

MANUFACTURING SYSTEMS AND SUPPLY CHAIN DYNAMICS

Chapter 12: Maintenance

EPFL, Master MT

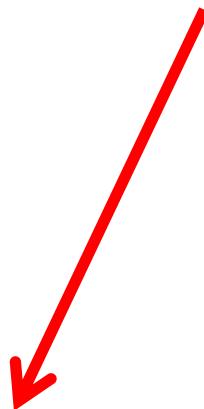
Roger Filliger (BFH), Olivier Gallay (UniL)

Course Content

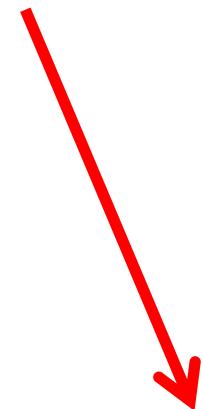
1. *Introduction*
2. *Inventory Theory*
3. *Safety Stock in Manufacturing Systems*
4. *Elements of Queueing Theory*
5. *Production Flows*
6. *Production Dipole*
7. *Production Lines and Aggregation*
8. *Cooperative Flow Dynamics*
9. *Introduction to Queueing Networks*
10. *Supply Chain Analysis*
11. *Elements of Reliability Analysis*
- 12. Maintenance Policies**

Predictive Maintenance

knowledge



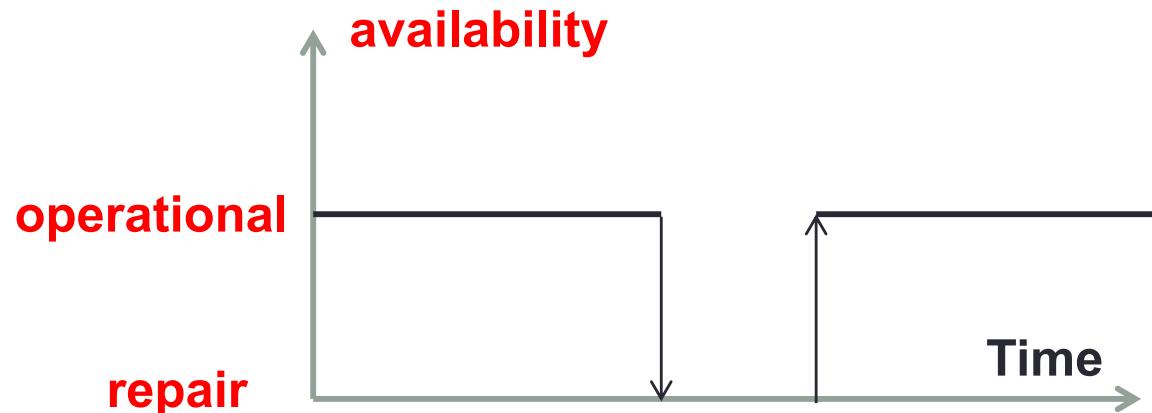
know-how



Run to failure maintenance

Maintenance action

Run to failure maintenance

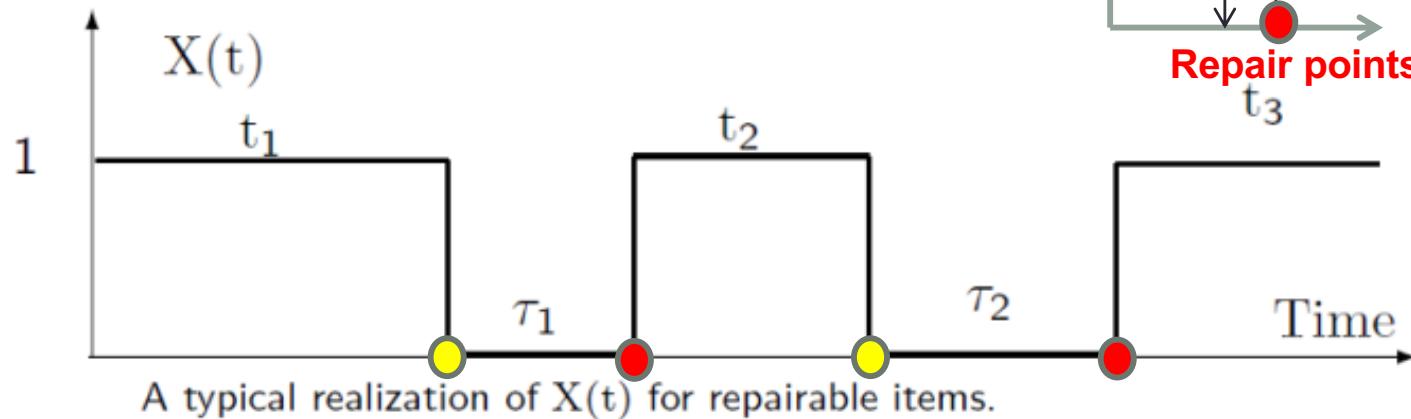


Easy decision making

Complex Planning

Run to failure maintenance

$$X_t = \begin{cases} 1 & \text{if the item is available at time } t \\ 0 & \text{otherwise} \end{cases}$$



