

MANUFACTURING SYSTEMS AND SUPPLY CHAIN DYNAMICS

Chapter 5: Production Flows

EPFL, Master MT

Roger Filliger (BFH), Olivier Gallay (UniL)

Course Content

1. *Introduction*
2. *Inventory Theory*
3. *Safety Stock in Manufacturing Systems*
4. *Elements of Queueing Theory*
5. ***Productions Flows***
6. *Production Dipole*
7. *Production Lines and Aggregation*
8. *Cooperative Flow Dynamics*
9. *Introduction to Queueing Networks*
10. *Supply Chain Analysis*
11. *Elements of Reliability Analysis*
12. *Maintenance Policies*

Introduction

We consider a **single production unit M**

- Machine
- Worker

Constant cycle time of τ_c seconds ($U = 1/\tau_c$ is the production rate)

We consider a **time horizon** $H \gg \tau_c$ seconds, during which the production unit will be operated

During this time horizon H , the productivity of M can undergo **random (or non-random) failures** of diverse nature.

Characterization of a Machine (for production flows)

Is the machine **M operational** ?

If operational, at what **rate** does M produce ?

What is the **maximum production rate** of M ?

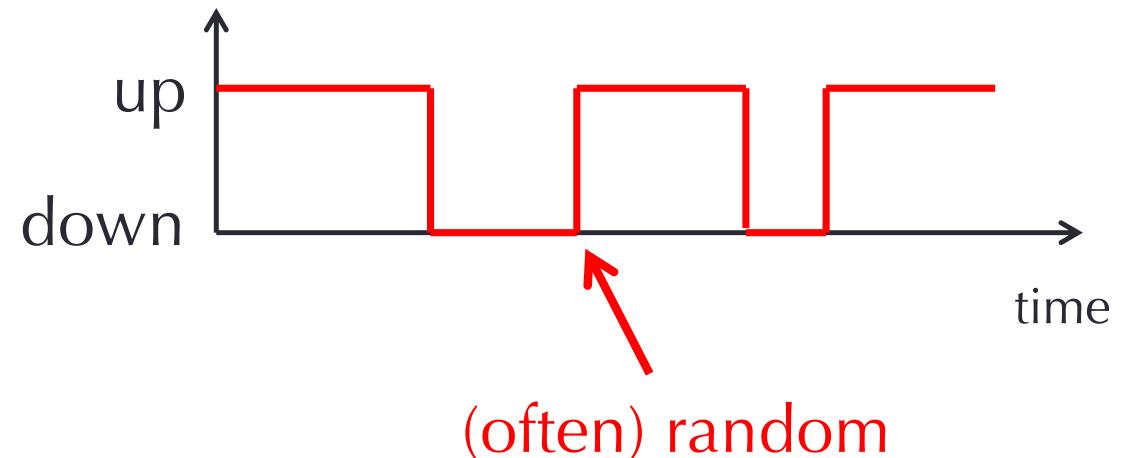
Operational state of M: **up or down**

Production rate of M: **number of parts per time unit**

Capacity of M: **maximum production rate U**

Characterization of a Machine (for production flows)

Operational state of M :



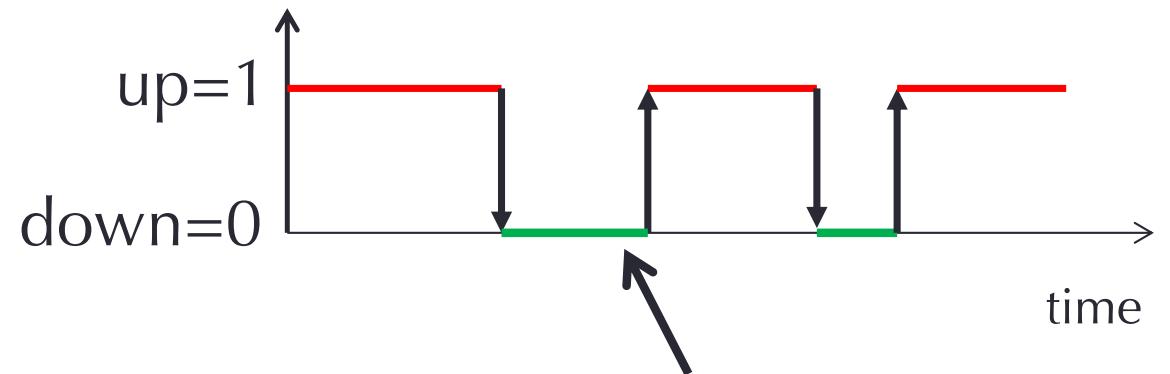
$0 \leq$ Production rate u of $M \leq$ Capacity U

