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4.1  Introduction 
Robot control, theory and applications, is an evolving discipline since the existence of the 

concept of “robots”. This science of engineering enabled controlling robots and pilot them so that we 
can use them for automated and autonomous tasks as much diverse as complex. 

The term "Robot control" is very generic because it implies everything related to the control of the 
robot. This term can just as well mean the robot control cabinet, the closed loop control algorithm of 
the robot, the robot control software or all these definitions together.  

 

Thus, “Robot control” concerns the algorithmic, software and hardware parts involved in carrying out 
the tasks that the robot must perform. 

 

4.2 General structure of the robot and its controller 

4.2.1 Definitions 
The figure below shows the example of a robot and its control cabinet linked by a connector. 

 

Figure 4.1- The robot “Linear Delta” and its control cabinet 

The robot is defined as being the poly-articulated mechanical structure by associating the motorization 
and the instrumentation. The control cabinet includes the necessary electronic boards to control the 
robot (processor cards, analog and digital input-output cards, security cards, etc.), amplifiers, power 
supplies, fans, etc. To connect the robot to its cabinet There are two types of connectors: power 
connectors and signal connectors (mainly related to sensors). 
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Figure 4.2- General structure of a robot associated with its numerical control  

As shown in figure 4.2, the robot is at the center of the system (Robot, control, environment and the 
operator). The operator expresses his requests to make the robot move to a defined position, outputs 
to be piloted or tests to be carried out. These orders are processed in software. The hardware 
interface, as the name (interface) suggests, is the intermediate element between this software part 
and all the hardware components connected to the robot (mainly sensors and amplifiers). Finally, the 
robot interacts with the environment through actions (open/close grippers, on-off pneumatic 
actuators, etc.) and sensors (presence/absence of a part, closing, opening of a door, force sensor, 
motion detector, etc.). The environment is very much related to the application the robot should be 
part of; it can be simple positioning of objects, collaborative work around a part, welding, polishing, 
deburring, or even machining of parts. 

This chapter will thus be divided into three sub-chapters which will each introduce and detail the three 
important parts of robot control, namely: 

● Control algorithms. 
● Hardware. 
● Software. 

4.3 Mechanical components of a robot 

4.3.1 The axis 
The basic element of a robot is the axis. An axis is a motorized mechanical element followed by a 
transmission. If there is no transmission we will speak of a direct actuation (Direct drive in English). 

There are two types of axes: 

● A linear axis. 
● A rotary axis. 
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The linear axis is either a simple direct drive type linear motor or an axis obtained with a rotary motor 
and rotary-linear transmissions1.  

  
Two examples of motors (ref. Etel) Linear motors with magnetic rod (ref. LinMot) 

Figure 4.3, Examples of linear motors 

Concerning transmissions, we mainly distinguish the following types: 
o Screw-nut, 
o Rack-pinions, 
o Belt 
o Chains are very little used because they are heavy and not synchronous (polygonal effect). 

 
  

Linear axis with screw-Nut Linear axis with rack pinion mechanism Linear axis with belt 

Figure 4.4, Examples of rotation-linear transmissions 

And what else! 
Here is the example of some slightly exotic translational systems dedicated to special applications. These systems are 
not linear but curved: 

 

 

 
Pneumatic curvilinear transfer (ref. 

SMC) 
Curvilinear guidance (ref. THK) Example of a parallel robot with 

curvilinear guidance (ref. Eclipse) 

Figure 4.5, Examples of curvilinear translations 
 

Rotary axes: Rotary axes are often composed of a motor and a transmission. This transmission mainly 
includes elements such as a belt or gear reducers2; sometimes an angle transmission. 

 
1 For more details see the chapter “actuators” 
2 Gear reducers (gear stages, planetary, cycloidal, harmonic drives,…) are covered in the lecture “Applied and 
Industrial robotics”. 
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Whether for linear or rotational transmissions, backlash compensation is an operation that is always 
considered. It often involves additional prestressing, the effect of which on positioning accuracy will 
be discussed later in this lesson chapter. 

4.3.2 The robot 
We defined the robot as a poly-articulated, motorized and instrumented mechanical structure of which 
the axis is the basic component. The combination of the movements of the axes while respecting a 
given kinematics gives rise to the robot. 

Taking for example three separate linear axes, we can obtain the following different structures: 
o three-axis robot Cartesian,  
o a parallel robot like the Linear Delta or the Orion,  
o any combination kinematic  
o or even three completely independent axes. 

 
 

Cartesian machine 3 axes XYZ Parallel robot Linear Delta (ref. Unimec). 

Figure 4.6, Examples of robots 

The construction of the structure, and therefore the choice of the kinematics, defines the type of 
control required. We refer to axis control, multi-axis control, numerical control or even robot control. 
All these terms are used; sometimes you get lost but what you have to remember is that they are all 
valid. 

So, Robots or not Robots. 

A pithy turn of phrasing, any machine involving motorized and automated operations is commonly 
referred to as a "robot". For instance, it may be loom robots such as weaving, cutting, folding robots, 
etc. These robots are also well controlled with axis commands to control their motors in position or in 
velocity according to the required mechanical operations. 

Weaving robot Weaving robot Robot with press brake 

Figure 4.7, Examples of professional robots 
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4.4 Closed loop control algorithms 
The algorithmic part of robot control concerns the mathematical tools necessary for formalizing the 
behavior of the robot with its control. This formalization is linked to the following two aspects: 

• The adjustment algorithms, 
• The generation of robot trajectories, i.e., the geometry of the generated trajectories and the 

generation of the associated temporal profiles. 

4.4.1 Regulation and servo-control aspects 
The objective of a closed-loop control of a physical system is to reach a desired setpoint and to remain 
as close as possible to it. The classic diagram of such a closed-loop control is as follows3: 
 

 

Figure 4.8, Block diagram of the closed-loop control of a robot 

The controller is the algorithm that uses the information of measured and desired positions to 
guarantee the position to follow the desired setpoint (respectively of the speed).  

Other terms for the controller:  
● control, command, regulation, … 
● controller, control unit, regulator,…  

To control what?  
● the position of an axis, 
● the speed of an axis.  
● the force (at the joints or at tool output). 

Parenthesis 
Robot motors are often direct current motors (DC for Direct current) brushed (brushed) or 
brushless (brushless) motors. DC motors are controlled by voltage or current and we respectively 
refer to speed or torque control modes, because the speed is proportional to the motor input 
voltage; respectively the torque is proportional to the input current of the motor (via the speed 
constant, respectively via the torque constant). 

4.4.2 Classic P, PD, PID controllers 
The controllers P, PD, PI and PID are the most classic controllers used for controlling a robot. These 
controllers are composed of the proportional, derivative and integral contributions of the error on the 
position4. The proportional contribution is proportional to the error. The derivative contribution is 
proportional to the derivative of the error. The integral contribution is proportional to the integral of 
the error. 

 
3 Pay attention, this diagram does not include the power stage of the robot motors (power amplifiers). 
4 In what follows we will exclusively interest in the generalized position variables. The reasoning with respect to velocities is 
similar. 

 

 
 

Controller 
 
 

Desired 
position + 

- 

+ 

   _ 
Measured 
position 
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Here are the expressions of the different contributions: 

Proportional contribution:   𝑢௣ = 𝐾௣ ∙ 𝑒 

Derivative contribution:   𝑢ௗ = 𝐾ௗ ∙
ௗ௘

ௗ௧
 

Integral contribution:    𝑢௜ = 𝐾௜ ∙ ∫ 𝑒(𝜏)𝑑𝜏
௧

଴
 

The P controller includes only a proportional contribution, 

The PD controller includes the proportional and derivative contributions and is written as follows: 

   𝑢௉஽ = 𝑢௣ + 𝑢ௗ = 𝐾௣ ∙ 𝑒 + 𝐾ௗ ∙
ௗ௘

ௗ௧
 

Other writing  𝑢௉஽ = 𝐾௣ ∙ ቀ𝑒 + 𝑇ௗ ∙
ௗ௘

ௗ௧
ቁ 

The PI controller includes the proportional and integral contributions and is written as follows: 

   𝑢௉ூ = 𝑢௣ + 𝑢௜ = 𝐾௣ ∙ 𝑒 + 𝐾௜ ∙ ∫ 𝑒(𝜏)𝑑𝜏
௧

଴
  

Another writing  𝑢௉ூ = 𝐾௣ ∙ ቀ𝑒 +
ଵ

்೔
∙ ∫ 𝑒(𝜏)𝑑𝜏

௧

଴
ቁ 

In this case we refer to the integration time constant Ti. Pay attention that the integrator effect is more 
important as the observation of time Ti is small. 