$$\text{mean time to failure} = \text{MTTF} = \frac{1}{n} \sum_{i=1}^n t_i$$

$$\text{mean time to repair} = \text{MTTR} = \frac{1}{n} \sum_{i=1}^n \tau_i$$

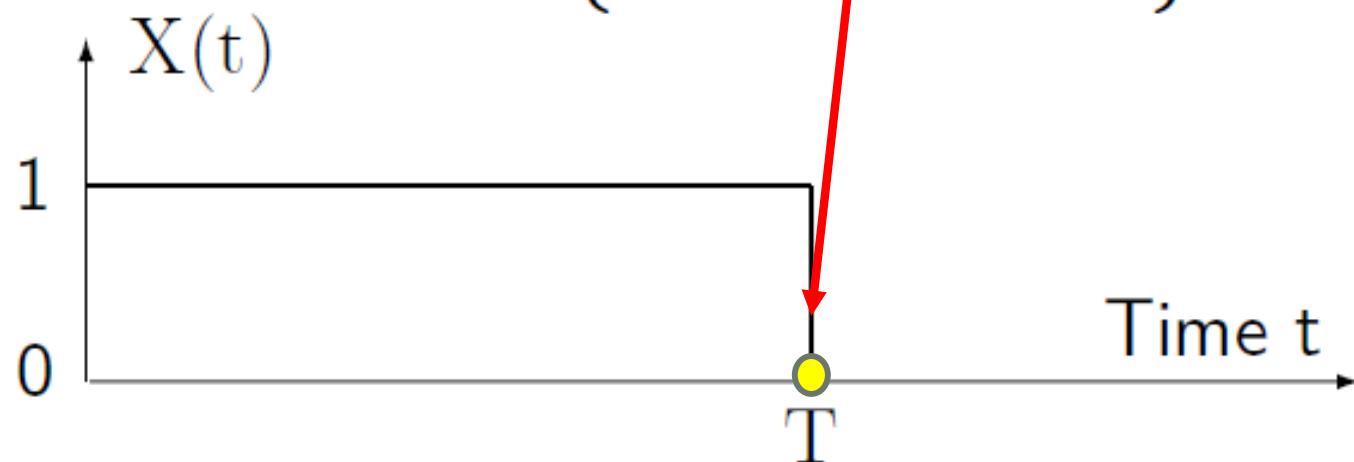
$$\text{inavailability factor} = I = \frac{\text{MTTR}}{\text{MTTF}}$$

Preventive maintenance

= Maintenance before T :

The time to failure T is the first time the item fails:

$$T = \min \left\{ t \geq 0 \mid X(t) = 0 \right\}$$

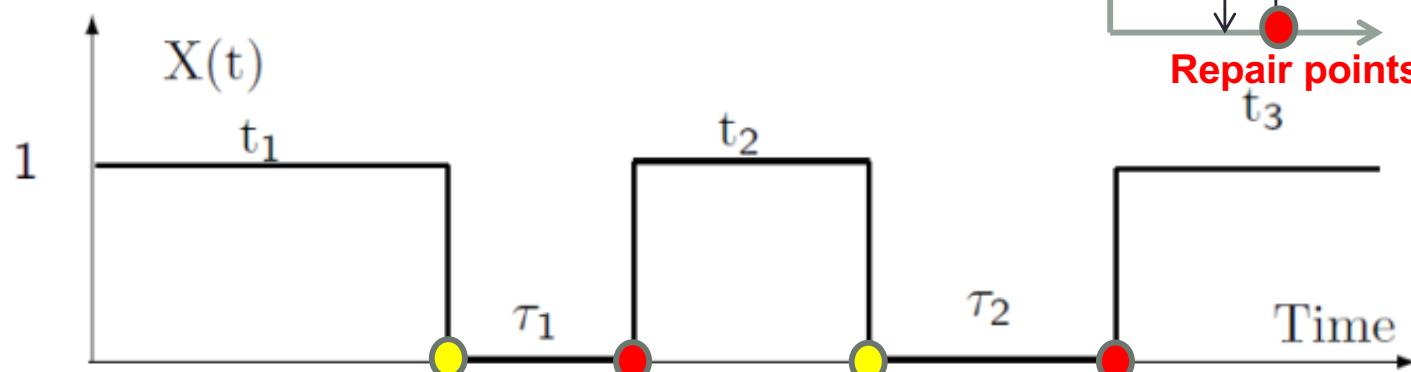


Run to failure maintenance

Maintenance action

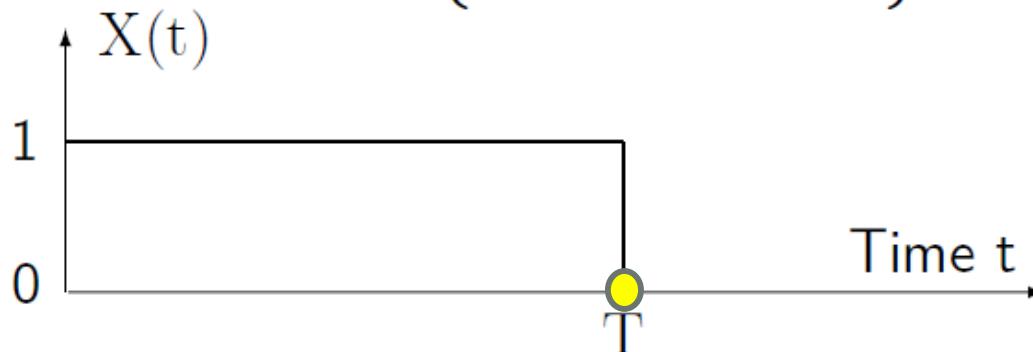
Number of repair points in $[0, t]$

$$X_t = \begin{cases} 1 & \text{if the item is available at time } t \\ 0 & \text{otherwise} \end{cases}$$