(often) controllable

(often) fixed

Characterization of a Machine (for production flows)

Operational state of M:



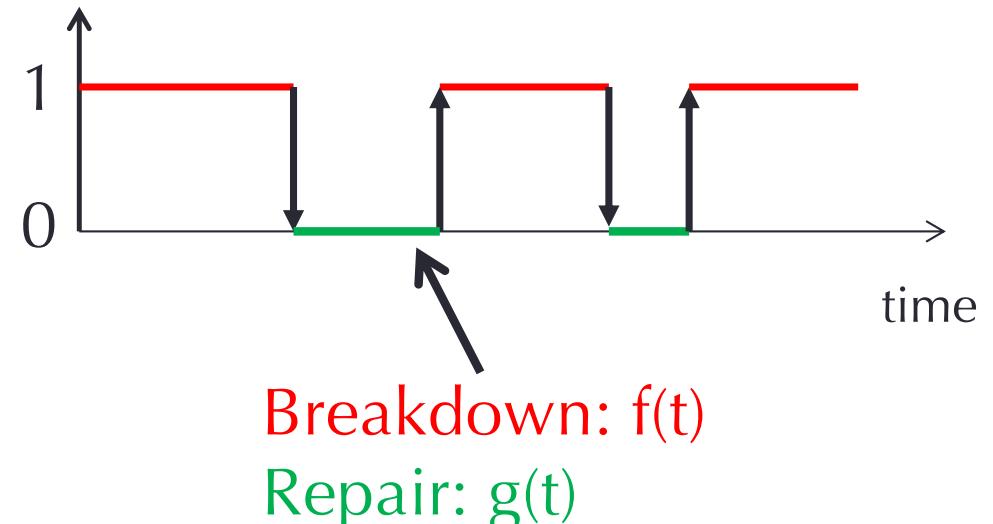
$0 \leq \text{Production rate } u \text{ of } M \leq \text{Capacity } U$

controllable

[parts/time]

Characterization of a Machine (for production flows)

$\chi(t)$ = **Operational state** of M :



$0 \leq$ **Production rate u of M** \leq **Capacity U**

For simplicity:
production rate = $U \times \chi(t)$

[parts/time]

Characterization of a Machine (for production flows)

$$M = \{U, f, g\}$$

U denotes the **capacity**

f defines the (random) **time-before-failure**

g defines the (random) **time-(needed)-to-repair**

Characterization of a Machine (for production flows)

f and g hard to derive \rightarrow **mean values $1/p$ and $1/r$** (are measurable)

$$M = \{U, p, r\}$$

$$\frac{1}{p} := \text{mean time before failure} = \int_0^{\infty} t f(t) dt$$
$$\frac{1}{r} := \text{mean time to repair} = \int_0^{\infty} t g(t) dt$$

Characterization of a Machine (for production flows)

