

MANUFACTURING SYSTEMS AND SUPPLY CHAIN DYNAMICS

Chapter 8: Cooperative Flow Dynamics in Production Lines

EPFL, Master MT

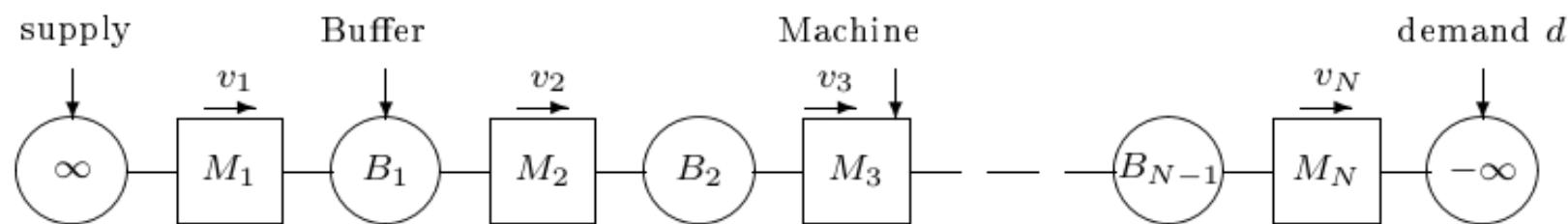
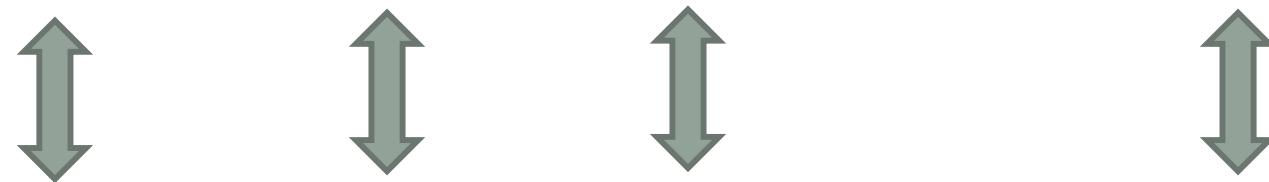
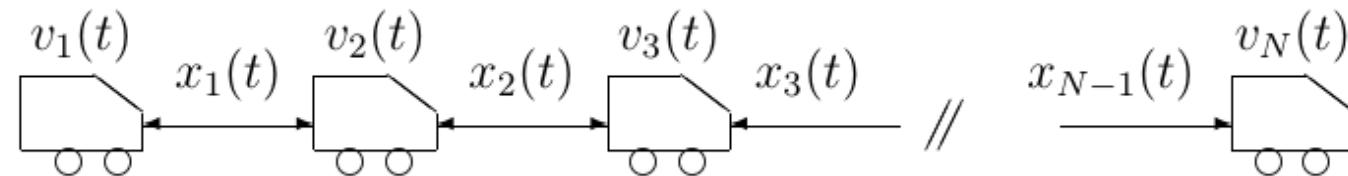
Roger Filliger (BFH), Olivier Gallay (UniL)

Course Content

1. *Introduction*
2. *Inventory Theory*
3. *Safety Stock in Manufacturing Systems*
4. *Elements of Queueing Theory*
5. *Production Flows*
6. *Production Dipole*
7. *Production Lines and Aggregation*
- 8. *Cooperative Flow Dynamics***
9. *Introduction to Queueing Networks*
10. *Supply Chain Analysis*
11. *Elements of Reliability Analysis*
12. *Maintenance Policies*

Goal: analogy to gain dynamic (non stationary) insights!