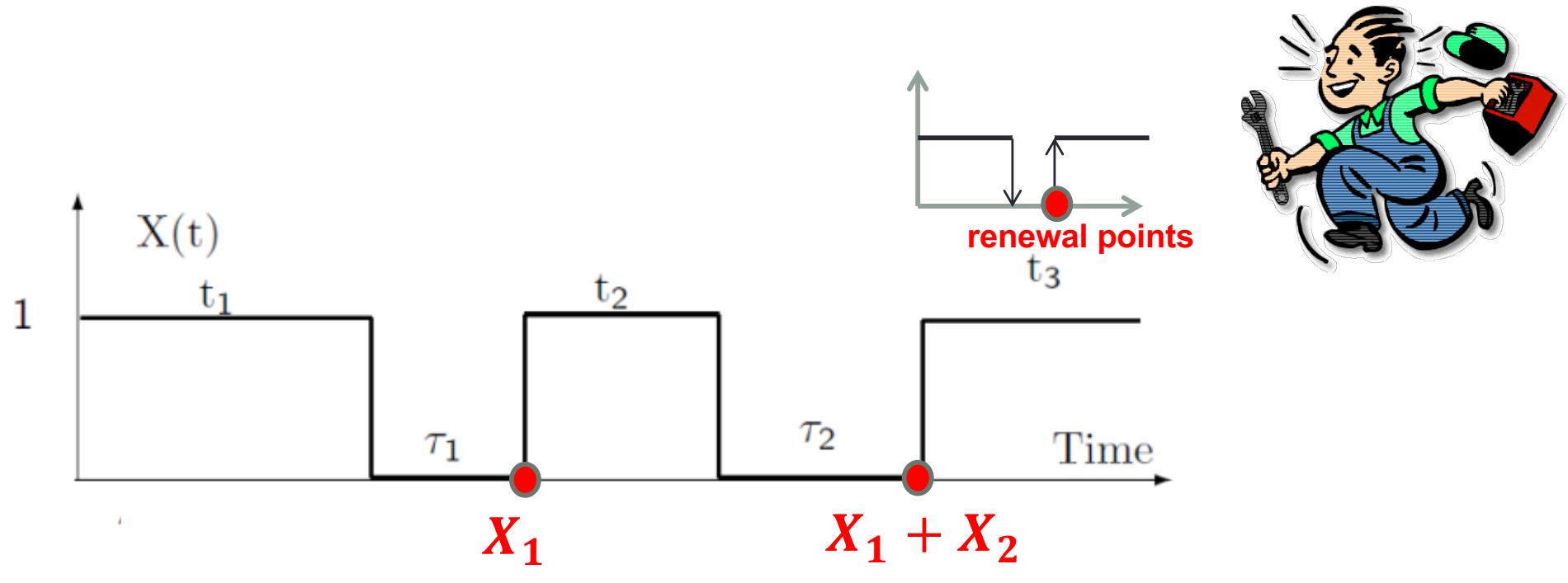


The time to failure T is the first time the item fails:

$$T = \min \left\{ t \geq 0 \mid X(t) = 0 \right\}$$



Number of repair points in $[0, t]$



$S_k = X_1 + X_2 + \dots + X_k$, **time of k'th renewal**

$F(x) = P(X_1 \leq x)$, $F^{(k)}$ k -fold convolution of F

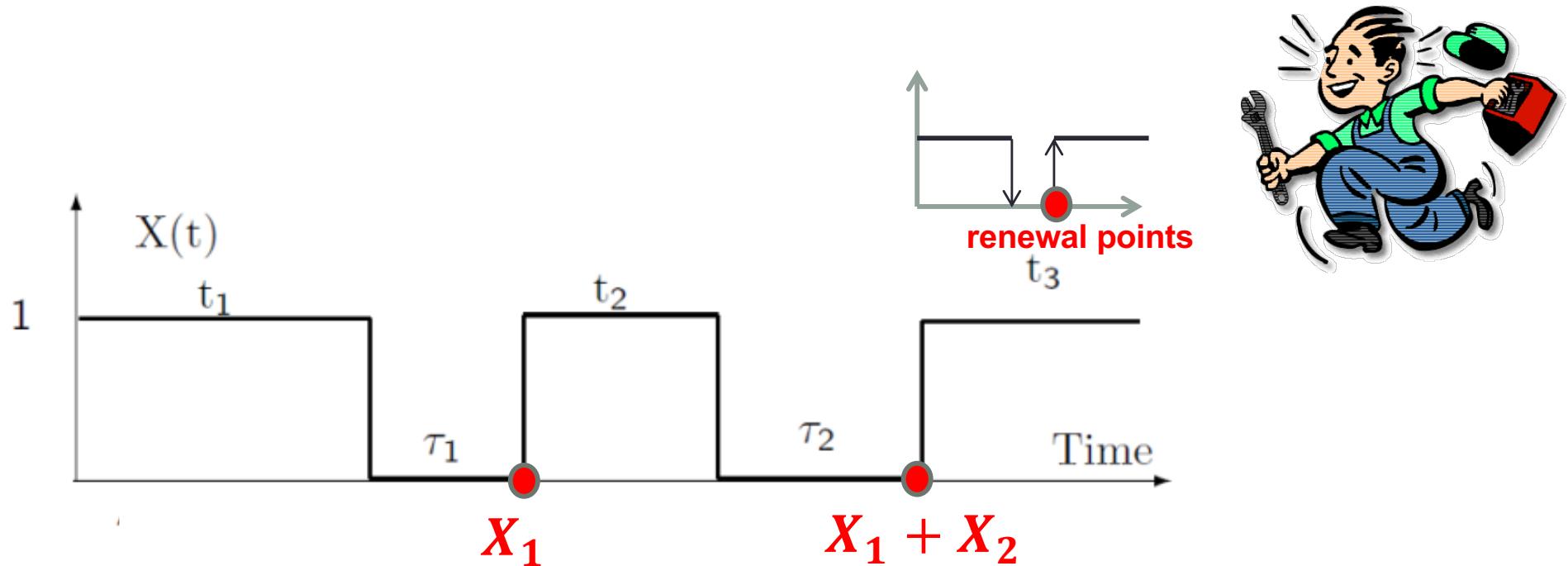
$P(N(t) = n) = P(S_n \leq t \text{ and } S_{n+1} > t)$

\uparrow
Renewal process

$$= F^{(n)}(t) - F^{(n+1)}(t)$$

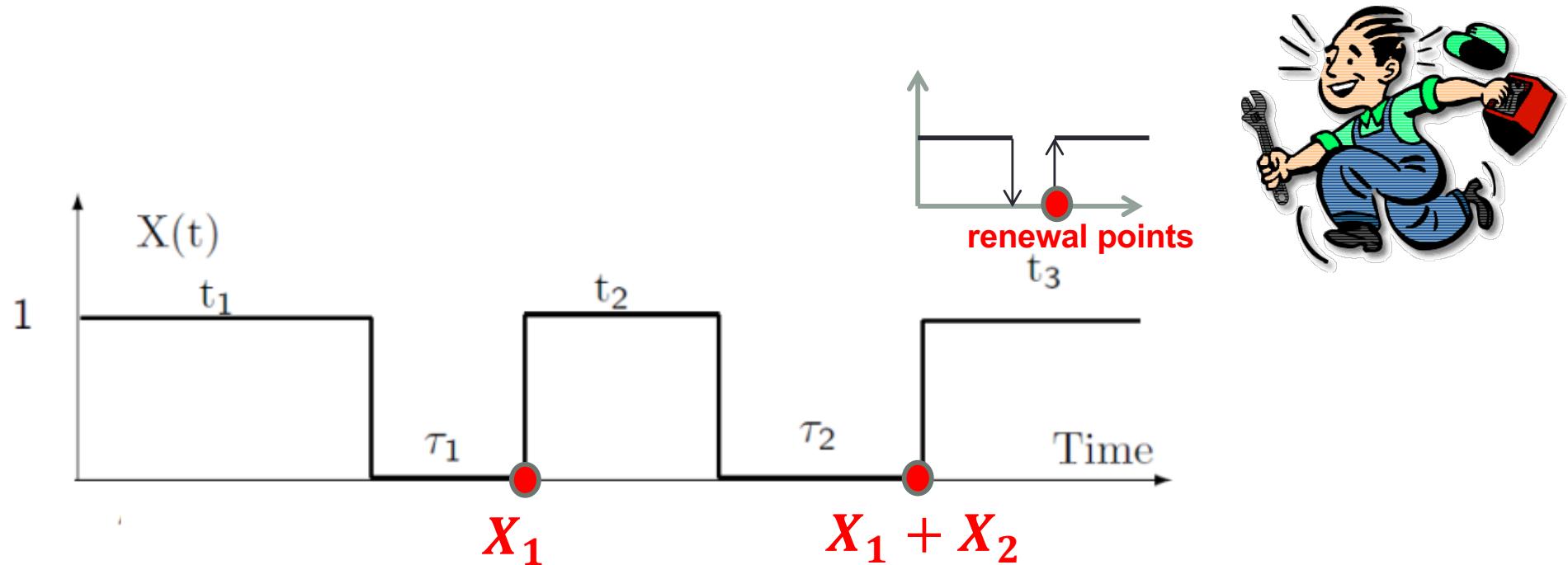
**Number of renewal
in $[0, t]$**

Number of repair points in $[0, t]$



Example 23 : The Poisson Process. If $F(t) = 1 - e^{\lambda t}$, i.e., the X_i 's are exponentially distributed with parameter λ , $N(t)$ is the Poisson process, and $P(N(t) \geq n) = F^{(n)}(t) = 1 - e^{-t\lambda} \sum_{i=0}^{n-1} \frac{(t\lambda)^i}{i!}$. \diamond