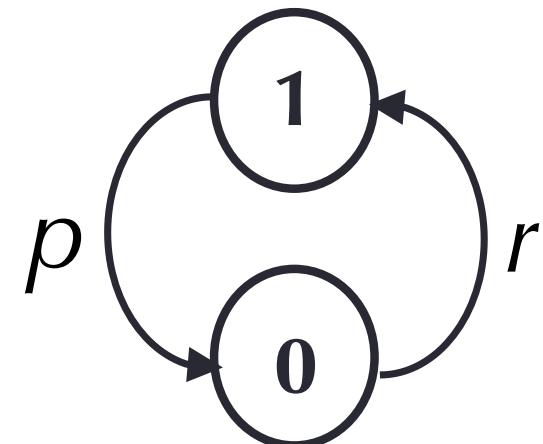
$$M = \{U, p, r\}$$

Time-continuous
Markov chain

U denotes the **capacity**

p is the **rate of breakdown**

r is the **rate of repair**



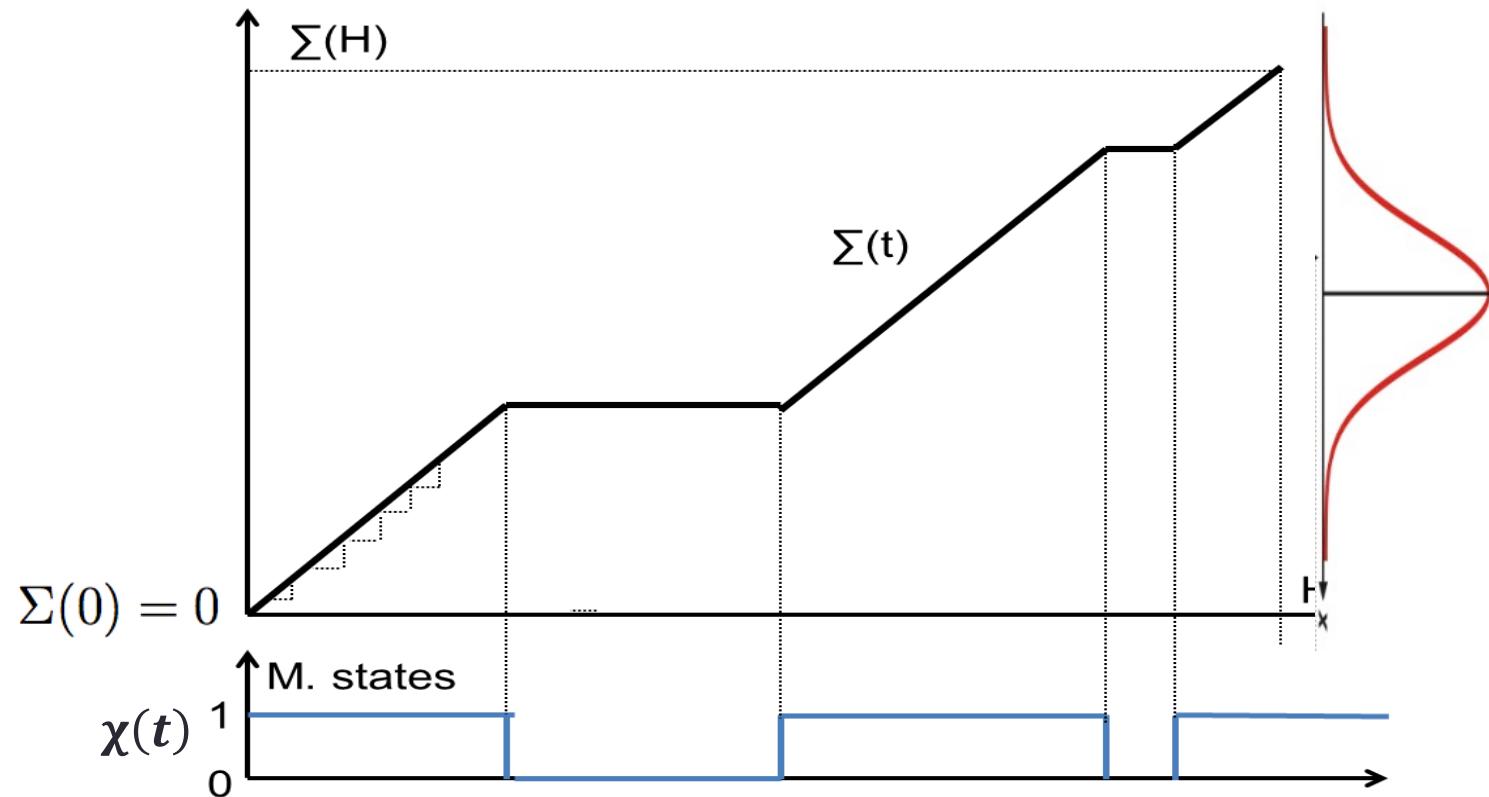
Hydrodynamic Assumption for $M = \{U, p, r\}$

$$\frac{1}{U} \ll \min \left\{ \frac{1}{p}, \frac{1}{r} \right\}$$

Time needed to produce one part (cycle time) is much smaller than the mean-time-before-failure and the mean-time-to-repair

=> The behavior of production flow is like that of a **fluid** (no discrete parts)