The PID controller includes the three contributions, the proportional, the derivative and the integral 
contributions and is written as follows: 

   𝑢௉ூ஽ = 𝑢௣ + 𝑢ௗ + 𝑢௜ = 𝐾௣ ∙ 𝑒 + 𝐾ௗ ∙
ௗ௘

ௗ௧
+ 𝐾௜ ∙ ∫ 𝑒(𝜏)𝑑𝜏

௧

଴
  

Another expression  𝑢௉ூ஽ = 𝐾௣ ∙ ቀ𝑒 + 𝑇ௗ ∙
௢௙

ௗ௧
+

ଵ

்೔
∙ ∫ 𝑒(𝜏)𝑑𝜏

௧

଴
ቁ 

To understand the contributions of the proportional, derivative and integral terms, consider the torque 
control of a DC motor. In this case, the calculated command is a torque (or a force for a translational 
system). Here are the questions which will help to clarify our purpose:  

Question: To which mechanical element corresponds the proportional action? 

Answer: It is an element whose applied force is proportional to the elongation around a position of 
equilibrium. So, it is a spring. This to say that the proportional action produces the same behavior 
as a spring and the proportional gain Kp contributes to the stiffness of the control. 
The natural frequency of the closed loop system is also directly related to this proportional action. 

Notes: 

● The higher the gain Kp, the stiffer the system (conversely, the lower Kp, the more compliant or softer 
the system). 
● The higher the gain Kp, the higher the natural frequency of the system and the system responds quickly 
(the system time constant is lower). 
● The higher the gain Kp, the lower the control sampling period must be (due to the low time constant). 
● The higher the gain Kp, the more the closed loop system is likely to oscillate because of the saturation 
of the control variable which implies that the system operates in open loop during the saturation. 
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Question: To which mechanical element corresponds the derivative action? 

Answer: It is an element whose applied force is proportional to the derivative of the elongation 
around a position of equilibrium. It is therefore a viscosity or a viscous friction. This to say that the 
derivative action produces the same effect as a damper whose damping coefficient is Kd.  

Notes: 

● The higher the Kd gain, the more the system is braked and damped. 
● The higher the Kd gain, the slower the system becomes. 
● A compromise must be found in order to ensure the best possible dynamic behavior (a 

damping coefficient equal to 1 corresponds to the critical regime: see figure). 
● The bypass operation amplifies the noise. Particular attention must be given to the static 

behavior when the setpoint is constant and the quantization of the speed becomes 
predominant (see paragraph 3.1.4). 

● A high Kd gain may cause chatter in behavior due to velocity quantization. 
● The derivative action is an anticipation on the dynamic behavior (because of the information 

of increase and decrease of the error). This information is additional to the simple error 
information, which modulates the value of the command as proportional to the velocity to 
improve the dynamic behavior. 

 
Figure 4.9, Responses of a typical second-order system 

Question: To which element corresponds the integral action? 

Answer: The integration operation is an accumulation operation, i.e. analog to that of a capacitor 
which charges when it is put under direct voltage. Integral action therefore amounts to 
accumulating the command quantity as long as the error is not canceled out. When there is a static 
difference, the proportional action has no effect (because the difference is static and the 
proportional contribution therefore remains constant). The derivative action is zero (within a 
quantification error). There is only the integral action which can have effect to cancel this static 
variation. The integrator is a perturbation is perturbation estimator that dynamically compensates 
for the estimated perturbation, till converging in the steady state to the right value which is at the 
origin of the steady state error. (ref, additional document P / PD and PID control on Moodle). 

 

Critic 
behaviour 

Pure oscillatory  
behaviour Good compromise  

Overshoot of 4.5% 
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Notes: 

● The higher the Ki gain, the faster the static error is reduced. 
● The higher the Ki gain, the greater the integral action and the faster the integrator is charged. 
● If the integrator loads quickly, you will have to pay attention to changes in direction that 

require the integrator to unload. A limitation of the maximum load of the integrator is 
necessary: “Anti-Reset Windup” (ARW) operation.  

 

Exercise 4.1. Current control of a direct current motor (DC, Direct Current) 

Consider a DC motor with torque constant kt and inertia Jm. This motor is current 
controlled to rotate an inertial load JL through a gear reducer n. 
● Establish the dynamic model of the motor with and without viscous friction of 

coefficient fv (current-position relationship) 
● Prove that in the absence of viscous friction, that it is impossible to control the 

position of the motor with simple proportional feedback? 
●  Loop the motor with a PID and determine the closed loop transfer function. 
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Exercise 4.2. Effect of Dry Friction 

Consider a DC motor with torque constant kt and inertia Jm. This motor is current-
controlled to rotate an inertial load JL. This system presents a dry friction of torque dry. 
The figure below shows how dry friction acts (ω is the speed of the motor) 

 

Figure 4.10, Coulomb model of dry friction 

 
• Show that in the presence of dry friction, the command in position of the PD 

automatically induces a static deviation on the position. 
• What solution do you propose? Show the effectiveness of the proposed solution. 
• Is it the same in the case of any disturbing torque? 
 

 

 
 
 
  

 

dry

 

sta 

dyn 
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4.4.3 Cascaded PID Controller 
Another technique that is also widely used is the technique of cascaded position control with velocity 
control. 
The following diagram represents a PI speed loop of a motor; 

 
Figure 4.11, PI speed loop of a DC motor 

This technique is widely used because of the availability of speed loops on all motor drives currently 
available on the market. It then suffices only to implement a additional cascaded position control loop. 
Fr instance, the fast speed loop can be on the motor drive and the position loop on the computer, or 
both on the motor drive. The following block diagram illustrates a cascaded position / velocity control 
loops. 
 

 
Figure 4.12, PI speed loop cascaded with a P loop in the position of a DC motor 

To improve this loop two a priori contributions can be added: the speed a prior and the torque a 
priori. This gives the following control diagram: 

Figure 4.13, Position-speed cascaded loop with a speed a priori and a torque a priori 
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The expression of the cascaded PID control law with a speed and torque prior is given as follows: 

𝛤 = 𝛤௥ + 𝛤௔௣ = 𝐾௣௩ ∙ 𝑒ఠ + 𝐾௜ ∙ න 𝑒ఠ(𝜏)𝑑𝜏 + 𝛤௔௣ 

Where:   𝑒ఠ =  𝜔௥ + 𝜔ௗ − 𝜔 

𝜔௥  is the contribution of the position regulator Pposition, 𝜔௥ = 𝐾௣௣(𝑞ௗ − 𝑞) 

𝜔ௗ is the target speed of the robot trajectories. 

𝜔 is the measured joint velocity. 

Note: 
Depending on how the mechanical system is implemented (motorisation, transmission, load and 
disturbance), one can imagine that the position and speed loops are both PIDs. It is therefore 
necessary to be very careful with the errors of quantifiation of the speed (paragraph below). 
 

 

4.4.4 Control, measurement and quantification 
The sensors used for measurement, their resolutions and their technologies are important aspects for 
the positioning accuracy. 

Parenthesis 
The sensor resolution is the smallest value that can be measured. 
Accuracy or the reachable precision concerns the entire system, ie the mechanics, the electronics, 
the sensors and the used control algorithms. The accuracy is at best equal to twice the resolution 
of the sensors. 
 

A few reminders about position sensors 

To measure the position of robots, incremental encoders or resolvers are most often used. In most 
cases, the signals are transmitted from the sensors to the numerical controller in a differential way to 
reduce noise. Moreover, the incremental encoders are transmitted by digital pulses which makes them 
quite robust to classic analog noise. 