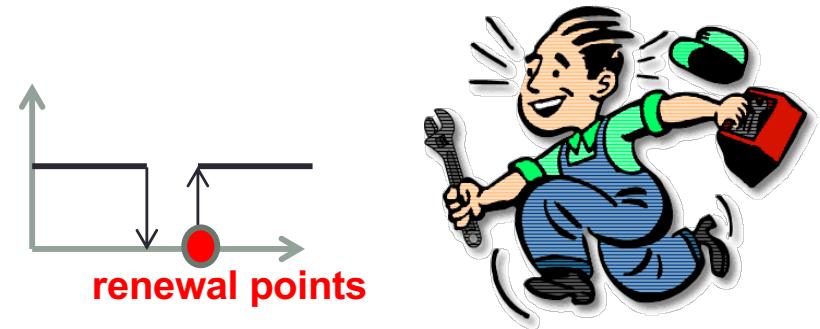
Number of repair points in $[0, t]$



Example 24 : IFR Renewal Process. If the underlying failure distribution $F(t)$ is IFR with mean μ , we have for $t \leq \mu$ (using the bounds expressed in Figure 11.5):

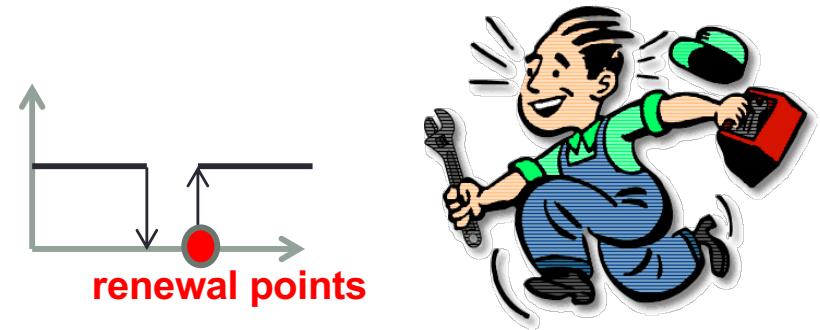
$$P(N(t) \geq n) = F^{(n)}(t) \leq 1 - e^{-t/\mu} \sum_{i=0}^{n-1} \frac{(t/\mu)^i}{i!}.$$

Number of repair points in $[0, t]$



Exercise 60 Consider the situation when a machine breakdown occurs, in the mean, once in 1200 working hours. Estimate the probability for 2 or more breakdowns to happen within 600 working hours. •

Number of repair points in $[0, t]$



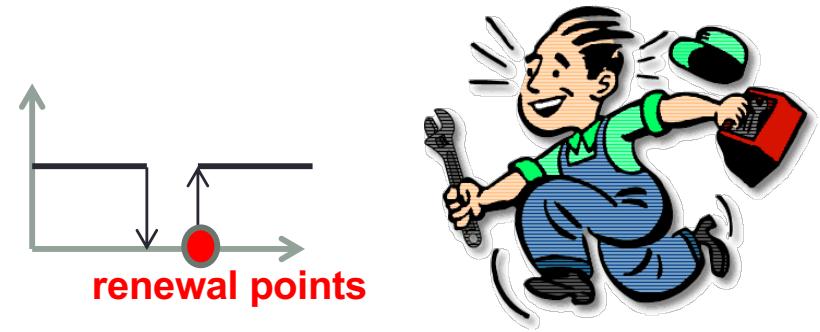
The renewal function is defined as the expected number of renewals happening in $[0, t]$, that is:

$$M(t) = E[N(t)].$$

Theorem: Under IFR assumption and for large t , the renewal function $M(t)$ satisfies:

$$\frac{t}{\mu} - 1 \leq \frac{t}{\int_0^t R(x)dx} - 1 \leq M(t) \leq \frac{tF(t)}{\int_0^t R(x)dx} \leq \frac{t}{\mu}.$$

Number of repair points in $[0, t]$



Example:

We observe the following renewal points:

$$x_1 = 8850h$$

$$x_2 = 3215h$$

$$x_3 = 9460h$$

$$x_4 = 6650h$$

$$x_5 = 7056h$$

$$x_6 = 7604h$$

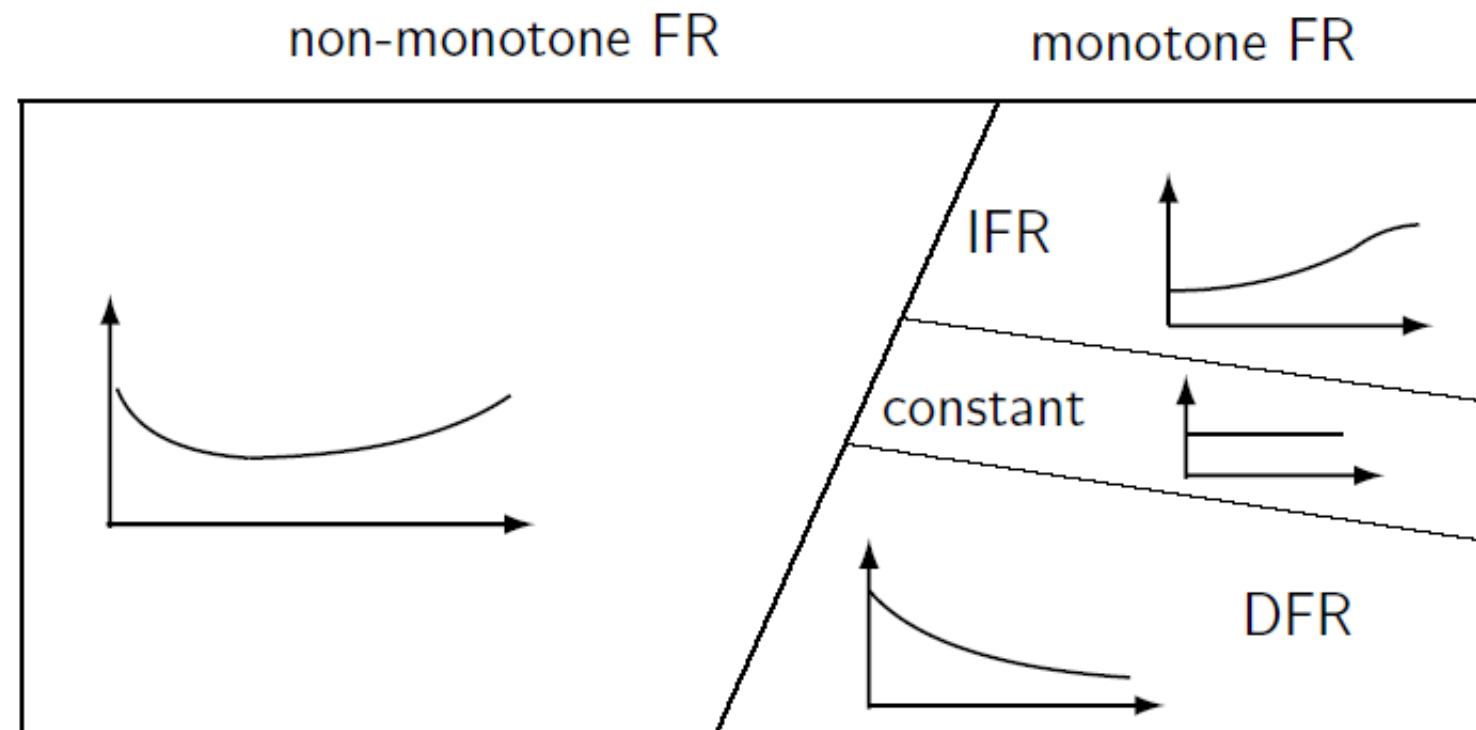
With mean $\mu = 7139$

and suppose an aging process behind the renewal points (->IFR).

Therefore, for $t \gg \mu$: $\mathbf{M}(t) \in \left[\frac{t}{\mu} - 1, \frac{t}{\mu} \right]$

Preventive maintenance

Maintenance planning
is based on T respectively on R
or equivalently on z:



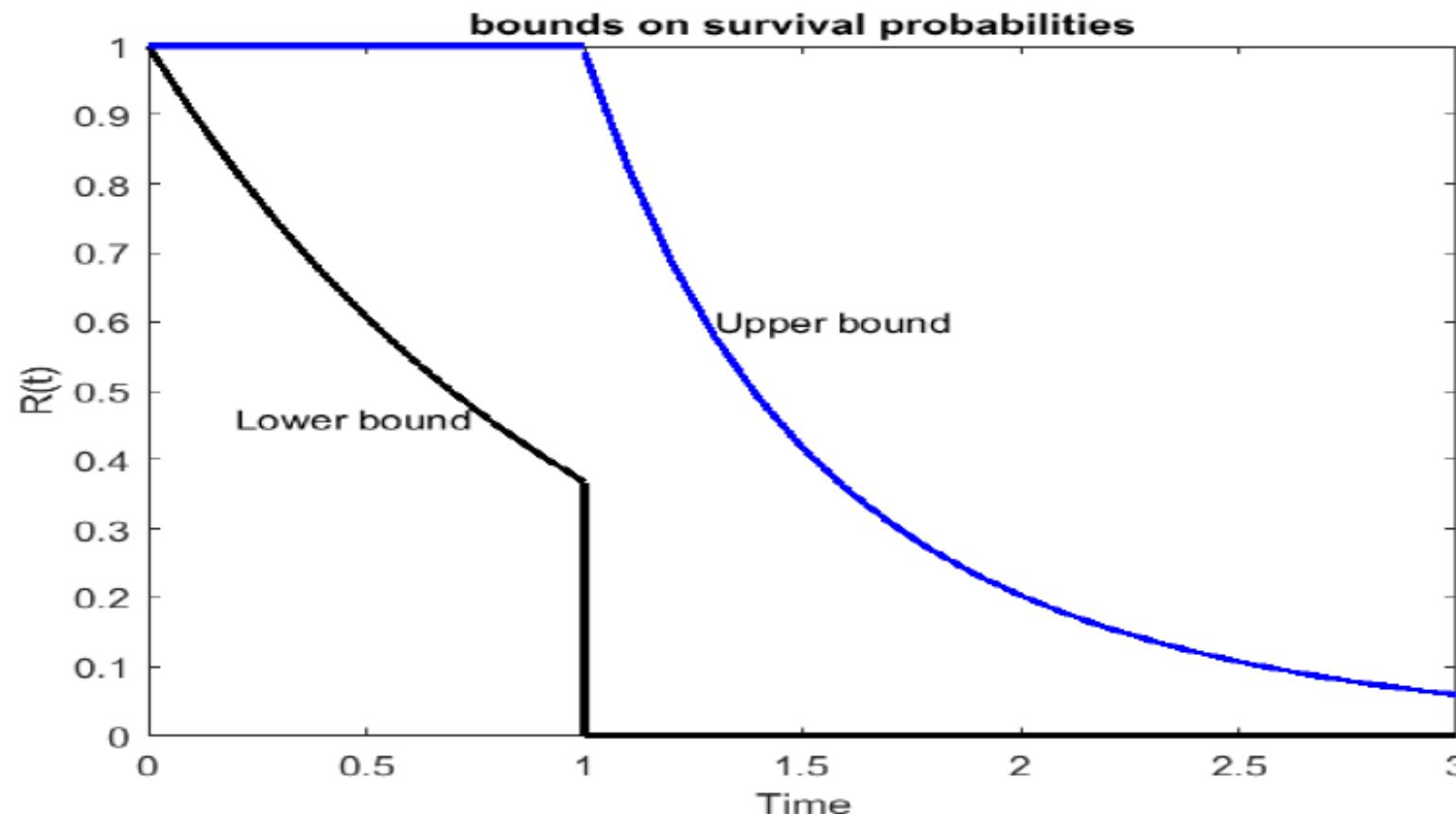
time to failure is **IFR** if $z(t)$ is increasing in t

