the management of any type of operator interface. High-level orders can concern sending of the
path parameters, the configuration of the dynamics, the control parameters, the activation of the
grippers, the verification of the status of a digital input, and the counting of 'high-level operations (such
as a number of succeeded or failed object grasping).

Trajectory generation handles trajectory generation with parameters sent from the top-level layer. It
is in this module that the management of the paths, the profiles of velocities and accelerations, the
interpolation, and the synchronization of the axes are carried out. This module is often called the
interpolator.

Coordinate transformation, this module implements the direct and inverse geometric models. It is
possible to integrate this module into the previous trajectory generation module.

Motion Control, formed mainly by the periodic axis tuning loop.

Board drivers manage the acquisition boards and provide the function services to access to the board
input and output registers (analog reading, digital reading, encoder reading, counter reading,
activation and deactivation of digital outputs, control of analog outputs, etc.)

Safety concerns the management of the security of the numerical control and of the robot. It can be
implemented in the form of a periodic tasks which test the validity of position and velocity errors, the
validity of position and velocity desired trajectories, test of sensor redundancy, test of certain
differential limits on joint positions, etc.

Note: These axis software modules can be implemented either as a task (equivalent to a thread
under Windows), a dynamic or static library, or either as a class.

IV-42
Robot control

4.3.6 The minimal controller:

Figure 4.50, Minimal structure of a robot command

The high level orders may be implemented as a library of supervision to provide simple operator
functions as GoToPoint(X,Y,Z), ActivateControl(), DeActivateControl(), GripperOn(), GripperOff().
The Control loop is the most important, it reads sensors, calculates motor torques and sends
commands to the amplifiers, etc.
The trajectory generator generates the profiles and performs the axis interpolation.

IV-43
Robot control

4.4 Appendix 1: Calculation of trajectory profiles
Consider a linear motor (M). The problem statement of this topic concerns the following question:
“How to generate a position instruction to move from a position x0 at a position x1?”. Different time
profiles of desired positions, velocities, and accelerations are presented in the next sub-sections. ∆x is
the path length considered in this paragraph. We can replace it with ∆s; the curvilinear path
distance if multiple degrees of freedom are to be considered.

4.4.1 Step-like position profile
In automatic control theory, we often start by learning that the easiest way to set a desired position
is to use a step-like desired position.

x(t) is then defined as follows:

𝑥(𝑡) = {𝑥଴ 𝑡 ≤ 0 𝑥ଵ 𝑡 > 0

Let us observe the shape of the velocity and the acceleration corresponding to this movement from
x0 to x1.

The velocity and acceleration associated with this desired position are Diracs and will thus generate a

brutal torque which is not good for the mechanics (life cycle of the transmission elements). This jump

in acceleration also risks exciting undesired natural frequencies (because not taken into account by the

control) and thus causing mechanical resonances. This sudden torque jump, if it is not taken care of by

a judicious choice of the control parameters, risks causing overshoots of the controlled position.

 In the case of the control of actuators in general and particularly for the control of robots,

the step-like trajectories must never be used.

 In practice, the velocity and acceleration (Dirac peak) are not infinite because the derivatives

of the desired position, respectively that of the velocity, are carried out at the rate of the

control sampling period Ts.

 The maximum velocity and acceleration values are then given by:

𝑉௠௔௫ =
∆௫

்௦
 and 𝐴𝑐𝑐௠௔௫ =

௏೘ೌೣ

்௦
=

∆௫

ೞ்
మ

𝑥̇(𝑡)

t

𝑥̈ (𝑡)

d/dt d/dt

t

𝑥(𝑡)

𝑥଴

𝑥ଵ

t

𝑥(𝑡)

𝑥଴

𝑥ଵ

IV-44
Robot control

4.4.2 Ramp-like position profile (Ramp)
Another simple reference trajectory implements the desired position as a ramp-like profile. This
trajectory is carried out at constant velocity all along the path.