 
Signals from an incremental sensor SIN/COS sensor 

Figure 4.14, Position sensors 

Analog sensors of the potentiometric type are not recommended for servo operations because they 
are very sensitive to noise and their resolution is limited. 
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Exercise 4.3 

Consider a 10-turn multi-turn potentiometer powered between +/- 10 volts. The 
acquisition is carried out using a 12-bit analog-to-digital converter.  

● What is the position resolution of this sensor? 
● Is there a possibility to improve this resolution? Discuss your proposal. 

 

A few reminders on velocity sensors 

The velocity used for robotic servo-control is most often obtained by digital derivation of the position 
(the analog tachometric signal being too noisy). 

Let us consider 

● Ts   be the control sampling period. 
● R(θ): the position resolution. 
● R(ω): the velocity resolution. 

Obtaining the velocity by numerical derivation of the position at time (kTe) is as follows: 

𝜔(𝑘𝑇௘) =
𝜃(𝑘𝑇௦) − 𝜃((𝑘 − 1)𝑇௦)

𝑇௦
 

Which, gives the resolution of the following velocity: 𝑅(𝜔) =
ோ(ఏ)

ೞ்
 

In steady state, the control value should be constant. This assumption is not always true because the 
control value will fluctuate according to the position and velocity quantization errors (these 
quantization values correspond to the resolutions of the position and velocity measurements). The 
amplification effect of the digital derivation, because of the division by Ts multiplied by the derivative 

action, increases the noise of the derivative action:  𝐾ௗ ∙
ௗ௘

ௗ௧
= 𝐾ௗ  

௘(௞ ೞ்)ି௘((௞ିଵ) ೞ்)

ೞ்
. 

Let udq, be the control value corresponding to the effect of the derivation quantization noise. udq is 
expressed as follows: 

𝑢ௗ௤ = 𝐾௣ ⋅ 𝑇ௗ ⋅ 𝑅(𝜔) = 𝐾௣ ⋅ 𝑇ௗ ⋅
𝑅(𝜃)

𝑇௘
 

Therefore,  

● the more we want to dampen our system (high Td), the more this quantization control noise 
𝑢ௗ௤ increases. 

● The more we want the system to be dynamic or rigid (high Kp), the more this quantization 
control noise 𝑢ௗ௤ increases. 

This noise is unfavorable because it may excite the natural frequencies of our mechanics, cause 
limit cycles or even harm our mechanical components. To reduce this noise, suggested solutions 
are as follows: 
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● Reduce the resolution of the sensor; which has a direct impact on the complete system and 
its cost. 

● Reduce dynamics or damping; which has a direct impact on dynamic performance. 
● Increase the sampling period which also implies reducing the dynamics by the increasing the 

response time constraint. A possible solution would be to operate with two sampling 
periods: this approach is called oversampling. A faster sampling rate is used to calculate the 
proportional and integral actions and a slower sampling rate to calculate the derivative 
action. 

● Use derivative filters or derivative estimators, different from the Euler filter. A good 
compromise would be to carry out a derivative over 2 sampling periods as follows: 
 

𝜔(𝑘𝑇௘) =
𝜃(𝑘𝑇௘) − 𝜃൫(𝑘 − 2)𝑇௘൯

2 ⋅ 𝑇௘
 

Which, gives the following resolution of the velocity: 𝑅(𝜔) =
ோ(ఏ)

ଶ⋅ ೐்
 

 

Exercise 4.4. Quantization noise 

Consider a motor with a -velocity gear reducer n = 32, and a 500-line incremental 
encoder. This motor is controlled with a PD controller at a sampling rate of 1 kHz. 

•  What is the positional resolution of this axis? 
 
The velocity is obtained by numerical derivation. 
•  What are the velocity resolutions when the derivation are respectively 

implemented over 1 or 2 sample periods? 
 

• The gear backlash is about 0.5 degrees. Please comment? 

•  What is the quantization noise reported on the current? 
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4.4.5 Coupled model-based robot controls 

4.4.5.1 MIMO system 
In this section we consider robot controllers based on coupled dynamic models. These models are 
multi-input and multi-output models (MIMO, Multi Inputs Multi Outputs). 

 

Figure 4.15, Delta MIMO robot with three inputs and three outputs (i1, i2 and i3 are the motor currents 
and θ1, θ2 and θ3 are the motor positions) 

 

4.4.5.2 Notion of coupling: 

 

Figure 16, Representation of dynamic couplings 

Dynamic couplings concern the influence of the movement of one axis on another. These couplings 
are function of the robot positions and velocities. The dynamic model of a robot can be represented 
as follows: 

𝛤 = 𝐵(𝑞). 𝑞̈ + 𝐺(𝑞) + 𝐶(𝑞, 𝑞̇) + 𝐹(𝑞, 𝑞̇) + 𝐾(𝑞) 
 
 

 

 

 
 
 

Matrix of Inertia 

Gravity Centripetal and  
Coriolis  Friction 

Stiffnes 

Generalized  
torque 
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4.4.5.3 Robot models and control model 
We put the above model in the following form:  𝛤 = 𝐵(𝑞). 𝑞̈ + 𝐻(𝑞, 𝑞̇) 

This writing gives rise to different other model writings according to the knowledge of the system 

parameters and as required. 

 𝑞̈ = (𝐵(𝑞))ିଵ(𝛤 − 𝐻(𝑞, 𝑞̇))  Is the second-order differential dynamic model of the robot 

⇒ 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥). 𝑢 Is the state dynamic model of the robot 

𝑞̈ = ቀ(𝐵௠௢ௗ)ିଵ൫𝛤 − 𝐻௠௢ௗ̇()൯ቁ Dynamic model of the robot obtained during the first modeling 

𝑞̈ = (𝐵∗(𝑞))ିଵ(𝛤 − 𝐻∗(𝑞, 𝑞̇)) Simplified dynamic model 

𝑥̇ = 𝑓∗(𝑥) + 𝑔∗(𝑥). 𝑢 State model for simulation 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥). 𝑢 Simplified state model for control 

𝑞̈ = (𝐵(𝑞))ିଵ(𝛤 − 𝐻(𝑞, 𝑞̇)) Robot model of the second order for the control 

 

Example 

 
Figure 4.17, inverted pendulum 

Representation model: 

𝜃̈ =
𝑘௖

𝐽
𝑖 −

𝑚𝑔𝑙

𝐽
𝑠𝑖𝑛( 𝜃) −

𝛼௩௜௦(𝜔, 𝜃)

𝐽
𝜔 −

Γௗ௥௬

𝐽
−

Γ௣௘௥௧

𝐽
 

Γ௣௘௥௧  is a perturbation torque function of the play, temp, wear, 
etc. 
Simplified model  

𝜃̈ =
𝑘௖

𝐽
𝑖 −

𝑚𝑔𝑙

𝐽
𝑠𝑖𝑛( 𝜃) −

𝛼௩௜௦
∗

𝐽
𝜔 −

Γௗ௥௬

𝐽
 

State model for simulation 
𝑥̇ଵ = 𝑥ଶ 

𝑥̇ଶ = −
௠௚௟

௃
𝑠𝑖𝑛( 𝑥ଵ) −

ఈೡ೔ೞ
∗

௃
𝑥ଶ −

୻೏ೝ೤

௃
+ 

௞೎

௃
𝑖

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡.  (𝑥ଵ, 𝑥ଶ) = (𝜃, 𝜔) 𝑒𝑡 𝑢 = 𝑖 
 

 

State model for control 

𝑥̇ଵ = 𝑥ଶ 

𝑥̇ଶ = −
𝑚𝑔𝑙

𝐽
𝑠𝑖𝑛( 𝑥ଵ) −

𝛼௩௜௦
∗

𝐽
𝑥ଶ +

𝑘௖

𝐽
𝑢

 
 

Masse m 

 
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4.4.5.4 Methods for synthesizing control laws for robots 
Several control techniques exist for controlling robots. We have cited in the previous paragraphs the 
classic techniques which do not take into account the couplings between the axes of the robot (PD, PI, 
PID and cascaded PID loops). 