time to failure is **DFR** if $z(t)$ is decreasing in t

$$\text{IFR} \cap \text{DFR} = \{\text{const FR}\} = \{T \sim \text{Exp}\}$$

Preventive maintenance

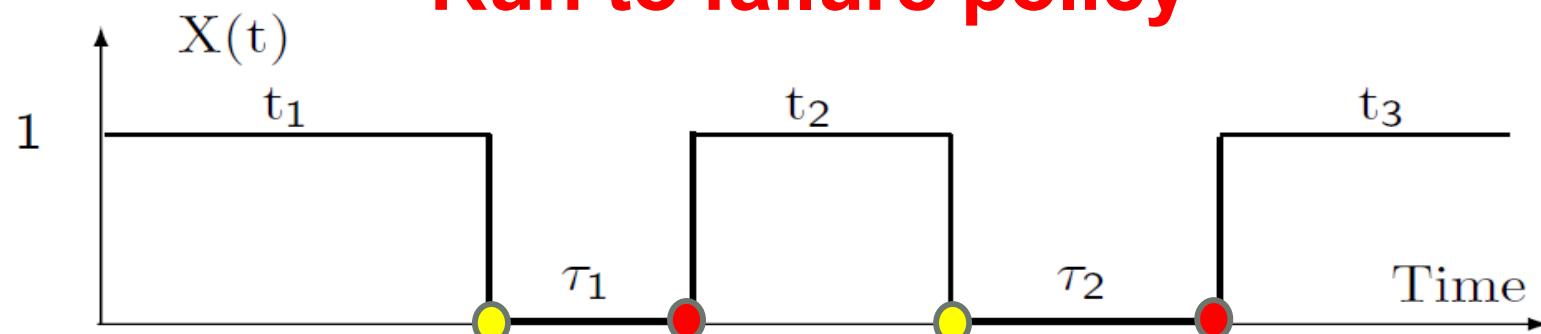
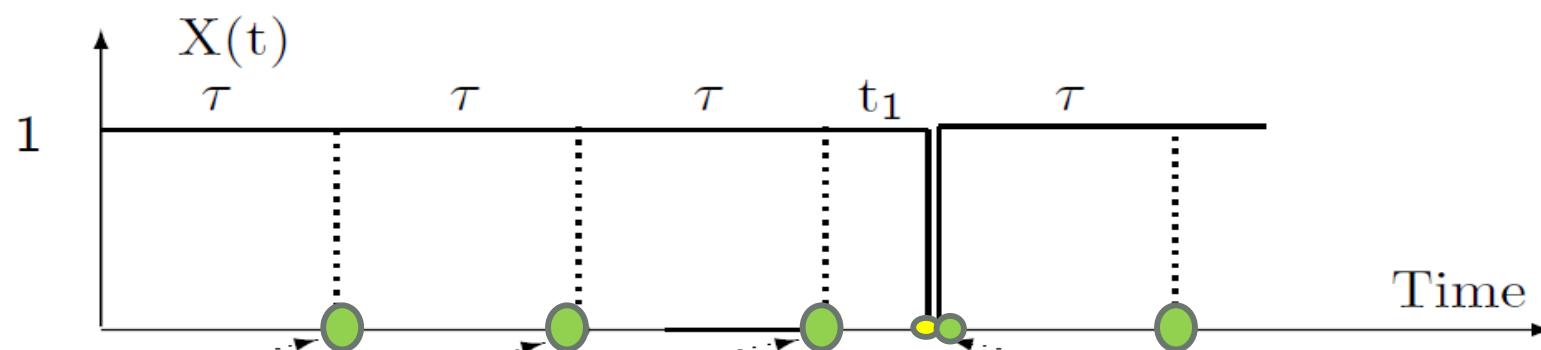
Maintenance planning
is based on T respectively on R
or equivalently on z :



Bounds on reliability for IFR distributions (here, $\mu = 1$).