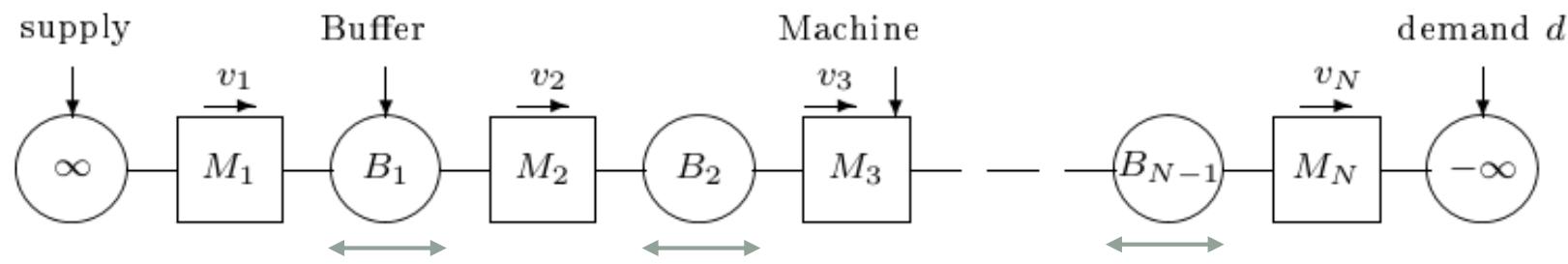
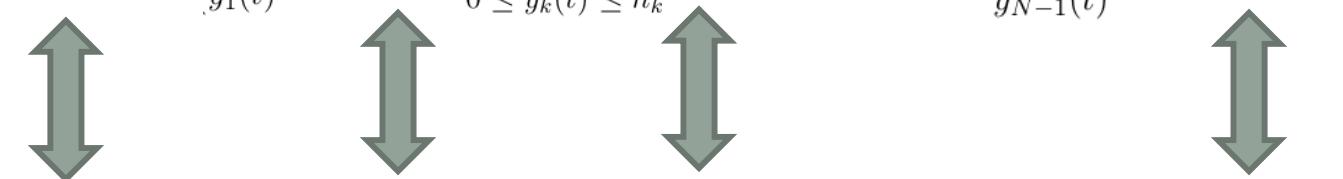
Buffered production line



One lane traffic

Goal: analogy to gain dynamic (non stationary) insights!

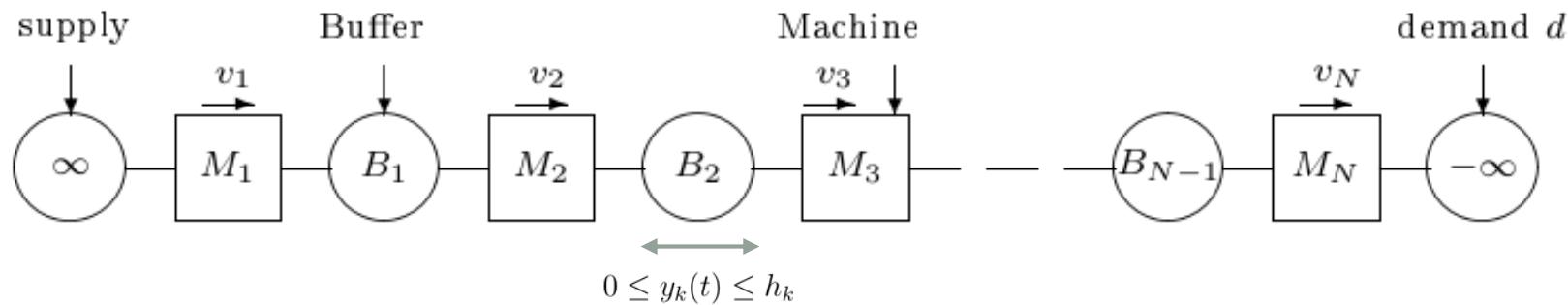
Buffer content: $0 \leq y_k(t) \leq h_k$



Headway: $x_k(t) > 0$

Goal: analogy to gain dynamic (non stationary) insights!