Other techniques are based on coupled models of robots and sometimes differ according to the chosen 
representation model. Three types of dynamic representations exist: 

● Second-order robot models (ref, previous paragraph) 
● Nonlinear model, first-order state space model. 
● Linear state space model, obtained from a tangent linearization. In this case, the linear control 

techniques are applicable (stabilizing state feedback, linear decoupling controls, RST, adaptive 
controls, etc.). 

 

Figure 4.18, Summary of some robot control techniques 

4.4.5.5 method by a priori torque compensation 
Principle,  

The a priori torque is the torque calculated using the inverse dynamic torque model according to the 
desired trajectories (positions, velocities and accelerations) . If the model is perfect (ie there is no 
modeling error), controlling the robot with this a priori will involve finding exactly the desired 
trajectories (ie q = qd). 

 

Figure 4.19, robot controlled in open-loop with its inverse dynamic model 

Nonlinear state space representations 
 

u).x(g)x(fx 

Modèles de commande 

   )q,q(H)q(Bq 1    

Second order robot model 

 
•  A prori torque control, 
• Computed torque control, 
•  Adaptative control, 
•  Predictive control, 
•  ... 

• Feedforward control, 
• Nonlinear linearizing input-output control, 
•  Adaptative control, 
•  Predictive control, 
•  ... 

State space representation (after tangent linearization) 

u.Bx.Ax 

 Robot       
 q Inverse Dynamic 

Model 

qd 
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It is unfortunately not possible to drive the robot in an open loop in this way because the models are 
never perfect and the slightest external disturbance will lead to unknown and undesirable behaviors 
due to the lack of feedback sensors. This a priori torque is helpful but not sufficient. The a priori is a 
tool which is used to improve the dynamic performance of positioning because it takes into account 
the couplings according to the desired positions, velocities and accelerations. 

The model of the robot does not correspond to reality! 

The following control diagram highlights the use of the inverse dynamic model as an a priori to 
compensate (in a priori) the known non-linearities and couplings. The rest of the imperfections are 
compensated by the linear controller added to this a priori. 

 

Figure 4.20, A priori torque control diagram. 

4.4.5.6 Computed torque controller, known as nonlinear linearizing input output 
controller 

This control technique is also called the linearizing input-output control technique. The robot is a 
physical system with a non-linear input-output dynamic with motor torques as Input vector and motor 
positions as Output vector (The only special case is that of Cartesian robots which are decoupled linear 
systems). The input-output linearization control technique amounts to compensating for the non-
linearities by looping and making the behavior linear with respect to a new input. More precisely, the 
dynamics with respect to this new input is equivalent to a double integrator for each joint. 

From the following nonlinear model: 

𝑞̈ = (𝐵(𝑞))ିଵ(𝛤 − 𝐻(𝑞, 𝑞̇)) 

Let the double integrator of the position variable be written as follows: 

𝑞̈ = 𝑣 

v is a new input and the system (input-output) which is (v, q) is a linear system with a dual 

integrator. 
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How to achieve this linearization?  

By the following loop:  𝛤 = 𝐵(𝑞). 𝑣 + 𝐻(𝑞, 𝑞̇) 

 

Which leads to the following closed loop expression: 

𝑞̈ = (𝐵(𝑞))ିଵ(𝐵(𝑞). 𝑣 + 𝐻(𝑞, 𝑞̇) − 𝐻(𝑞, 𝑞̇)) = 𝑣 

 

Figure 4.21, Linearizing loop (left) to transform the system into a cascade of double integrators (right) 

It is now necessary to stabilize the double integrators by a linear loop of the type, PD, PID, or any other 
advanced controller (adaptive, sliding mode, ...) 

 
Figure 4.22, Linearizing looping and stabilizing adjustment 

4.4.5.7 Exercise 4, Control of a robot axis by a priori and by the linearizing control 

 
Figure 4.23, inverted pendulum 

 

Consider a DC motor actuated robot axis- kt 
and Jm are respectively the torque constant 
torque and moment of inertia of the motor. 
We consider the current control mode.  
• Establish the dynamic model of the motor 

with and without viscous friction (current-
position relationship). What is the transfer 
function? 

• Loop the motor with a PD and an a priori 
torque command. 

• Loop the motor with a PD and a command 
with the linearizing command. 
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4.4.5.8 Principle of an adaptive control with input-output linearization: 

The linearizing loop studied previously is expressed as follows: 𝛤 = 𝐵(𝑞). 𝑣 + 𝐻(𝑞, 𝑞̇). 

Adaptive control techniques address the unknown terms of the model and come out to using 
estimators which identify these unknown terms by iterative algorithms. For the models of robots, one 
of the techniques peculiarly focus in the identification of the terms of the inertial matrix B(q) and the 
term 𝐻(𝑞, 𝑞̇). 

Let 𝐵෨(𝑞) and 𝐻෩(𝑞, 𝑞̇)  these terms to be identified. The model to be estimated is then expressed as: 

𝛤 = 𝐵෨(𝑞). 𝑣 + 𝐻෩(𝑞, 𝑞̇). 

The basic diagram of this control technique is given by the following figure: 

 
Figure 4.24, Self-adaptive linearizing 
looping and stabilizing adjustment 

4.4.6 Conditions for couplings to be considered as disturbances 
Whatever the robot considered, the dynamic equation for each joint i can be written as follows: 

𝑞̈௜ = 𝑘௖௜. 𝑖௜ − 𝑓௩௜ . 𝑞̇௜ − Γ௖௢௨௣௟௜௡௚௦(𝑞௜, 𝑞௝, 𝑞̇௜, 𝑞̇௝) 

• 𝑘௖௜is the torque constant of each joint actuator i, 

• 𝑓௩௜is the coefficient of viscosity at each joint i, 

• ii  is the motor current at joint i, 

• Γ௖௢௨௣௟௜௡௚௦(𝑞௜, 𝑞௝, 𝑞̇௜, 𝑞̇௝) is the effect of the other joints on the considered joint i. 

In some cases, the couplings Γ௖௢௨௣௟௜௡௚௦൫𝑞௜, 𝑞௝, 𝑞̇௜, 𝑞̇௝൯ can be considered as constant or quasi-constant 
disturbances and thus be compensated either by an integral action (term I of the PID) or a disturbance 
estimator implemented thanks to an observer or a parametric identification. This is possible if the 
following conditions are verified: 

• the dynamic couplings are weak. This can take place for example if the reduction ratios of the 
motors are so high that the inertia brought back to the actuators are very low (therefore the 
inertial torques),  

• The couplings are very slightly variable (thanks to a low dynamic) so that their effects can be 
eliminated by an integral action 
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4.4.7 The Be careful of the control tuning 
•  Always specify the type of adjustment and the conditions of implementation: 

• PI, PID, linear or not, with dynamic model or not,  

• Uses of certain artefacts such as dead zone, filtering, 

•  Always specify the sample period used. Sometimes, several sampling periods are used as in 
the case of a cascaded velocity/position loops- 

•  When making comparisons, always compare the comparable by specifying: 

•  the scales, 

•  the working areas, 

•  the values of the amplitudes, 

•  the desired time constants. 

•  Specify the difficulty of the choice of the parameters of the adjustment and the way in which 
they were sized. 
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4.5 Trajectory generation for manipulation robots 

 

Robot trajectory generation addresses trajectory patterns which connect two points of the robot 
workspace, as well as the way in which the velocity and the acceleration evolve over time.Trajectory 
generation is therefore associated with the following two aspects: 

 Geometric aspect, which considers the description of the set of intermediate points from the 
starting to the ending point. 

 Temporal aspect, which considers the description over time of the evolution over time of each 
generalized coordinate and its derivatives (velocity and acceleration). These evolutions as a 
function of time will later be called respectively acceleration, velocity and position profiles. 