In this case, we set the end time of the desired path, the velocity is thus limited (constant). The
acceleration jump remains nevertheless always brutal but less than in the case of a step. This profile
is not appropriate for high velocities.

Calculation of the trajectory: We assume the following for the calculation of the trajectory:

● tf (time to complete the path) or Vmax (constant velocity along the path).
● The distance to travel x = x1 – x0;

Whether 𝑉௠௔௫ is imposed then 𝑡௙ =
∆௫

௏೘ೌೣ

or 𝑡௙ is imposed then 𝑉௠௔௫ =
∆௫

௧೑

Expression of the trajectory

𝑥 = ቌ

𝑥଴ 𝑖𝑓 𝑡 ≤ 0
𝑥଴ + 𝑉௠௔௫ ∗ 𝑡 0 < 𝑡 ≤ 𝑡௙

 𝑥ଵ 𝑡 > 𝑡௙

4.4.3 Triangular Velocity Profile
To avoid acceleration and deceleration diracs, one solution would be to limit the acceleration to a
constant Accmax for half of the distant and decelerate with a constant deceleration Decmax on the other
half of the distance. The velocity profile is thus triangular and the position profile is parabolic.

Profile calculation assumptions:

● Acceleration 𝐴𝑐𝑐௠௔௫
● Deceleration identical to the acceleration
● The length of the path is ∆𝑥

Unknown: tf

t

d/dt d/dt

tf
t 0

𝑥(𝑡)

t tf

𝑥̇(𝑡)
𝑥̈ (𝑡)

IV-45
Robot control

∆𝑥 is the area of the triangle describing the velocity profile.

∆𝑥 = 𝑉௠௔௫ ∗
𝑡௙

2

𝑎𝑛𝑑 𝑉௠௔௫ = 𝐴𝑐𝑐௠௔௫ ∗
𝑡௙

2

⇒ 𝛥𝑥 = 𝐴𝑐𝑐௠௔௫
𝑡௙

ଶ

4

𝑡௙ = 2ඨ
𝛥𝑥

𝐴𝑐𝑐௠௔௫

Trajectory generation:

𝑥(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑥଴ 𝑡 ≤ 0

𝑥଴ + 𝐴𝑐𝑐௠௔௫

𝑡ଶ

2
0 < 𝑡 <

𝑡௙

2
𝑥ଵ − 𝑥଴

2
+ 𝑉௠௔௫ ൬𝑡 −

𝑡௙

2
൰ −

𝐷𝑒𝑐௠௔௫

2
(𝑡 −

𝑡௙

2
)ଶ

𝑡௙

2
≤ 𝑡 < 𝑡௙

𝑥ଵ 𝑡 ≥ 𝑡௙

This profile enables to complete the traveled distance in a minimum of time while having a constant
acceleration and deceleration. However, the disadvantage is that the maximal velocity can be very high
in case the traveled distance is high. It is is then recommended to limit the velocity, as in the trapezoidal
velocity profile presented in the next sub-section.

4.4.4 Trapezoidal velocity profile

With this profile, we set the
maximum velocity to (Vmax) and
we limit the acceleration to
(Acc_max), equal to the maximum
deceleration Dec_max6.
Profile calculation assumptions:
● Acceleration Accmax.
● Deceleration identical to

acceleration.
● Max velocity Vmax.
● The length of the path ∆𝑥

6The acceleration is assumed equal to the deceleration to simplify the problem. In the general case the
maximum accelerations Accmax and Decmax are not necessarily identical.

∫

∫ ∆𝑥

𝑡ଷ 𝑡ଶ 𝑡ଵ

𝑣(𝑡)

Velocity profile

Acceleration profile
𝐴𝑐𝑐_𝑚𝑎𝑥

𝐷𝑒𝑐_𝑚𝑎𝑥

𝐴𝑐𝑐

Position profile

IV-46
Robot control

The minimum path ΔXmin corresponds to the area obtained for a triangular velocity profile whose peak
velocity is Vmax. 𝑡௙௠௜௡ is the final time corresponding to the completion of this journey ΔXmin.