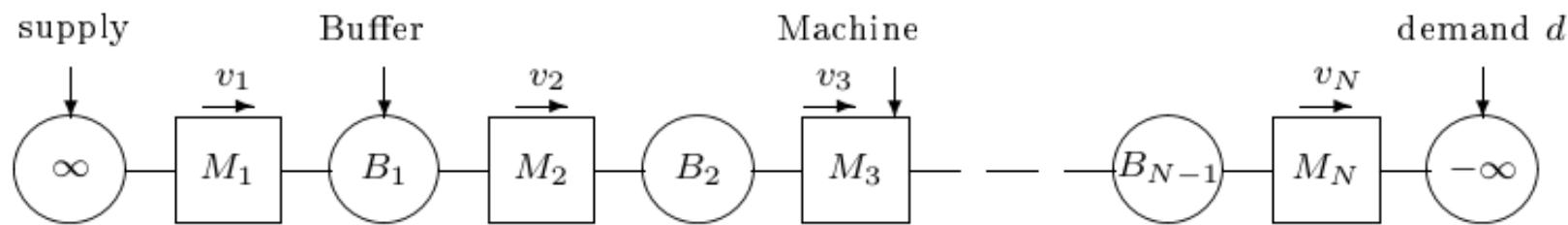
Stochastic evolution equations



$$\frac{dy_k(t)}{dt} = v_k(t)I_k(t) - v_{k+1}(t)I_{k+1}(t), \quad y_k(0) = y_k, \quad k = 1, \dots, N,$$

Goal: analogy to gain dynamic (non stationary) insights!

Stochastic evolution equations



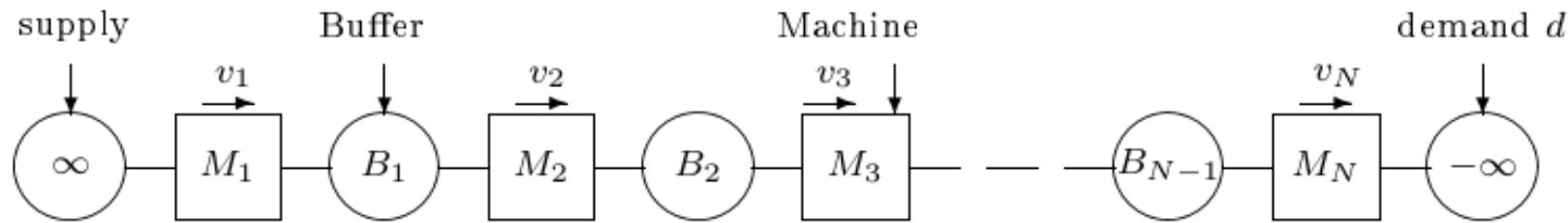
$$\frac{dy_k(t)}{dt} = v_k(t)I_k(t) - v_{k+1}(t)I_{k+1}(t), \quad y_k(0) = y_k, \quad k = 1, \dots, N,$$

$I_k(t)$ is an alternating renewal process with states $\{0, 1\}$

M_k is up whenever $I_k(t) = 1$ and M_k is down when $I_k(t) = 0$.

Goal: analogy to gain dynamic (non stationary) insights!

Stochastic evolution equations



$$\frac{dy_k(t)}{dt} = v_k(t)I_k(t) - v_{k+1}(t)I_{k+1}(t), \quad y_k(0) = y_k, \quad k = 1, \dots, N,$$

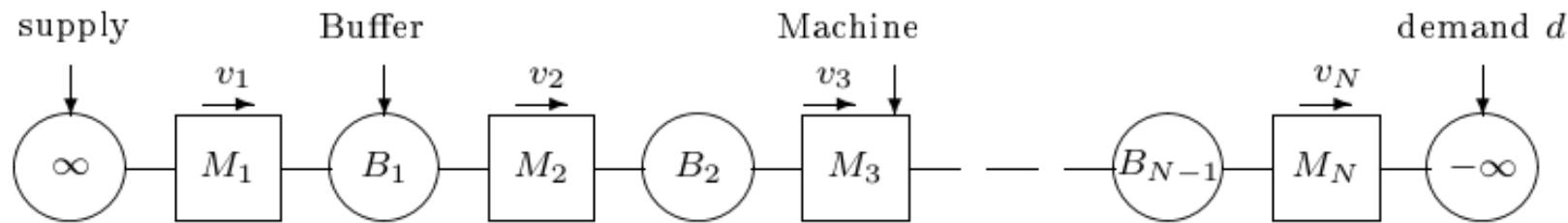
$I_k(t)$ is an alternating renewal process with states $\{0, 1\}$