The geometric and temporal aspects of a trajectory are definitely dependent, because any spatial 
(geometric) error induces a temporal error and vice versa. The shapes of the paths are very important 
and the time profiles must therefore be well chosen so as not to accelerate or decelerate anywhere 
on these paths. A good example to that is a circular path implemented at a constant velocity. The 
constant velocity along this circular path will induce a non-null acceleration, which is the centripetal 
acceleration V2/R, R is the ray of the implemented circle. 

4.5.1 Reminder on the transformation of coordinates 
The transformation of robot coordinates, also called geometric model, is very important in trajectory 
generation. The transformation of the coordinates of the robot is the relation which links the joint 
space and the tool apace of the robot. Regardless particular cases, the path of the robot is defined in 
its tool space where the operational task is defined, and the control of the motors is implemented in 
its joint. 

 

 

 

Figure 4.25, Joint and tool spaces (left) and direct and inverse coordinate transformations (right) 
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Summary of the uses of each model: 

 Inverse Geometric Model Direct Geometric Model 
Use Control of a robot, by calculating 

the joint coordinates from defined 
trajectories in tool coordinates. 

● Initialization of the robot by the 
deduction of the operational 
starting point. 

● Learning points by measuring 
operational coordinates. 

● Control in operational space by 
measuring operational 
coordinates. 

 

4.5.2 Admissible trajectories 

A trajectory is admissible if: 

•  it is geometrically feasible; it does never leave the robot workspace, 

•  it is temporally feasible; the velocities and accelerations can be achieved by the motors.  

To that, it is necessary that: 

• The power electronics is appropriate to perform the required motor voltage and current. 

• The hardware is appropriate for data acquisition and computing the required control in the 
convenient sampling period. 

• The control algorithm is appropriate for the required performance and its parameters are 
well adjusted. 

• The motorization is adequate for the required dynamic performance (velocities and torques). 

4.5.3 Geometric aspects of robot trajectories 

The basic patterns used to define a robot’s trajectory are the straight line and the arc of a circle. The 
term interpolation is a very common term to describe a robot or machine tool path.  

What is path interpolation in the CNC world? In the case of trajectory generation, we refer to 
interpolated axes when the movements of these axes are geometrically dependent. 

The basic known interpolations in the world of multi-axes machines and robots are: 

  linear interpolation, 

  circular interpolation (clockwise and counterclockwise). 

Other interpolations also exist: 

  spiral interpolation, 

  helical interpolation, 
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Here, are some typical trajectories for picking up and depositing objects (pick and place): 

 

Figure 4.26, Typical pick-and-place trajectories 

4.5.4 Temporal aspects of robot trajectories 
To characterize the trajectory of the robot over time, we refer to profiles.  The profile defines the time 
curve of the desired position, the desired velocity, or the desired acceleration. We generally refer to 
velocity profiles and acceleration profiles, the position profile is automatically deduced from that of 
the velocity by integration.  

The simplest profile, to define the desired position, is the step profile. It is a 0-order profile that is 
discontinuous in position, which means that we require the robot to instantaneously move from one 
defined point to another point. The position step profile, commonly used  in the theory of control to 
deduce transfer functions, is too aggressive and generates a lot of oscillations and is not appropriate 
for tracking. 

 
Figure 4.27, Step position to position trajectory, interpolation of order 0. 

 

The most known and used profile is the trapezoidal velocity profile (also called Bang-Bang in 
acceleration and parabolic in position).  

a 

Figure 28, Trapezoidal profile in velocity (Bang Bang in acceleration) 
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Unfortunately, the trapezoidal velocity profile also 
implies a too brutal solicitation of the mechanics 
because of the instantaneous transition in the 
acceleration, thus of the motor torque. To avoid this, 
we simply smooth the acceleration rise by adding a jerk 
phase (the jerk is the derivative of the acceleration). 
This new profile corresponds to a trapezoidal 
acceleration profile, which is smoother for the 
mechanics and is also called parabolic in velocity profile 
(ref. side figure). 
 
 
 
 
 

Figure 4.29, Trapezoidal profile in acceleration, or 
parabolic in velocity  

 

 
Figure 4.30, Parameters of the trapezoidal profile in 
acceleration 

4.5.5 Continuous profile generation  

Let us consider the points A, B, C, 
D, E and F that define a path from 
point A to point D. The common 
path of a robot from point A to 
point F amounts to traversing the 
intermediate positions with a 
stop at each point (Figure 4.31). 
 
 
 
 
 

Figure 31, fittings with stop at each 
intermediate position 

 

Acceleration 
max 

Velocity 
max 

Deceleration max 

Jerk time 
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In machine tools and in certain robotics applications (such as welding or painting), it is not necessary 
to stop at intermediate positions. Continuous profiles are thus used with a starting phase, phases at 
constant velocity and a braking phase (figure 4.32). 

 
Figure 4.32, Continuous connected velocity profiles without stops at intermediate positions 

 

Continuous profiles (continued): management of connections: 

To reduce the effects of high accelerations at the intermediate positions, we may respectively 
decelerate then accelerate, for example by modulating the acceleration and deceleration depending 
on the angle at these transition points. This will make the acceleration smoother. 

 
Figure 33, Continuous transitions with management of accelerations and decelerations at intermediate 

positions 
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4.1.1 Synchronization of axes 
In some multi-axes implementations, geometric dependencies do not exist, by considering for example 
two rotary axes of a tool changer, two independent linear axes, two conveying axes, etc. In that cases, 
multi-axes trajectory interpolation does not apply and we have to consider multi-axes synchronization 
to generate the desired trajectories.  

To illustrate this situation, consider two axes x1 and x2, the movement from position 1 defined by the 
coordinates (p1_x1, p1_x2) to position 2 (p2_x1, p2_x2), can be performed either by: 

▪ Sequentially moving the axes 1 and 2, one after the movement ending of the previous one. 

▪  Independently moving the two axes, ie each axis moves according to its own dynamics defined 
by the its velocity profile. 

▪  Synchronizing the movement of the two axes, by constraining their movements to the slowest 
velocity profile. 

The following figure illustrates the three operating modes for trajectory generation: 

 

 

Figure 4.34, Types of axis synchronization (left on the right, sequential, independent, synchronized) 

 

 
Notes: 
● The interpolation of the axes concerns the geometry of the robot trajectories. 
● Synchronization of the axes does not define any geometry of the path and it is only related 

to the management of the velocities and acceleration profiles. 
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4.2 The hardware part of a robot control 

4.2.1 Elements of a control cabinet 
The control cabinet is made up of the following elements: 

● Processor board, which embeds all the software modules of the controller. 
● Electronic boards, to acquire sensor signals, as: 

● Acquisition of digital signals for on/off sensors. 
● Acquisition of analog signals, for example to measure forces, temperature, etc. 
● Acquisition of specific signals such as quadrature counters for incremental encoders. 
● … 

● Electronic output boards, to set electric signals, as: 
● Analog signals, to control the motor drives, etc. 
● Digital signals, to control relays, grippers, etc. 
● Miscellaneous signals, such as pulse generation, PWM, sine, etc. 

● Card buses. 
● Power supplies. 
● Fans. 
● Connectors, electrical terminals and cables. 
 

 

Figure 4.35-a, Robot Controller: Architecture overview 
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Figure 4.35-b, Robot Controller: Example of a motherboard-based architecture  

 

  
 

Figure 4.36, Examples of industrial numerical controller. From Left to right, EPFL robot controller, Adept 
controller and ABB controller   

5.2.1.1 The cabinet 
The cabinet is the first hardware component of the controller. It is the casing in which all the other 
components of the control are fixed. 

     
Figure 4.37, Examples of control cabinets 

5.2.1.2 Acquisition boards, 
which we also call input-output (IO) boards (Acquisition boards, Input-Output (IO) boards) are the 
hardware interface between the robot and the processor card. All types of interfaces may be required 
(analog, digital or other). The minimum structure necessary for controlling a robot requires the 
following components: 
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1. Analog outputs for controlling the motors via their analog drives (for torque control or for velocity 
control). 

