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Goal: analogy to gain dynamic (non stationary)
insights!

Buffered production line

supply Buffer Machine demand d

v1 v2 v3 l UN
— — — Y —

(3] (t)

One lane traffic



http://horstmann.com/applets/RoadApplet/RoadApplet.html
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Goal: analogy to gain dynamic (non stationary)
insights!

Buffer content: 0 < yi(t) < hy

supply Buffer Machine demand d
U1 v2 v3 UN
— — —»l —
OO DO e ST TeS
— — —
y(t) ‘ 0 < yi(t) < ha ‘ yn-1(t) I
v1(t) v (t) v3(t) un ()

Headway: zp(t) > 0
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Goal: analogy to gain dynamic (non stationary)
insights!

Stochastic evolution equations

supply Buffer Machine demand d
U1 v2 v3 l UN
— — — Y —
OO DO R ST TeS
—
0 < wyr(t) < hg
dy(t)

dt — vk(t)lk(t) o vk+1(t)lk+1(t)7 yk(o) — Yk, k= 17 ooy N7
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Goal: analogy to gain dynamic (non stationary)
insights!

Stochastic evolution equations

supply Buffer Machine demand d
U1 V2 v3l UN
— — — —
L@ -
dy(2)

dt — Uk(t)lk(t) o ’Uk_|_1(t)lk_|_1(t), yk(o) — Yk, k= ]-7 ooy N7

I;.(t) is an alternating renewal process with states {0, 1}

My, is up whenever I (t) =1 and M is down when I (¢) : 0.
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Goal: analogy to gain dynamic (non stationary)
insights!

Stochastic evolution equations

supply Buffer Machine demand d
u = | oy
M,y M, M Bn_1}— My
dyy. (1
(llft( ) — vk(t)Ik(t) o vk+1(t)Ik+1(t)7 yk(o) — Yk, — 17 ooy N7

I;.(t) is an alternating renewal process with states {0, 1}

My, is up whenever I (t) =1 and M is down when I (¢) = 0.

(y1(t), .oy yn—1(8), yn(t)) € [0, 1] X ... x [0, Ay 4] X R,



MSSCD, Chapter8 8

Assumptions

Stochastic evolution equations

supply Buffer Machine demand d

(31 V2 v3 l UN
—— — — —

Al) yk(t) =0= Uk+1(t) < ’Uk(t), k = 1,....N—1

A2) yi(t) = by = vp(t) < vpsr(8), k= 1,..., N — 1

(’Ul(t), ...,’UN(t)) - [O, Vmax,l] X ... X [O, Vmax,N]

A3) Transport time of items from M, to B; and from By to M1, k =
1,...,N — 1, are assumed to be short and are neglected.

A4) Machine M; is never starved (enough raw material) and My is not
influenced by the market (enough demand).
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8.2.2 Optimal-Velocity Car Traffic Model

We consider N cars { My }r—1. n travelling on a single lane as showed in Fig-
ure 8.2. For k =1,..., N — 1, denote by z,(t) > 0 the headway between the

’UN(t)

2(t) —— 22(t) — 2s(t) rn-1(t)
Q‘—.W"—-TOJ‘— 4 —hQ

Figure 8.2: N cars on a single-lane.

cars My, Mi4+1 and for k = 1,..., N denote by vi(t) € [0, Vinax k| the speed of
M., where Viax k. 1s the maximal velocity of Mj.
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8.2.2 Optimal-Velocity Car Traffic Model

We consider N cars { My }r—1. n travelling on a single lane as showed in Fig-
ure 8.2. For k =1,..., N — 1, denote by z,(t) > 0 the headway between the

v3(t)

ni(t) el T #s) oxa(t) 20

The Optimal-Velocity (OV) traffic model [15] states the existence of an op-

timal velocity function V, which depends on the headways xj, x,_1 and the
presence of a response delay time 7, required for a driver of M, to adjust its
speed, such that:

Vk(t) n%t. Vk (.’Ek_l(t), .’L’k(t)) - ’Uk(t + Tk). (84)
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8.2.2 Optimal-Velocity Car Traffic Model

We consider N cars { My }r—1. n travelling on a single lane as showed in Fig-
ure 8.2. For k =1,..., N — 1, denote by z,(t) > 0 the headway between the

’UN(t)

z1(t) TN 5 (t) RN 3(t) rn-1(t)
Q‘—.—o—o—"—-—o—oj— 4 —.Q

Expanding Eq. (8.4) up to first order, adding the corresponding headway
variations and specifying the optimal velocity yields the following class of
OV-models:

e = g (t) —op(t), k=1,...,N,

§ (8.5)
d (’;‘t(t) = ak(Vk(t) —vk(t)), k=1,...,N,

where o) = 7 ! and where the optimal velocity of M, at time ¢ is of the
form:

Vk(t) == Vmax,k . Fk (iEk_l(t), xk(t)) . (86)
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8.3 Linear Stability Analysis

Obviously, a steady state for cars in a line is given when all of them run
orderly with the same constant optimal velocity V, = v® and with constant

headway z7, such that:

Vmax,ka(xz_l,x,i) =0 k=1,....N —1. (8.11)

Tt z3(t) rn-1(l
(1) — 3 p ()Q

\ 4




MSSCD, Chapter8 13

8.3 Linear Stability Analysis

Obviously, a steady state for cars in a line is given when all of them run
orderly with the same constant optimal velocity V, = v® and with constant

headway z7, such that:

Vmax,ka(xZ_l,a:i) =v* k=1,...N —1. (8.11)
vi(t) V(1) v3(t) un (1)

x1(t) xo(t) x3(t) rn_1(t)
B 2

\ 4

Dynamics with the new variables:

dr
Tel® = (), k=1,...,N

0 — o (Vinwa P [ra(t) = rict (0), ria (8) = m(0)] = wl0))
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Steady State:
ri(t) = Z;:ll x§ + v°t,
vp(t) = Vi(t) =",

all cars with equal (optimal) velocity and (optimal) distances

v3(t) un(t)
2o(t) —. x (t) ry_1(t
() %3 p (t) ;

T3
dri(t) o
—= = v k=1,...,N
dvg (t)

a = 0
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Perturbation of Steady State solution:

Or(t) == ri(t) — ri(t).

not all cars with equal (optimal) velocity and (optimal) distances

vi(t) V(1) vs3(t) un (1)
x1(t) xo(t) x3(t) rn_1(t)
I S e
j ri(t) i
r3
€ k=1,....,N

dvg (%)
dt

drg(t)
a7
£
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Perturbation of Steady State solution:
Or(t) == ri(t) — ri(t).

Study the evolution of the perturbation!

2
d ‘(5;’;(’5) — o [vm,k (5rk+18yFk + 0r (0. F — 0, Fy) — 5rk_13ka) _ ‘%]
(8.15)
where
 OF(z,y)  OF(z,y)
OFpi= g | and 9F= |y=mz. (8.16)
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Ansatz for the solution:

1 N-1

org(t) = N Z cjez’”"j%e(’\(j)_iw(j))t, ke{l,..,N},

J=0

Study the evolution of the perturbation!

2
d ‘(5;’;(’5) — o [vm,k (57"k+1(9yFk + 0r (0. F — 0, Fy) — 5rk_13ka) _ ‘%]
(8.15)
where
 OF(z,y)  OF(z,y)
OFi= =g | and 9,F= o |y=mz' (8.16)
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Ansatz for the solution:

1 N-1

org(t) = N Z cjez’”"j%e(’\(j)_iw(j))t, ke{l,..,N},

J=0

Stability is given when

ak(ByFk — ach)
Vma.x,k ' ((9ka -1 ByFk)

where

5 >2 Vked{l,..,N}.

aFk(xa y)

F;
. and 0, Fy, := OFi(x,y)

Bka =
T=xy ay

(8.16)

—pC
y=zj,
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Transcription for production line:

machines in a flow shop <>  cars in a single lane,
free buffer space hy —y. headway xy,

production rate <> car velocity,

dr(z,y) = Fy(he—1 — z, hy — y)

Stability is given when

i (Op P — Oydr,)
Vinaxk - (O 0k + Oyr)?

>2 Vke{l,.. N}
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Transcription for production line:

machines in a flow shop <>  cars in a single lane,

free buffer space hy —y. headway xy,

production rate <> car velocity,

dr(z,y) = Fy(he—1 — z, hy — y)

Stability is given when
Zp>2, Vk=1,...,.N

. a(0;V — 0, V)
0.V + 0,V)?

20
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A simple pull production control:

S (zr-1(t), mr(t)) = Par(t) = ¢ 1= %D i 0 < a4(t) < I,

{ 1 if (I}k(t) - 0,

0 if .’Ek(t) 2 hk.
We find:
akhk
Zk2= > 2 VkE{l, ,N}
Vmax k
or equivalently
1y 1
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Using the dimensionless performance
measure from stationary analysis:

_ph
F Vmax
(with y the breakdown rate of a machine),
we have established a direct relation with
the stability analysis:

1 _Ozk 1 <C¥k1
Fo e Zy g 2