M_k is up whenever $I_k(t) = 1$ and M_k is down when $I_k(t) = 0$.

$$(y_1(t), \dots, y_{N-1}(t), y_N(t)) \in [0, h_1] \times \dots \times [0, h_{N-1}] \times \mathbb{R},$$

Assumptions

Stochastic evolution equations



A1) $y_k(t) = 0 \Rightarrow v_{k+1}(t) \leq v_k(t), k = 1, \dots, N - 1$

A2) $y_k(t) = h_k \Rightarrow v_k(t) \leq v_{k+1}(t), k = 1, \dots, N - 1$

$$(v_1(t), \dots, v_N(t)) \in [0, V_{\max,1}] \times \dots \times [0, V_{\max,N}].$$

A3) Transport time of items from M_k to B_k and from B_k to M_{k+1} , $k = 1, \dots, N - 1$, are assumed to be short and are neglected.

A4) Machine M_1 is never starved (enough raw material) and M_N is not influenced by the market (enough demand).

8.2.2 Optimal-Velocity Car Traffic Model

We consider N cars $\{M_k\}_{k=1..N}$ travelling on a single lane as showed in Figure 8.2. For $k = 1, \dots, N - 1$, denote by $x_k(t) > 0$ the headway between the

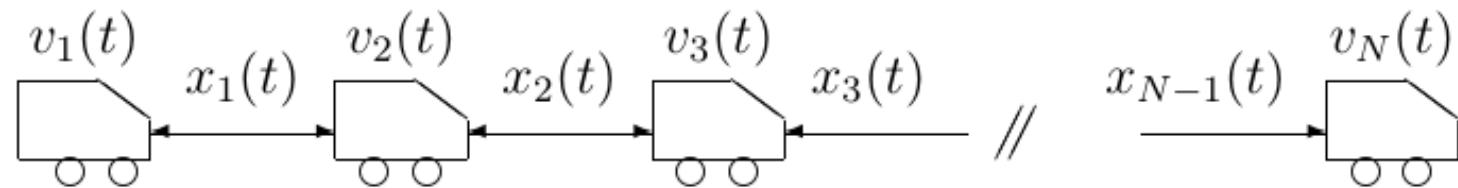
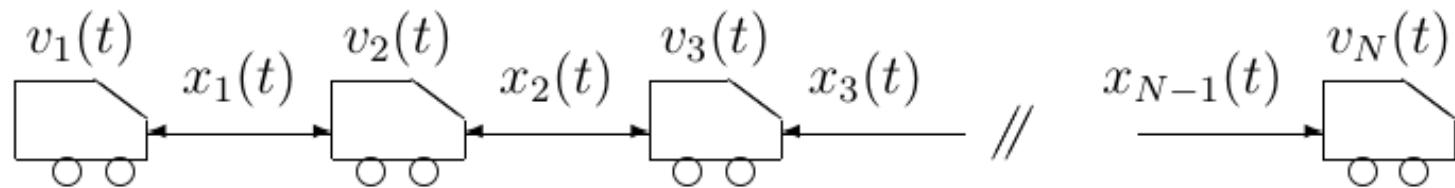


Figure 8.2: N cars on a single-lane.

cars M_k, M_{k+1} and for $k = 1, \dots, N$ denote by $v_k(t) \in [0, V_{\max,k}]$ the speed of M_k , where $V_{\max,k}$ is the maximal velocity of M_k .