2. Incremental encoder inputs which consist of quadrature counters. 
3. Digital inputs and outputs for controlling relays and reading digital sensors (presence/absence of 

parts, door closing, end, etc.) 

Acquisition cards for controlling robots (often designated by axis boards) exist in all bus formats: PCI, 
Compact PCI and VME. 

          
Figure 4.38, Examples of axis boards, from left to right, PCI (sensoray 626), PCIe (Sensoray 826) and CPCI NI  

4.2.2 Motor and fieldbus drives  
In the case of analog control, the motor drives are controlled by an analog setpoint which imposes the 
value of the voltage or the current to respectively fix the motor output velocity or torque (Figure 39).  
 

Figure 4.39, Example of wiring a Maxon servo amplifier (description in table below) 

Signal Type Value Description 
Vset Analog -10V to 10V Torque or velocity reference according to drive configuration 
Gnd Analog 0V Ground 
Enable Discrete 5V Amplifier activation (Enable) 
Ready On/Off 5V Amplifier status (Ok or not) 
M+, M- Analog -- Brushed motor terminals 
Vcc Analog 50V/5A DC drive power supply 

  Table: Outline of the connections in the figure 4.39 
 

Digital communications are appropriate to communicate between a computer board and a remote 
device, or between 2 computers. The most common digital communication interfaces may be 
enumerated as follows: 

 

 

Mot 

Vset 

Gnd 

Enable 

Ready 

Gnd 

Gnd 

V

M+ 

M- 
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• Serial communication (as RS232, RS422 , and RS485) 
• Ethernet 
• USB 
• Wireless ethernet 
• Bluetooth 

However, industrial communication needs industrial-compliant buses: Fieldbuses. 
Fieldbuses are communication buses for industrial automation. Each Fieldbus is defined by its physical 
layer, is associated with a bus protocol, and has a topology.  The International Electrotechnical 
Commission (IEC) as IEC 61784/61158 describes the standardization of the fieldbuses.  

Fieldbuses are increasingly used. They are a great alternative to analog technology and only use digital 
communication. Fieldbuses (fieldbuses) are used in the field of industrial automation mainly to 
improve the interconnection of components. They are all built around serial digital communication of 
data between a main automation unit and several input/output components. The connection 
configuration between components is called bus topology. The most frequent topology is that in 
“Daisy-Chain” with a master and several remote modules which interconnect in chain one after the 
other.  

In this chapter, we will introduce 3 Fieldbuses: CANopen, Profibus, and EtherCAT. They all have a daisy 
chain topology. 

 
Figure 4.40, Principle of Daisy chain topology 

The input-output components affect all the automation functions (analog reading, reading of digital 
inputs, relays, stepper motor control, motor drive, etc.) and allow not only deport the input-output 
function from the master component but also to distribute the functions according to the needs of the 
automation of the robot and its components. 

The following paragraphs give a brief overview of the main field buses used for motion control. These 
field buses all have a protocol dedicated to the control of electric motors which enables to control the 
position of the axes either in “point mode” or in “profile generation mode”. In all cases, the position 
control loop is located in the motor drive. 

● Profile generation mode: This mode makes the axis module totally autonomous in its profile 
generation. The positioning path between the home position and the target position is generated 
in the drive. It is a simple and ideal mode when the axes are independent or when there is no 
need for interpolation or synchronization. 

● Point-to-point mode: In this mode the points of the path are updated from the master at each 
sampling period. This period often varies between 250us and 2ms depending on the type of bus 
and the nature of the application. Synchronization and interpolation of the axes is ensured by the 
control software used at the master level. 
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4.2.3 The CANOpen (1Mbit/s) 
The CAN open bus is a serial bus which reaches a transfer rate of 1Mbit/sec. It is an extension of the 
CAN bus. Its implementation on a master computer unit requires the use of a CANOpen master card. 
Compared to other field buses, CANopen is very slow and is not the best choice for operating modes 
requiring interpolations or synchronization of axes. Its topology is the Daisy chain. The example below 
shows an implementation with CANopen modules. 

EPOS 24/5 and DC motor  
Figure 4.41, Example CAN Open implementation, using the ePOS module from Maxon  

4.2.4 The PROFIBUS (9.6 kbit/s to 12 Mbit/s) 
This serial bus allows transmission rates faster data transfer (up to 12 Mbit/sec). It was initiated and is 
promoted by Siemens. However, its specifications are open to other manufacturers in order to be able 
to interconnect components from various suppliers. Its topology is the Daisy chain. The example below 
shows an implementation with a 5-axis parallel robot. In this case, the position loop was implemented 
on the PC, which requires the use of a Profibus master card. 

 
Figure 42, Using the Profibus bus – Example of an implementation with a 5-axis parallel robot 

4.2.5 Ethercat 
Ethercat is currently the most widely used Fieldbus for both automation and motion control. It was 
developed by the company Beckhoff and it allows transmission rates of up to5 100Mbits/sec. Its 
attractiveness is linked to two important elements:  

● Ethercat uses the Ethernet component on standard computers and processor boards and 
therefore does not need an additional master card. Only change the native Ethernet 
component driver to an Ethercat driver and it works. 

● The high transmission rate of the bus enables to have sampling refresh rates reaching 250s. 

Some numbers (2018); 

o 256 digital I/O in 11 μs 
o 200 analog I/O (16 bit) in 50 μs, 20 kHz Sampling Rate 
o 100 Servo-Axis (each 8 Byte IN+OUT) in 100 μs = 0.1 ms  

 
5 The new EtherCAT G moves the maximum data rate up to 1 Gbit/s and 10 Gbit/s (ref. Beckhoff) 
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Figure 4.43, Using the Ethercat bus – Example of an implementation with a Delta robot 

4.2.6 Cascaded control using fieldbus motor drives 
Position and velocity control loops can be setup either on the computer or on the motor drive. 
However, with the clearly improved capacities of the drives, the most interesting configuration is the 
following: 

 

 

Figure 4.44, Example of distribution of servo loops between the drive and the central 

 

Furthermore, if the refresh period of the position setpoints is not sufficient, many drives are able to 
interpolate the position setpoints between two consecutive refresh times. This allows to reduce 
position setpoint discontinuities; e.g. by replacing the setpoint steps with ramps. 

 

4.2.7 Advantages of fieldbuses 
• Reduction of wiring. 
• Distribute input-output functions according to automation needs. 
• Dissociate the control from the trajectory generation, thus dissociate the businesses and the 

solution providers. 
• Increase the quantity of information to send to the motor drives. It is indeed possible to update 

the parameters of the control loops at each refresh period (fig 4.45), or even calculate the a priori 
dynamic model and send it through the bus, to consider a priori coupling compensations (fig 4.46). 
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Figure 4.45, Fieldbus – Control loops with variable parameters according to the position of the robot 

 
Figure 4.46, Fieldbus – Control loops with implementation of a prior torque 
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4.3 Software part of the control of a robot 
In this part of the course, we consider the software components necessary to build (develop) a robot 
control. 

 

4.3.1 The real-time operating system 

5.3.1.1 Operating system 
An operating system is: 

• An orchestra conductor who manages all the hardware 
and software resources of the system in question 
(processor board and associated boards). 

•  A software application running under a given family of 
hardware (processors). 
 

 

 

 
The control application will work thanks to this conductor who will manage all the tasks that 
implements our control software. 

5.3.1.2 Real Time: Was Ist Das? 
At first, to control a robot we must master time. To formalize this mastery of time, we say that the 
operating system must be real time (or have the characteristic of real time). This mastery of time is 
also called determinism. 

A real-time operating system is specified as follows: 

1. supports multitasking 
2. supports synchronization events, 
3. is deterministic in the execution of tasks, 
4. is deterministic in the consideration of interrupts, 
5. is deterministic in handling events. 

 
 

The resources to be managed are: 
 Physical memory allocation. 
 Allocation of processor availability. 
 Interrupt management and start of associated routines. 
 Management of task execution priorities 
 Management of communication events between tasks 

When we master time with regard to its orders of magnitude (minutes, seconds, ms, s...), we will 
say that we operate in real time. 
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Figure 4.47, Real-time application 

 
Note: Windows operating systems (8, 10, and 11) and Linux operating systems (Ubuntu, Red 
Hat,..) are not real-time operating systems although they are able to ensure appropriate operations 
about the ms when they are not over loaded. Some use them to develop non-critical real-time 
applications (ie. which do not obey the above requirements!). 