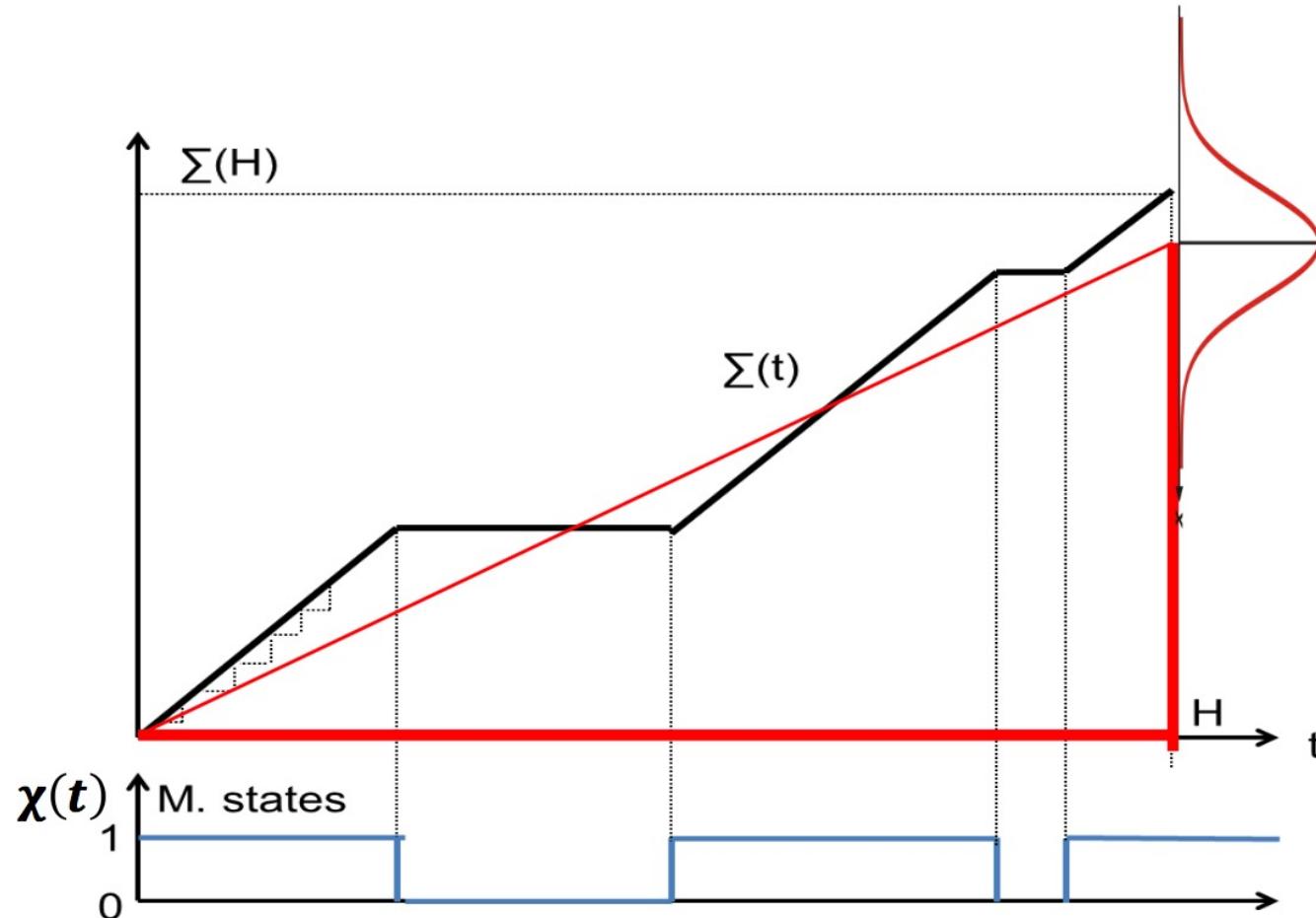
Hydrodynamic Assumption for $M = \{U, p, r\}$



$\Sigma(t)$: cumulated production up to time t

$$\Sigma(H) = \int_0^H U \cdot \chi(t) dt$$

Mean Production Rate (for Large Time Horizon H)

