MSSCD, Chapter5 1

e

MANUFACTURING SYSTEMS AND SUPPLY
CHAIN DYNAMICS

Chapter 5: Production Flows

EPFL, Master MT

Roger Filliger (BFH), Olivier Gallay (Unil)



MSSCD, Chapter5 2

Course Content

Introduction
Inventory Theory
Safety Stock in Manufacturing Systems

Elements of Queueing Theory

.

2

3

4

5. Productions Flows
6. Production Dipole

7. Production Lines and Aggregation

8. Cooperative Flow Dynamics

9. Introduction to Queueing Networks
10. Supply Chain Analysis

11. Elements of Reliability Analysis

12. Maintenance Policies



MSSCD, Chapter5 3

Introduction

M

We consider a single production unit M

« Machine
« Worker

Constant cycle time of T. seconds (U = 1/1. is the production rate)

We consider a time horizon H > t_seconds, during which the
production unit will be operated

During this time horizon H, the productivity of M can undergo
random (or non-random) failures of diverse nature.
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Characterization of a Machine (for production flows)

Is the machine M operational ?
If operational, at what rate does M produce ?

What is the maximum production rate of M ¢

M

Operational state of M: up or down
Production rate of M: number of parts per time unit

Capacity of M: maximum production rate U
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Characterization of a Machine (for production flows)

A

u
Operational state of M: P
down >
\ time
(often) random
=) M =

0 < Production rate u of M < Capacity U

/ \

(often) controllable (often) fixed
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Characterization of a Machine (for production flows)

A

up=1
Operational state of M: l ‘ l ‘

down=0
\ time

Breakdown distribution
Repair distribution

= M [=

0 < Production rate u of M < Capacity U

/ \

controllable [parts/time]
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Characterization of a Machine (for production flows)

A

x (t) = Operational state of M: 1 l l l ‘

0
\ time

Breakdown: f(t)

Repair: g(t)
= M =
0 < Production rate u of M < Capacity U
P \
For simplicity: [parts/time]

production rate = U x x ()
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Characterization of a Machine (for production flows)

M={U, I g}

= M =

U denotes the capacity
f defines the (random) time-before-failure

g defines the (random) time-(needed)-to-repair
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Characterization of a Machine (for production flows)

f and g hard to derive = mean values 1/p and 1/r (are measurable)

M={U, p, r}
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Characterization of a Machine (for production flows)

M={U, p, r}

= M =

Time-continuous
Markov chain

U denotes the capacity G
p is the rate of breakdown p

r is the rate of repair
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Hydrodynamic Assumption for M = {U, p, r}

L, (11
T mmp,r

Time needed to produce one part (cycle time) is much smaller
than the mean-time-before-failure and the mean-time-to-repair

=> The behavior of production flow is like that of a fluid (no
discrete parts)
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Hydrodynamic Assumption for M = {U, p, r}

A

2 (H)
2 (1)
m
S0y =0 Y
1 M. states
x(@®)
0 >

>(t) : cumulated production up to time t

Y(H) = /OHU-x(t) dt
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Mean Production Rate (for Large Time Horizon H)

> (H)

2. (1)

x(t) 1 M. states
1

(0] >

m = limH_,oo¥ = limy_, % foH UXx x(t)dt
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Hypothesis: U is Constant

m = limy_, %foﬂ Ux x(t)dt =U X limy_,o %foﬂx(t)dt

. 1
llmH—)OO Ej() X(t)dt — (X) — r + D
1

oL L1 1]

V

time
1 1
r p _ p _  MTF
r+p_p+r_1+1_MTF+MTR
rh pr



Indisposability of M

A

1
0

Define |, the indisposability of M:
__MTR 1/r p

[ &= — —
MTF 1/p r

time

With this definition we have

B r 1
r+p T(1+$) 1+1

1 H
llmH—)OO E-[O X(t)dt =

(in applications, | should be smaller than 0.2)
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Indisposability of M: Derivation

Example 35 Suppose that X; € {0,1} reflects the state of a machine (1
means up, 0 means down). If the machine time-to-failure (passing from 1
to 0) is exponentially distributed with mean 1/p hours and if the machine
time-to-repair (passing from 0 to 1) is exponentially distributed with mean
1/r hours, we obtain the following Markov chain (note that the links are
labelled with rates and that there are no self-loops):