4.3.2 Tools for developing real-time embedded applications 
Every real-time OS (Operating System) comes with its own development system.  

Development keywords: 

• The host is the machine on which the developments are carried out 

• The target is the machine on which the robot control application runs, 

• Cross development, means to develop on a central unit called Host (of type PC for example) for 
another machine called target which contains the control software, 

• Cross compilation, means to compile an application on a processor for another processor (see also 
another family of processors) 

• Upload the application onto the target after cross-compiling it. 

• The Shell is a remote-control command interface that runs on the Host, 

• The terminal, is an application to view the exchanged information between the host and the target. 

Real time is a software specificity of applications when the reaction to the occurring events 
is realized in a deterministic way. By event we mean: 

 an interruption (software or hardware), 
 the periodic launching of an operation,  
 the access to a memory for reading or writing. 
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Figure 4.48, Example of a robot control application with its cross-development tools 

4.3.3 Real-time communication mechanisms 
A real-time OS is a multitasking OS. A real-time application is built around several tasks or processes. 
The processes use communication mechanisms (IPC: Inter Process Communication mechanisms) to 
synchronize and exchange data. 

These mechanisms are: 

• Binary semaphores: objects that can be exchanged and are consumed or provided. 
•  Counter semaphores: are initialized to a given number and are consumed or supplied until 

the stock is exhausted. 
• Mutexes are semaphores that are either available or in use by a resource. 
• Shared memories are memory zones. 
• Messaging to exchange character strings. 

4.3.4 List of real-time operating systems  
Real time operating systems (RTOS)  

 VxWorks from WindRiver 
 QNX  OS by QNX Software, 
 LynuxWorks by LynxOS Inc. for embedded and real-time systems,  
 MS Windows .net by Microsoft, 

Real-time extensions for non-real-time operating systems 
 RTX from IntervalZero Inc. is a real-time extension for systems running Microsoft OS, 
 RTLinux  real-time extension for Linux, 
 Others for Linux (such as RtaiLib),  
 Others for MS Windows such Hyperkernel, InTime,…. 
 ROS2, includes REAL TIME CAPABILITIES, while the first version ROS is a "Robot Operating" 

framework – ROS2 extends to Linux 
Kay, J., & Tsouroukdissian, A. R. (2015). Real-time control in ROS and ROS 2.0. ROSCon15. 

Microcontroller Operating Systems  
 FreeRTOS for Atmel, Microchip, ARM7, ARM9, Cortex-M3, MSP430, MicroBlaze,  
 PIC32, 32-bit, RTOS for Microchip Technology's Microcontrollers from Express Logic. 
 Linux, 
 ARMOS, BeRTOS, Apache MyNewt (ARM, Cortex-M3, ARM ARM7TDMI,)  
 
A complete list can be found in:  
   https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems 
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4.3.5 The robot control application 
The robot control software contains all the functional blocks previously studied, namely those 
represented by the figure below: 

 
Figure 49, Components of the control software 

High-level orders, concern all functions that manage the man-machine interface, high-level orders but 
also the management of any type of operator interface. High-level orders can concern sending of the 
path parameters, the configuration of the dynamics, the control parameters, the activation of the 
grippers, the verification of the status of a digital input, and the counting of 'high-level operations (such 
as a number of succeeded or failed object grasping). 

Trajectory generation handles trajectory generation with parameters sent from the top-level layer. It 
is in this module that the management of the paths, the profiles of velocities and accelerations, the 
interpolation, and the synchronization of the axes are carried out. This module is often called the 
interpolator.  

Coordinate transformation, this module implements the direct and inverse geometric models. It is 
possible to integrate this module into the previous trajectory generation module. 

Motion Control, formed mainly by the periodic axis tuning loop. 

Board drivers manage the acquisition boards and provide the function services to access to the board 
input and output registers  (analog reading, digital reading, encoder reading, counter reading, 
activation and deactivation of digital outputs, control of analog outputs, etc.) 

Safety concerns the management of the security of the numerical control and of the robot. It can be 
implemented in the form of a periodic tasks which test the validity of position and velocity errors, the 
validity of position and velocity desired trajectories, test of sensor redundancy, test of certain 
differential limits on joint positions, etc. 

Note: These axis software modules can be implemented either as a task (equivalent to a thread 
under Windows), a dynamic or static library, or either as a class. 
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4.3.6 The minimal controller: 

 
Figure 4.50, Minimal structure of a robot command 

The high level orders may be implemented as a library of supervision to provide simple operator 
functions as GoToPoint(X,Y,Z), ActivateControl(), DeActivateControl(), GripperOn(), GripperOff().  
The Control loop is the most important, it reads sensors, calculates motor torques and sends 
commands to the amplifiers, etc. 
The trajectory generator generates the profiles and performs the axis interpolation. 
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4.4 Appendix 1: Calculation of trajectory profiles 
Consider a linear motor (M). The problem statement of this topic concerns the following question: 
“How to generate a position instruction to move from a position x0 at a position x1?”. Different time 
profiles of desired positions, velocities, and accelerations are presented in the next sub-sections. ∆x is 
the path length considered in this paragraph. We can replace it with ∆s; the curvilinear path 
distance if multiple degrees of freedom are to be considered. 

4.4.1 Step-like position profile 
In automatic control theory, we often start by learning that the easiest way to set a desired position 
is to use a step-like desired position. 

 

 

 

x(t) is then defined as follows: 

𝑥(𝑡) = {𝑥଴        𝑡 ≤ 0 𝑥ଵ          𝑡 > 0   

Let us observe the shape of the velocity and the acceleration corresponding to this movement from 
x0 to x1. 

 

The velocity and acceleration associated with this desired position are Diracs and will thus generate a 

brutal torque which is not good for the mechanics (life cycle of the transmission elements). This jump 

in acceleration also risks exciting undesired natural frequencies (because not taken into account by the 

control) and thus causing mechanical resonances. This sudden torque jump, if it is not taken care of by 

a judicious choice of the control parameters, risks causing overshoots of the controlled position. 

 In the case of the control of actuators in general and particularly for the control of robots, 

the step-like trajectories must never be used. 

 In practice, the velocity and acceleration (Dirac peak) are not infinite because the derivatives 

of the desired position, respectively that of the velocity, are carried out at the rate of the 

control sampling period Ts. 

 The maximum velocity and acceleration values are then given by: 
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4.4.2 Ramp-like position profile (Ramp) 
Another simple reference trajectory implements the desired position as a ramp-like profile. This 
trajectory is carried out at constant velocity all along the path. 
 
      

 

 

 

In this case, we set the end time of the desired path, the velocity is thus limited (constant). The 
acceleration jump remains nevertheless always brutal but less than in the case of a step. This profile 
is not appropriate for high velocities. 

Calculation of the trajectory: We assume the following for the calculation of the trajectory: 

● tf (time to complete the path) or Vmax (constant velocity along the path). 
● The distance to travel x = x1 – x0; 

Whether   𝑉௠௔௫  is imposed then   𝑡௙ =  
∆௫ 

௏೘ೌೣ
 

or   𝑡௙  is imposed then   𝑉௠௔௫ =  
∆௫ 

௧೑
 

Expression of the trajectory  

𝑥 =  ቌ

𝑥଴                                   𝑖𝑓 𝑡 ≤ 0 
𝑥଴ + 𝑉௠௔௫ ∗ 𝑡          0 < 𝑡 ≤  𝑡௙

 𝑥ଵ                                      𝑡 > 𝑡௙

 

4.4.3 Triangular Velocity Profile 
To avoid acceleration and deceleration diracs, one solution would be to limit the acceleration to a 
constant Accmax for half of the distant and decelerate with a constant deceleration Decmax on the other 
half of the distance. The velocity profile is thus triangular and the position profile is parabolic. 