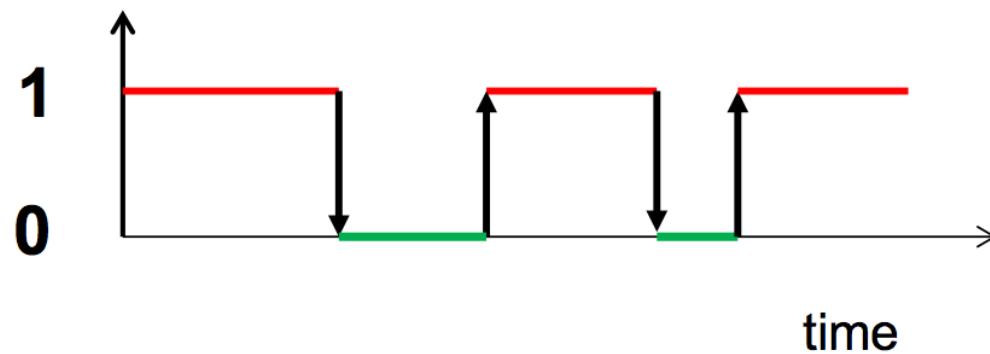


$$m = \lim_{H \rightarrow \infty} \frac{\Sigma(H)}{H} = \lim_{H \rightarrow \infty} \frac{1}{H} \int_0^H U \times \chi(t) dt$$

Hypothesis: U is Constant

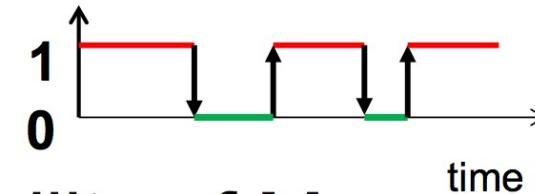
$$\mathbf{m} = \lim_{H \rightarrow \infty} \frac{1}{H} \int_0^H \mathbf{U} \times \boldsymbol{\chi}(t) dt = \mathbf{U} \times \lim_{H \rightarrow \infty} \frac{1}{H} \int_0^H \boldsymbol{\chi}(t) dt$$

$$\lim_{H \rightarrow \infty} \frac{1}{H} \int_0^H \boldsymbol{\chi}(t) dt = \langle \boldsymbol{\chi} \rangle = \frac{r}{r + p}$$



$$\frac{r}{r + p} = \frac{\frac{1}{p}}{\frac{p}{rp} + \frac{1}{p}} = \frac{\frac{1}{p}}{\frac{1}{p} + \frac{1}{r}} = \frac{MTF}{MTF + MTR}$$

Indisposability of M



Define I, the indisposability of M:

$$I := \frac{MTR}{MTF} = \frac{1/r}{1/p} = \frac{p}{r}$$

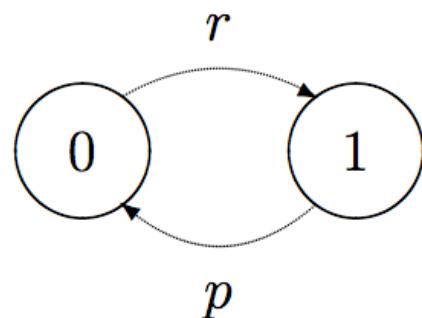
With this definition we have

$$\lim_{H \rightarrow \infty} \frac{1}{H} \int_0^H \chi(t) dt = \frac{r}{r+p} = \frac{r}{r(1 + \frac{p}{r})} = \frac{1}{1+I}$$

(in applications, I should be smaller than 0.2)

Indisposability of M: Derivation

Example 35 Suppose that $X_t \in \{0, 1\}$ reflects the state of a machine (1 means up, 0 means down). If the machine time-to-failure (passing from 1 to 0) is exponentially distributed with mean $1/p$ hours and if the machine time-to-repair (passing from 0 to 1) is exponentially distributed with mean $1/r$ hours, we obtain the following Markov chain (note that the links are labelled with rates and that there are no self-loops):



The balance equations for $\pi_0 = \lim_{t \rightarrow \infty} P(X_t = 0)$ and $\pi_1 = \lim_{t \rightarrow \infty} P(X_t = 1)$ are:

$$\begin{aligned} r\pi_0 &= p\pi_1 \\ p\pi_1 &= r\pi_0 \end{aligned}$$

Indisposability of M: Derivation

Using probability normalization ($\pi_0 + \pi_1 = 1$), we find:

$$\pi_0 = \frac{p}{r+p} = \frac{I}{1+I}, \quad \pi_1 = \frac{r}{r+p} = \frac{1}{1+I}$$

where, like in the discrete case, $I = \frac{p}{r}$ is the **indisposability** of the machine. π_1 represents the fraction of time the machine is operational. If U is the production rate of the machine when the machine is operational, $U\pi_1$ represents the mean production rate of the machine and is an important performance measure. \diamond