< The balance equations for
o = limy_, P(X; = 0) and

71 = limg 00 P(X¢ = 1) are:

rmyg = Py

pmy = TTy
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Indisposability of M: Derivation

Using probability normalization (mo + 7 = 1), we find:

D I T 1
= = — m1 =
r+p 1+1"

o 7"—|—p=1—|—I

where, like in the discrete case, I = % is the indisposability of the machine.
71 represents the fraction of time the machine is operational. If U is the pro-
duction rate of the machine when the machine is operational, U, represents
the mean production rate of the machine and is an important performance
measure. O
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Indisposability of M: Intuition

N: number of on-off cycles of machine M during the time horizon H

For large H, we have approximately: H ~ N (% -+ %)

-

N/p: time-span during which M is operational
N/r: time-span during which M is down

The efficiency of the machine the relative fraction of time during
which M was operational:

Efficiency = = ——
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Indisposability of M: Practical Computation

Exercise 19 Explain how you would quantify the indisposibility factor I in
a practical situation. ®
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Mean Production Rate

Y(H) U
H 1+1

mean cumulated production (}(H)) (for large H):

(S(H)=mH = ;- H

with indisposability I of M={U,p,r}: I ==

r
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Production Line with Successive Workstations

Manufacturing system composed of several successive workstations

 All the workstations must have (approximately) the same mean
stationary production rate => manufacturing system is balanced

« Unbalanced manufacturing systems operate sub-optimally even in
absence of failures and in presence of large internal buffers to
absorb variability.

 In an unbalanced manufacturing system, the workstation with the
smallest mean stationary production rate is the bottleneck and
will define the production rate of the whole line
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AnylLogic

Using AnyLogic: Simulate the mean cumulated production and
compare simulated values with theoretical ones.
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Mean Production Rate

Y(H) U
H 1+1

m = limy_,

However, tells nothing about the fluctuations around the mean
value. However, fluctuations are real and important!
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Variance of the Production Rate

O: operating time of the machine M before failure
R: repair time . )
oo =E((0O-E(0))? = /0 (t — 1) f(t)dt

0% = E((R - E(R))?) = /0 h (t _ 1)2 o(t) dt

Variances:

variance

Squared coefficient of variation: SCV = -
mean

SCVo = ogp® (operating time)  SCVg = o%r? (repair time)
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Variance of the Production Rate

Example 7: exponential operating and repair times

- [ e
0% /OOO (t—%)zg(t)dt=l2

Then: SCVp=8CVy=1

Q
Qo
|

=
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Variance of the Production Rate

Result valid for large time horizons H (using central limit theorem):

(x — mH)? }da: |

P(a: <YH)<z+ da:) — exp{ 2033 H

\/ 27TUE(H)H

Ul
r(1+1)3

We are hence able to estimate the probability to produce more than a
given number of items during a fixed time horizon H.
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Variance of the Production Rate

Exercise 20 For the production of electronic components, we are given the
following data for a specific production step of these components:

1 1
— =1000 [sec] and — = 200 [sec]

yy r

The production rate is given by U = 12 2 and the time horizon is 3 hours.

Suppose that O (operating time) and R (repair time) are exponentially dis-
tributed (implying that SC'Vy + SCVx = 2). Calculate:

(1) The mean cumulated production (X(#))

(2) The stationary production fluctuations at time H (i.e., 03, )

(3) The probability that we can ship at least 108’100 components after 3
hours

©
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Time T Needed to do a Given Job

We fix the batch size B to be produced

Question: Are we able to ship this batch of products before a
given time horizon H ?

T : time needed to complete a job of batch size B (random

variable, as the production flow is random because of the machine
failures), with density gg(t)

P(rg <T) = / ' gs(t) dt
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Time T Needed to do a Given Job

T
P(rg <T) = /0 qg(t) dt

B B — mt)? . :
qB(t) = exp { — ( - ) } (inverse Gaussian law)
27T0'2 t3 202(t)t » E
5(t)
X : /\“\
B N
2 (Y
¥(0) =0 & H
1 M. states
1

Y >
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Time T Needed to do a Given Job

2(t)

/Oooth(t)dt = §(1+I) _b

m
Variance : 2 _ (CVo+CVg)BI
B rU

Mean : (TB)
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Time T Needed to do a Given Job

Exercise 21 In the context of Exercise 20, calculate the probability to finish
a job of size B = 1.2 - 10° within 3 hours. ®