∆𝑋௠௜௡ =
𝑉௠௔௫

ଶ

𝐴𝑐𝑐௠௔௫
 𝑎𝑛𝑑 𝑡ଵ =

𝑡௙௠௜௡

2

𝑡௙௠௜௡ = 2ඨ
∆𝑋௠௜௡

𝐴𝑐𝑐௠௔௫

1st case:
If ∆𝑋 ≥ ∆𝑋௠௜௡, Vmax is then reached. It is therefore necessary to add a phase at constant velocity and
whose duration is:

∆𝑡 =
∆𝑥 − ∆𝑋௠௜௡

𝑉௠௔௫

The areas A1 , A2 and A3 are given as follows:

{𝐴ଵ + 𝐴ଶ = ∆𝑠௠௜௡ 𝐴ଷ = ∆𝑠 − ∆𝑠௠௜௡

⟹

ተ

ተ
𝑡ଵ =

𝑡𝑓௠௜௡

2
= ඨ

∆𝑋௠௜௡

𝐴𝑐𝑐𝑚𝑎𝑥

 𝑡ଶ = 𝑡ଵ + ∆𝑡

𝑡ଷ = 𝑡ଶ +
𝑡𝑓௠௜௡

2
= 2ඨ

∆𝑋௠௜௡

𝐴𝑐𝑐𝑚𝑎𝑥

+
∆𝑥 − ∆𝑋௠௜௡

𝑉𝑚𝑎𝑥

2nd case:
If ∆𝑋 < ∆𝑋௠௜௡ then 𝑉𝑚𝑎𝑥 will not be reached and the profile will be purely triangular. The maximum
velocity must be adapted to achieve the route to be covered.

𝑉௠௔௫ _௡௘௪ = √∆𝑥 ∗ 𝐴𝑐𝑐_𝑚𝑎𝑥

 𝑡ଵ = 𝑡ଶ =
௧య

ଶ
=

௧೑

ଶ
 and 𝑡௙ = 2ට

∆௫

஺௖௖_௠௔௫

t1 t2 t3

∆t

A2 A1 A3

IV-47
Robot control

4.5 Appendix 2: Interpolation of trajectories

4.5.1 Linear path interpolation
The total distance to cover is:

𝑣஽ is the vector director throughout the pathway :

How to generate the straight-line path from point I to point F?
This is called linear interpolation and involves calculating the points of the path in question as
a function of time. It is performed in two steps:
 The first operation is to generate the

position profile s(t) of length ∆s (ref.
profile calculation document).

 The profile s(t) must then be projected
onto the shape of the trajectory to
obtain the corresponding x(t) and y(t)
coordinates. In this way we obtain the
equations of the points of the trajectory:

 With :
𝑥(𝑡 = 0) = 𝑥௜ , 𝑥൫𝑡 = 𝑡௙൯ = 𝑥௙
𝑦(𝑡 = 0) = 𝑦௜ , 𝑦൫𝑡 = 𝑡௙൯ = 𝑦௙

௏ವ
ሱሮ

𝐹 ቀ
𝑥௙

𝑦௙
ቁ

𝐼 ቀ
𝑥௜

𝑦௜
ቁ

൜
𝑥(𝑡)
𝑦(𝑡)

ൠ
s(t) Profile data

Profile

Generator

Path
Generator

x (t)
y (t)

∆𝑠 = ඥ∆𝑥ଶ + ∆𝑦ଶ = ට(𝑥௙ − 𝑥௜)
ଶ + (𝑦௙ − 𝑦௜)

ଶ

𝑣஽ = ൞

𝑥௙ − 𝑥௜

∆𝑠
𝑦௙ − 𝑦௜

∆𝑠

 = ቄ
𝑣஽௫

𝑣஽௬

𝑥(𝑡) = 𝑥௜ + 𝑣஽௫ . 𝑠(𝑡)
𝑦(𝑡) = 𝑦௜ + 𝑣஽௬ . 𝑠(𝑡)

IV-48
Robot control

4.5.2 Circular interpolation:

In this case, it is a question of making a
circular trajectory (arc of a circle) from the
point I to point F. C is the centre of the
circle considered, and R is the radius of this
circle.
Let α be the angle to cover varying from 0
to α_s.