 
Profile calculation assumptions:  

● Acceleration 𝐴𝑐𝑐௠௔௫ 
● Deceleration identical to the acceleration 
● The length of the path is ∆𝑥 

Unknown: tf 

t 

d/dt d/dt 

tf 
t 0

𝑥(𝑡)  

t tf 

𝑥̇(𝑡) 
𝑥̈ (𝑡) 
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∆𝑥 is the area of the triangle describing the velocity profile. 

∆𝑥 = 𝑉௠௔௫ ∗  
𝑡௙

2
 

𝑎𝑛𝑑 𝑉௠௔௫ = 𝐴𝑐𝑐௠௔௫ ∗
𝑡௙

2
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𝑡௙

ଶ

4
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Trajectory generation: 

𝑥(𝑡) =  
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This profile enables to complete the traveled distance in a minimum of time while having a constant 
acceleration and deceleration. However, the disadvantage is that the maximal velocity can be very high 
in case the traveled distance is high. It is is then recommended to limit the velocity, as in the trapezoidal 
velocity profile presented in the next sub-section. 

4.4.4 Trapezoidal velocity profile 

 

With this profile, we set the 
maximum velocity to (Vmax) and 
we limit the acceleration to 
(Acc_max), equal to the maximum 
deceleration Dec_max6. 
Profile calculation assumptions: 
● Acceleration Accmax. 
● Deceleration identical to 

acceleration. 
● Max velocity Vmax. 
● The length of the path ∆𝑥 

 
6The acceleration is assumed equal to the deceleration to simplify the problem. In the general case the 
maximum accelerations Accmax and Decmax are not necessarily identical. 

∫ 
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𝐴𝑐𝑐 

Position profile 
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The minimum path ΔXmin corresponds to the area obtained for a triangular velocity profile whose peak 
velocity is Vmax. 𝑡௙௠௜௡ is the final time corresponding to the completion of this journey ΔXmin. 

 

∆𝑋௠௜௡ =
𝑉௠௔௫

ଶ

𝐴𝑐𝑐௠௔௫
   𝑎𝑛𝑑 𝑡ଵ =

𝑡௙௠௜௡

2
 

𝑡௙௠௜௡ = 2ඨ
∆𝑋௠௜௡

𝐴𝑐𝑐௠௔௫
        

 
 
1st case: 
If ∆𝑋 ≥ ∆𝑋௠௜௡, Vmax is then reached. It is therefore necessary to add a phase at constant velocity and 
whose duration is: 

∆𝑡 =
∆𝑥 − ∆𝑋௠௜௡

𝑉௠௔௫
 

 

The areas A1 , A2 and A3 are given as follows: 
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2nd  case: 
If ∆𝑋 < ∆𝑋௠௜௡ then 𝑉𝑚𝑎𝑥 will not be reached and the profile will be purely triangular. The maximum 
velocity must be adapted to achieve the route to be covered. 

𝑉௠௔௫ _௡௘௪ = √∆𝑥 ∗ 𝐴𝑐𝑐_𝑚𝑎𝑥  
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4.5 Appendix 2: Interpolation of trajectories 

4.5.1 Linear path interpolation 
The total distance to cover is:  

  

 

 

  

 

𝑣஽ is the vector director throughout the pathway : 

 

 

 
How to generate the straight-line path from point I to point F? 
This is called linear interpolation and involves calculating the points of the path in question as 
a function of time. It is performed in two steps: 
 The first operation is to generate the 

position profile s(t) of length ∆s (ref. 
profile calculation document). 

 The profile s(t) must then be projected 
onto the shape of the trajectory to 
obtain the corresponding x(t) and y(t) 
coordinates. In this way we obtain the 
equations of the points of the trajectory: 

 
 

 With : 
𝑥(𝑡 = 0) = 𝑥௜       ,      𝑥൫𝑡 = 𝑡௙൯ = 𝑥௙ 
𝑦(𝑡 = 0) = 𝑦௜      ,     𝑦൫𝑡 = 𝑡௙൯ = 𝑦௙ 
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𝑥(𝑡) = 𝑥௜ + 𝑣஽௫  .  𝑠(𝑡) 
𝑦(𝑡) = 𝑦௜ + 𝑣஽௬ .  𝑠(𝑡) 
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4.5.2 Circular interpolation: 
 
In this case, it is a question of making a 
circular trajectory (arc of a circle) from the 
point I to point F. C is the centre of the 
circle considered, and R is the radius of this 
circle. 
Let α be the angle to cover varying from 0 
to α_s. 

 The first step consists in generating the 
profile of the angle α(t) thanks to an 
appropriate choice (trapezoidal in velocity 
or trapezoidal in acceleration). 

 The second operation is to derive the 
coordinate (x(t), y(t)) along the circular 
path. 

 

 
The equations of the coordinates x and y are expressed as follows: 

         𝒙(𝒕) = 𝒙𝒄 + 𝑹 𝐬𝐢𝐧(𝜶(𝒕)) =  𝒙𝒄 + 𝑹 𝐬𝐢𝐧(𝒔(𝒕)/𝑹) 
         𝒚(𝒕) = 𝒚𝒄 + 𝑹 𝐜𝐨𝐬(𝜶(𝒕)) = 𝒚𝒄 + 𝑹 𝐜𝐨𝐬(𝒔(𝒕)/𝑹) 
 
         𝑥(𝑡 = 0) = 𝑥௜    ;    𝑥൫𝑡 = 𝑡௙൯ = 𝑥௙ 

                𝑦(𝑡 = 0) = 𝑦௜   ;    𝑦൫𝑡 = 𝑡௙൯ = 𝑦௙ 
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4.6 Appendix 3- Additional hardware aspects 

4.6.1 Board buses 
A bus refers to transport; we are not far from it except that in our case we will speak about transport 
of data. A hardware bus connects several electronic boards to the microprocessor unit. This bus allows 
the cards to communicate with each other thanks to the data, address and control signals that 
constitude the bus. We will call the backplane the electronic board on which all the cards of the bus 
are inserted. This backplane is passive because it does not include any intelligence (i.e. a processor). 

There are many different types of bus. In numerical robot control, one of the first used buses was the 
VME bus supported mainly by the company Motorola. Other industrial buses are proprietary (i.e. they 
are supported only by their suppliers). Many have disappeared (such as Gespac from the company 
Gespac, the MCA bus from IBM ("micro channel architecture", ...). The VME bus has long monopolized 
the industrial market because of its robustness, durability and simplicity. A consortium led by Intel 
launched the Compact PCI bus, which mainly uses PCI signals (For more details, refer to  
http://www.picmg.org/v2internal/specifications.htm) 

 

Form factors and board buses  

There are mainly the two following form factors: 

1- Blade format cards 
The form factor of these boards is like blades 
and can be inserted into a dedicated cabinet 
(see figure opposite), which is sized for. 
Examples: VME, Compact PCI (CPCI), Micro 
TCA 
 

 

Figure 4.51, Examples of blade-like form factors 

2- Slot form factors. The typical example of 
this type of baords is the PCI and PCI express 
board formats. PCI exists in standard format 
with motherboards and also with a passive 
backplane. The motherboard is a processor 
board that integrates both the processor 
and a local bus to receive daughter boards. 
For reasons of durability, industrial 
hardened motherboard variants exist for 
demanding applications (automation and 
control). 
 

 
Figure 4.52, From Left to right, Industrial motherboard, 
passive PCI bus, PCI processor board (not motherboard) 
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4.6.2 Les alimentations :  
There are mainly two types of power supplies: 

 Bus-dedicated power supplies that have very particular form factors and specific voltage 
outputs, at at a specific current, according to the buses they are intended to be used for. 
These power supplies power the electronic acquisition boards and processors. 

 Conventional power stages power supplies for power electronic components ( motor 
amplifiers, relays, graspers, heathers, etc. 
 

               

Figure 53, Examples of power supplies from left to right Euro format PSU for CPCI,  ATX motherboard PSU, 
.common screwable PSU, DIN RAIl PSU 