Indisposability of M: Intuition

N : number of on-off cycles of machine M during the time horizon H

For large H , we have approximately: $\mathcal{H} \approx N \left(\frac{1}{r} + \frac{1}{p} \right)$

N/p : time-span during which M is operational

N/r : time-span during which M is down

The **efficiency of the machine** the relative fraction of time during which M was operational:

$$\text{Efficiency} = \frac{N \frac{1}{p}}{N \left(\frac{1}{r} + \frac{1}{p} \right)} = \frac{1}{1 + I}$$

Indisposability of M : Practical Computation

Exercise 19 Explain how you would quantify the indisposability factor I in a practical situation. ◎

Mean Production Rate

$$m = \lim_{H \rightarrow \infty} \frac{\sum(H)}{H} = \frac{U}{1+I}$$

mean cumulated production $\langle \sum(H) \rangle$ (for large H):

$$\langle \sum(H) \rangle = mH = \frac{U}{1+I} H$$

with indisposability I of M={U,p,r}: $I = \frac{p}{r}$

Production Line with Successive Workstations

Manufacturing system composed of several successive workstations

- All the workstations must have (approximately) the **same mean stationary production rate** => manufacturing system is **balanced**
- **Unbalanced manufacturing systems** operate **sub-optimally** even in absence of failures and in presence of large internal buffers to absorb variability.
- In an unbalanced manufacturing system, the **workstation with the smallest mean stationary production rate** is the **bottleneck** and will define the production rate of the whole line

AnyLogic

Using *AnyLogic*: Simulate the mean cumulated production and compare simulated values with theoretical ones.

Mean Production Rate

$$m = \lim_{H \rightarrow \infty} \frac{\Sigma(H)}{H} = \frac{U}{1 + I}$$

However, tells nothing about the fluctuations around the mean value. However, **fluctuations are real and important!**

Variance of the Production Rate

O : operating time of the machine M before failure

R : repair time

Variances:

$$\sigma_O^2 := E((O - E(O))^2) = \int_0^\infty \left(t - \frac{1}{p}\right)^2 f(t) dt$$

$$\sigma_R^2 := E((R - E(R))^2) = \int_0^\infty \left(t - \frac{1}{r}\right)^2 g(t) dt$$

Squared **coefficient of variation**: $SCV = \frac{\text{variance}}{\text{mean}^2}$

$$SCV_O = \sigma_O^2 p^2 \text{ (operating time)} \quad SCV_R = \sigma_R^2 r^2 \text{ (repair time)}$$

Variance of the Production Rate

Example 7: exponential operating and repair times

$$\sigma_O^2 = \int_0^\infty \left(t - \frac{1}{p}\right)^2 f(t) dt = \frac{1}{p^2}$$

$$\sigma_R^2 = \int_0^\infty \left(t - \frac{1}{r}\right)^2 g(t) dt = \frac{1}{r^2}$$

Then: $SCV_O = SCV_R = 1$

Variance of the Production Rate

Result valid for **large time horizons H** (using central limit theorem):

$$P(x \leq \Sigma(\mathcal{H}) \leq x + dx) = \frac{1}{\sqrt{2\pi\sigma_{\Sigma(\mathcal{H})}^2}\mathcal{H}} \exp\left\{-\frac{(x - m\mathcal{H})^2}{2\sigma_{\Sigma(\mathcal{H})}^2\mathcal{H}}\right\} dx$$

With: $\sigma_{\Sigma(\mathcal{H})}^2 = (SCV_O + SCV_R) \frac{U^2 I}{r(1 + I)^3}$

We are hence able to estimate the probability to produce more than a given number of items during a fixed time horizon H .

Variance of the Production Rate

Exercise 20 For the production of electronic components, we are given the following data for a specific production step of these components:

$$\frac{1}{p} = 1000 \text{ [sec]} \quad \text{and} \quad \frac{1}{r} = 200 \text{ [sec]}$$

The production rate is given by $U = 12 \frac{\text{pce}}{\text{sec}}$ and the time horizon is 3 hours.