8.2.2 Optimal-Velocity Car Traffic Model

We consider N cars $\{M_k\}_{k=1..N}$ travelling on a single lane as showed in Figure 8.2. For $k = 1, \dots, N - 1$, denote by $x_k(t) > 0$ the headway between the

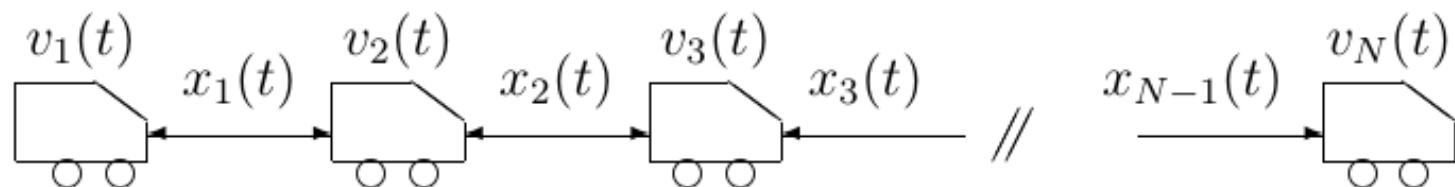


The Optimal-Velocity (OV) traffic model [15] states the existence of an optimal velocity function \mathcal{V}_k which depends on the headways x_k, x_{k-1} and the presence of a response delay time τ_k , required for a driver of M_k to adjust its speed, such that:

$$\mathcal{V}_k(t) \stackrel{\text{not.}}{=} \mathcal{V}_k(x_{k-1}(t), x_k(t)) = v_k(t + \tau_k). \quad (8.4)$$

8.2.2 Optimal-Velocity Car Traffic Model

We consider N cars $\{M_k\}_{k=1..N}$ travelling on a single lane as showed in Figure 8.2. For $k = 1, \dots, N - 1$, denote by $x_k(t) > 0$ the headway between the



Expanding Eq. (8.4) up to first order, adding the corresponding headway variations and specifying the optimal velocity yields the following class of OV-models:

$$\begin{cases} \frac{dx_k(t)}{dt} = v_{k+1}(t) - v_k(t), & k = 1, \dots, N, \\ \frac{dv_k(t)}{dt} = \alpha_k (\mathcal{V}_k(t) - v_k(t)), & k = 1, \dots, N, \end{cases} \quad (8.5)$$

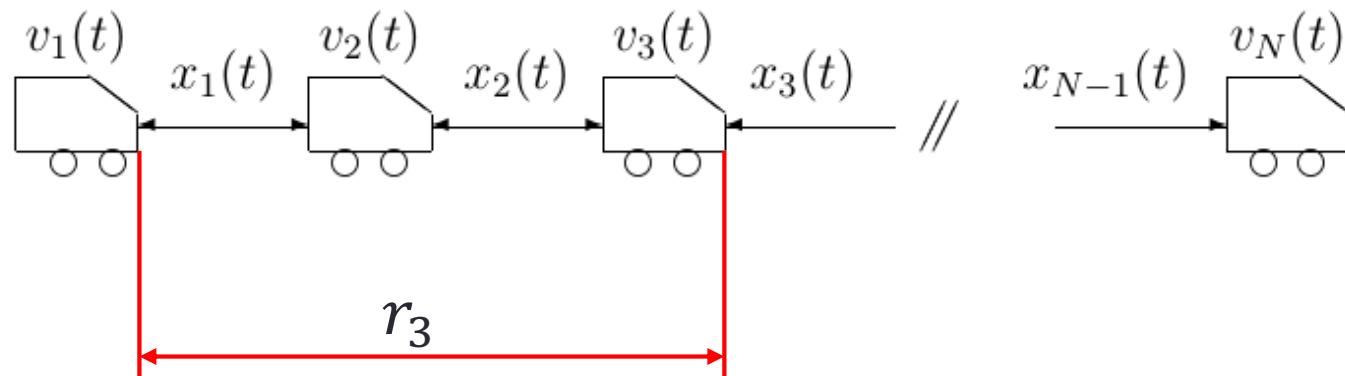
where $\alpha_k = \tau_k^{-1}$ and where the optimal velocity of M_k at time t is of the form:

$$\mathcal{V}_k(t) = V_{\max,k} \cdot F_k(x_{k-1}(t), x_k(t)). \quad (8.6)$$

8.3 Linear Stability Analysis

Obviously, a steady state for cars in a line is given when all of them run orderly with the same constant optimal velocity $\mathcal{V}_k = v^e$ and with constant headway x_k^e , such that:

$$V_{\max,k} F_k(x_{k-1}^e, x_k^e) = v^e \quad k = 1, \dots, N-1. \quad (8.11)$$

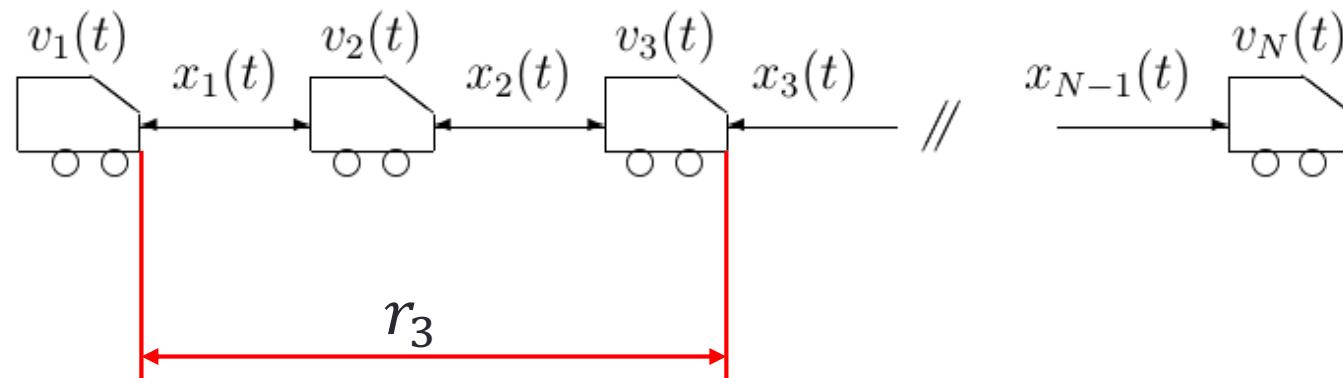


$$r_k(t) := \sum_{j=0}^{k-1} x_j(t) \quad k = 1, \dots, N, \quad x_0 \equiv 0.$$

8.3 Linear Stability Analysis

Obviously, a steady state for cars in a line is given when all of them run orderly with the same constant optimal velocity $\mathcal{V}_k = v^e$ and with constant headway x_k^e , such that:

$$V_{\max,k} F_k(x_{k-1}^e, x_k^e) = v^e \quad k = 1, \dots, N-1. \quad (8.11)$$



Dynamics with the new variables:

$$\frac{dr_k(t)}{dt} = v_k(t), \quad k=1, \dots, N$$

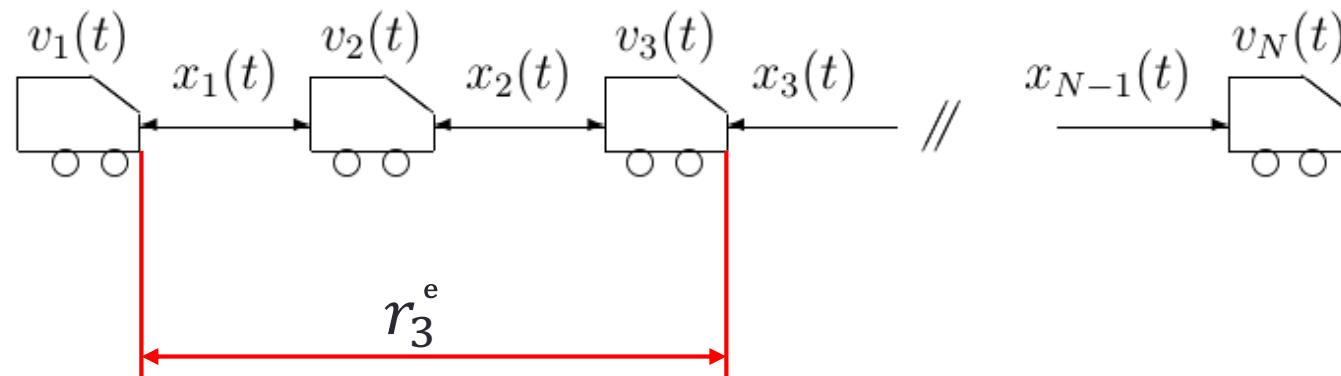
$$\frac{dv_k(t)}{dt} = \alpha_k \left(V_{\max,k} F_k[r_k(t) - r_{k-1}(t), r_{k+1}(t) - r_k(t)] - v_k(t) \right)$$