 The first step consists in generating the
profile of the angle α(t) thanks to an
appropriate choice (trapezoidal in velocity
or trapezoidal in acceleration).

 The second operation is to derive the
coordinate (x(t), y(t)) along the circular
path.

The equations of the coordinates x and y are expressed as follows:

 𝒙(𝒕) = 𝒙𝒄 + 𝑹 𝐬𝐢𝐧(𝜶(𝒕)) = 𝒙𝒄 + 𝑹 𝐬𝐢𝐧(𝒔(𝒕)/𝑹)
 𝒚(𝒕) = 𝒚𝒄 + 𝑹 𝐜𝐨𝐬(𝜶(𝒕)) = 𝒚𝒄 + 𝑹 𝐜𝐨𝐬(𝒔(𝒕)/𝑹)

 𝑥(𝑡 = 0) = 𝑥௜ ; 𝑥൫𝑡 = 𝑡௙൯ = 𝑥௙

 𝑦(𝑡 = 0) = 𝑦௜ ; 𝑦൫𝑡 = 𝑡௙൯ = 𝑦௙

൜
𝑥(𝑡)
𝑦(𝑡)

ൠ
s(t) Profile data

Profile

Generator

Path
Generator

x (t)
y (t)

IV-49
Robot control

4.6 Appendix 3- Additional hardware aspects

4.6.1 Board buses
A bus refers to transport; we are not far from it except that in our case we will speak about transport
of data. A hardware bus connects several electronic boards to the microprocessor unit. This bus allows
the cards to communicate with each other thanks to the data, address and control signals that
constitude the bus. We will call the backplane the electronic board on which all the cards of the bus
are inserted. This backplane is passive because it does not include any intelligence (i.e. a processor).

There are many different types of bus. In numerical robot control, one of the first used buses was the
VME bus supported mainly by the company Motorola. Other industrial buses are proprietary (i.e. they
are supported only by their suppliers). Many have disappeared (such as Gespac from the company
Gespac, the MCA bus from IBM ("micro channel architecture", ...). The VME bus has long monopolized
the industrial market because of its robustness, durability and simplicity. A consortium led by Intel
launched the Compact PCI bus, which mainly uses PCI signals (For more details, refer to
http://www.picmg.org/v2internal/specifications.htm)

Form factors and board buses

There are mainly the two following form factors:

1- Blade format cards
The form factor of these boards is like blades
and can be inserted into a dedicated cabinet
(see figure opposite), which is sized for.
Examples: VME, Compact PCI (CPCI), Micro
TCA

Figure 4.51, Examples of blade-like form factors

2- Slot form factors. The typical example of
this type of baords is the PCI and PCI express
board formats. PCI exists in standard format
with motherboards and also with a passive
backplane. The motherboard is a processor
board that integrates both the processor
and a local bus to receive daughter boards.
For reasons of durability, industrial
hardened motherboard variants exist for
demanding applications (automation and
control).

Figure 4.52, From Left to right, Industrial motherboard,
passive PCI bus, PCI processor board (not motherboard)

IV-50
Robot control

4.6.2 Les alimentations :
There are mainly two types of power supplies:

 Bus-dedicated power supplies that have very particular form factors and specific voltage
outputs, at at a specific current, according to the buses they are intended to be used for.
These power supplies power the electronic acquisition boards and processors.

 Conventional power stages power supplies for power electronic components (motor
amplifiers, relays, graspers, heathers, etc.

Figure 53, Examples of power supplies from left to right Euro format PSU for CPCI, ATX motherboard PSU,
.common screwable PSU, DIN RAIl PSU