Suppose that O (operating time) and R (repair time) are exponentially distributed (implying that $SCV_O + SCV_R = 2$). Calculate:

- (1) The mean cumulated production $\langle \Sigma(\mathcal{H}) \rangle$
- (2) The stationary production fluctuations at time \mathcal{H} (i.e., $\sigma_{\Sigma_{\mathcal{H}}}^2$)
- (3) The probability that we can ship at least 108'100 components after 3 hours

Time T Needed to do a Given Job

We fix the batch size B to be produced

Question: **Are we able to ship this batch of products before a given time horizon H ?**

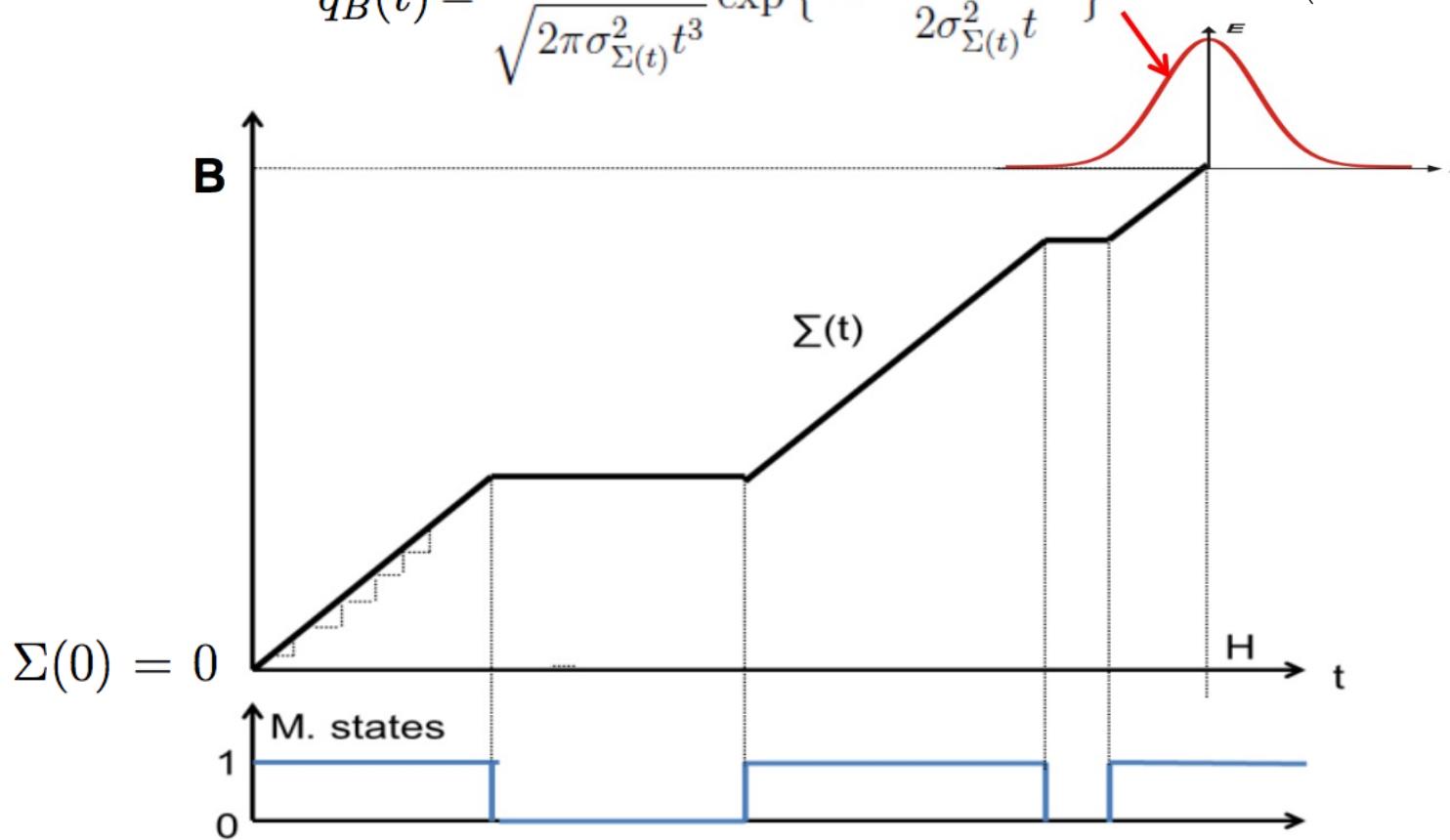
τ_B : **time needed to complete a job of batch size B** (random variable, as the production flow is random because of the machine failures), with density $q_B(t)$