Steady State:

$$r_k^e(t) = \sum_{j=1}^{k-1} x_j^e + v^e t,$$

$$v_k^e(t) = \mathcal{V}_k(t) = v^e,$$

all cars with equal (optimal) velocity and (optimal) distances



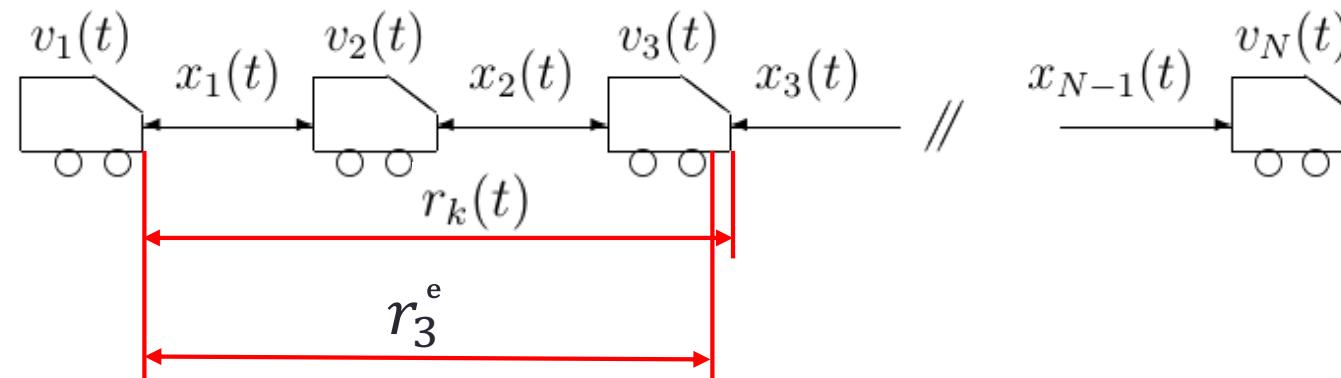
$$\frac{dr_k(t)}{dt} = v^e \quad k=1, \dots, N$$

$$\frac{dv_k(t)}{dt} = 0$$

Perturbation of Steady State solution:

$$\delta r_k(t) := r_k(t) - r_k^e(t).$$

not all cars with equal (optimal) velocity and (optimal) distances



$$\begin{aligned} \frac{dr_k(t)}{dt} &\neq v^e & k=1, \dots, N \\ \frac{dv_k(t)}{dt} &\neq 0 \end{aligned}$$

Perturbation of Steady State solution:

$$\delta r_k(t) := r_k(t) - r_k^e(t).$$

Study the evolution of the perturbation!

$$\frac{d^2 \delta r_k(t)}{dt^2} = \alpha_k \left[V_{\max, k} \left(\delta r_{k+1} \partial_y F_k + \delta r_k (\partial_x F_k - \partial_y F_k) - \delta r_{k-1} \partial_x F_k \right) - \frac{d \delta r_k}{dt} \right] \quad (8.15)$$

where

$$\partial_x F_k := \frac{\partial F_k(x, y)}{\partial x} \Big|_{x=x_{k-1}^e} \quad \text{and} \quad \partial_y F_k := \frac{\partial F_k(x, y)}{\partial y} \Big|_{y=x_k^e}. \quad (8.16)$$

Ansatz for the solution:

$$\delta r_k(t) := \frac{1}{N} \sum_{j=0}^{N-1} c_j e^{2\pi i \cdot j \frac{k}{N}} e^{(\lambda(j) - i\omega(j))t}, \quad k \in \{1, \dots, N\},$$