$$P(\tau_B \leq T) = \int_0^T q_B(t) dt$$

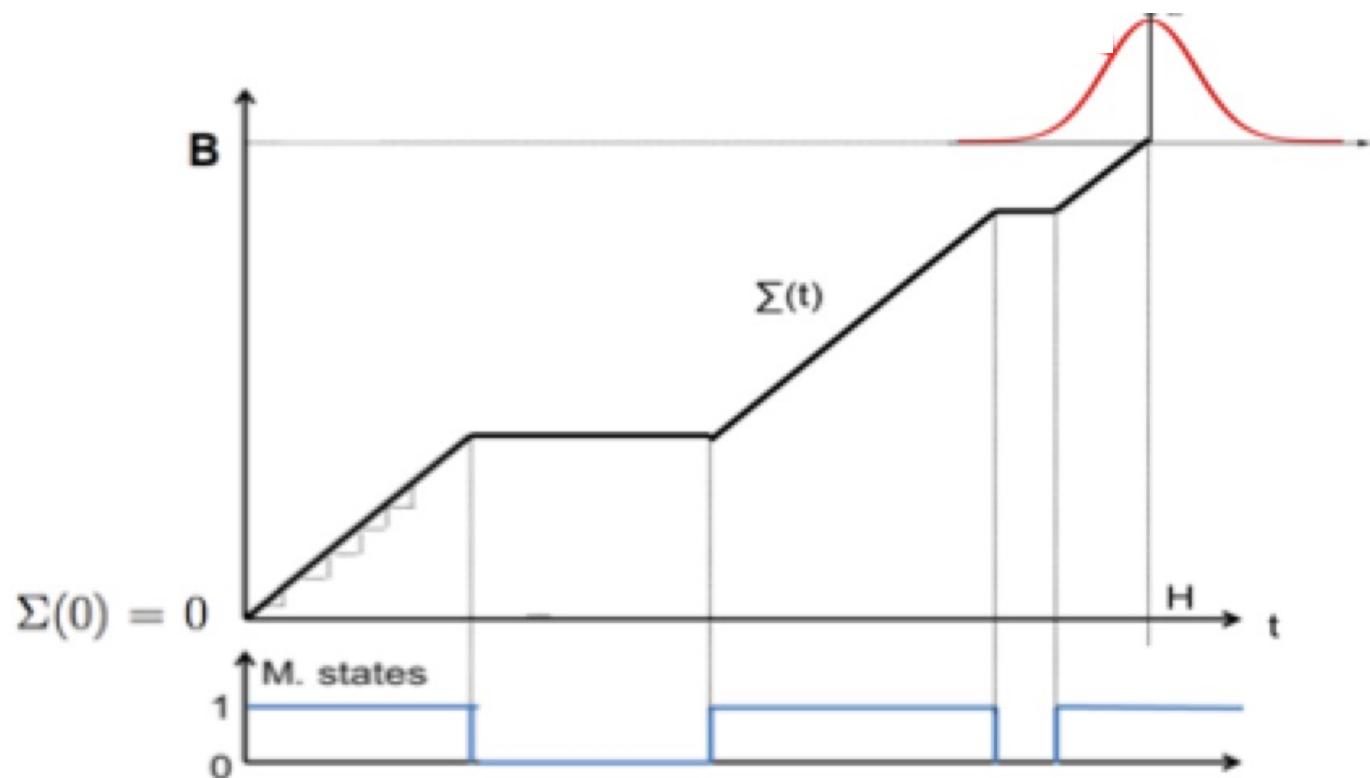
Time T Needed to do a Given Job

$$P(\tau_B \leq T) = \int_0^T q_B(t) dt$$

$$q_B(t) = \frac{B}{\sqrt{2\pi\sigma_{\Sigma(t)}^2 t^3}} \exp \left\{ -\frac{(B - mt)^2}{2\sigma_{\Sigma(t)}^2 t} \right\} \quad (\text{inverse Gaussian law})$$



Time T Needed to do a Given Job



Mean :
$$\langle \tau_B \rangle = \int_0^\infty t q_B(t) dt = \frac{B}{U} (1 + I) = \frac{B}{m}$$

Variance :
$$\sigma_{\tau_B}^2 = \frac{(CV_O + CV_R)BI}{rU}$$

Time T Needed to do a Given Job

Exercise 21 In the context of Exercise 20, calculate the probability to finish a job of size $B = 1.2 \cdot 10^5$ within 3 hours. •