Study the evolution of the perturbation!

$$\frac{d^2 \delta r_k(t)}{dt^2} = \alpha_k \left[V_{\max, k} \left(\delta r_{k+1} \partial_y F_k + \delta r_k (\partial_x F_k - \partial_y F_k) - \delta r_{k-1} \partial_x F_k \right) - \frac{d \delta r_k}{dt} \right] \quad (8.15)$$

where

$$\partial_x F_k := \left. \frac{\partial F_k(x, y)}{\partial x} \right|_{x=x_{k-1}^e} \quad \text{and} \quad \partial_y F_k := \left. \frac{\partial F_k(x, y)}{\partial y} \right|_{y=x_k^e}. \quad (8.16)$$

Ansatz for the solution:

$$\delta r_k(t) := \frac{1}{N} \sum_{j=0}^{N-1} c_j e^{2\pi i \cdot j \frac{k}{N}} e^{(\lambda(j) - i\omega(j))t}, \quad k \in \{1, \dots, N\},$$

Stability is given when

$$\frac{\alpha_k (\partial_y F_k - \partial_x F_k)}{V_{\max, k} \cdot (\partial_x F_k + \partial_y F_k)^2} > 2 \quad \forall k \in \{1, \dots, N\}.$$

where

$$\partial_x F_k := \left. \frac{\partial F_k(x, y)}{\partial x} \right|_{x=x_{k-1}^e} \quad \text{and} \quad \partial_y F_k := \left. \frac{\partial F_k(x, y)}{\partial y} \right|_{y=x_k^e}. \quad (8.16)$$

Transcription for production line:

machines in a flow shop \leftrightarrow cars in a single lane,

free buffer space $h_k - y_k$ \leftrightarrow headway x_k ,

production rate \leftrightarrow car velocity,

$$\phi_k(x, y) := F_k(h_{k-1} - x, h_k - y)$$

Stability is given when

$$\frac{\alpha_k(\partial_x \phi_k - \partial_y \phi_k)}{V_{\max, k} \cdot (\partial_x \phi_k + \partial_y \phi_k)^2} > 2 \quad \forall k \in \{1, \dots, N\}.$$

Transcription for production line:

machines in a flow shop \leftrightarrow cars in a single lane,

free buffer space $h_k - y_k$ \leftrightarrow headway x_k ,

production rate \leftrightarrow car velocity,

$$\phi_k(x, y) := F_k(h_{k-1} - x, h_k - y)$$

Stability is given when

$$\mathcal{Z}_k > 2, \quad \forall k = 1, \dots, N$$

$$\mathcal{Z} := \frac{\alpha(\partial_x \mathcal{V} - \partial_y \mathcal{V})}{(\partial_x \mathcal{V} + \partial_y \mathcal{V})^2}$$

A simple pull production control:

$$\phi_k(x_{k-1}(t), x_k(t)) = \phi(x_k(t)) = \begin{cases} 1 & \text{if } x_k(t) = 0, \\ 1 - \frac{x_k(t)}{h_k} & \text{if } 0 < x_k(t) < h_k, \\ 0 & \text{if } x_k(t) \geq h_k. \end{cases}$$

We find:

$$\mathcal{Z}_k := \frac{\alpha_k h_k}{V_{\max,k}} > 2 \quad \forall k \in \{1, \dots, N\}.$$

or equivalently

$$\frac{1}{2} \frac{h_k}{V_{\max,k}} > \frac{1}{\alpha_k} = \tau_k \quad \forall k \in \{1, \dots, N\}.$$

Using the dimensionless performance measure from stationary analysis:

$$\mathcal{F} = \frac{\mu h}{V_{\max}}$$

(with μ the breakdown rate of a machine), we have established a direct relation with the stability analysis:

$$\frac{1}{\mathcal{F}} = \frac{\alpha_k}{\mu_k} \frac{1}{\mathcal{Z}_k} < \frac{\alpha_k}{\mu_k} \frac{1}{2}.$$