Preventive maintenance

Run to failure policy



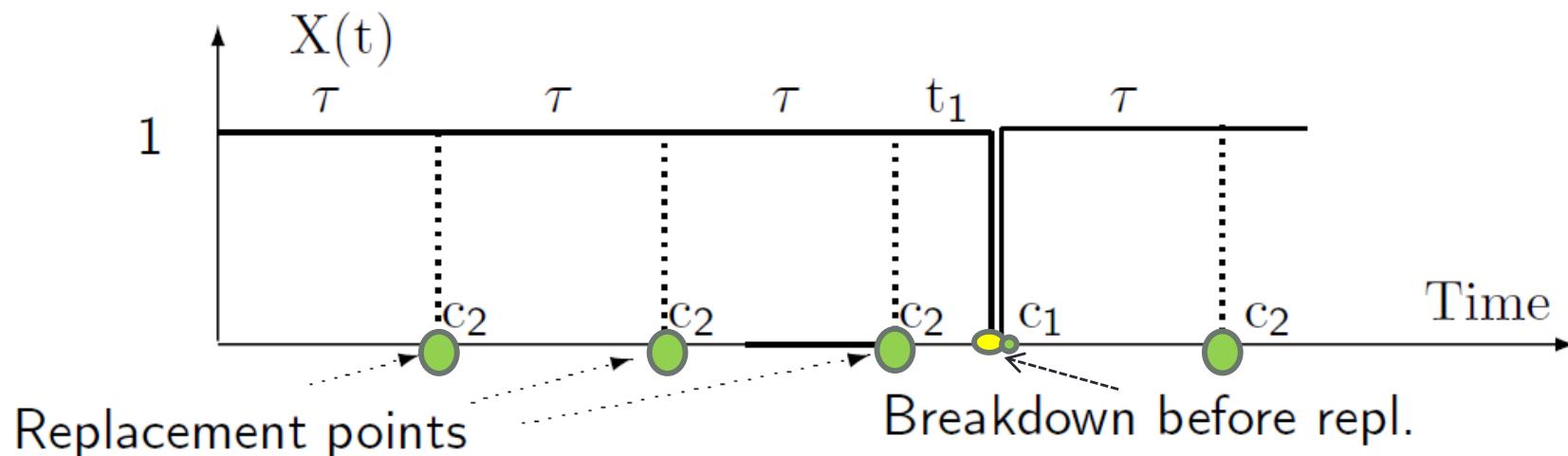
Replacement points Breakdown before repl.

An age replacement policy replaces a deteriorating unit τ hours after its installation or at failure, whichever occurs first.

Age replacement policy

Preventive maintenance

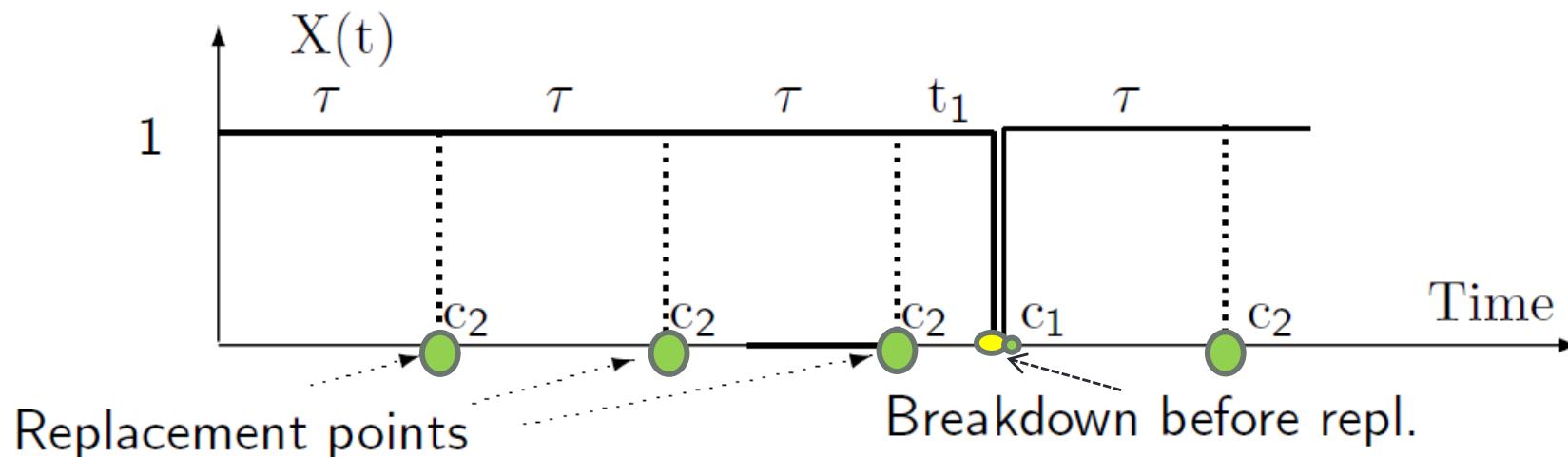
Observation :



We fix $\tau > 0$ and denote by
 $\bar{S}_\tau(t) = 1 - S_\tau(t)$ the probability of no repair during $[0, t]$

Preventive maintenance

Observation :

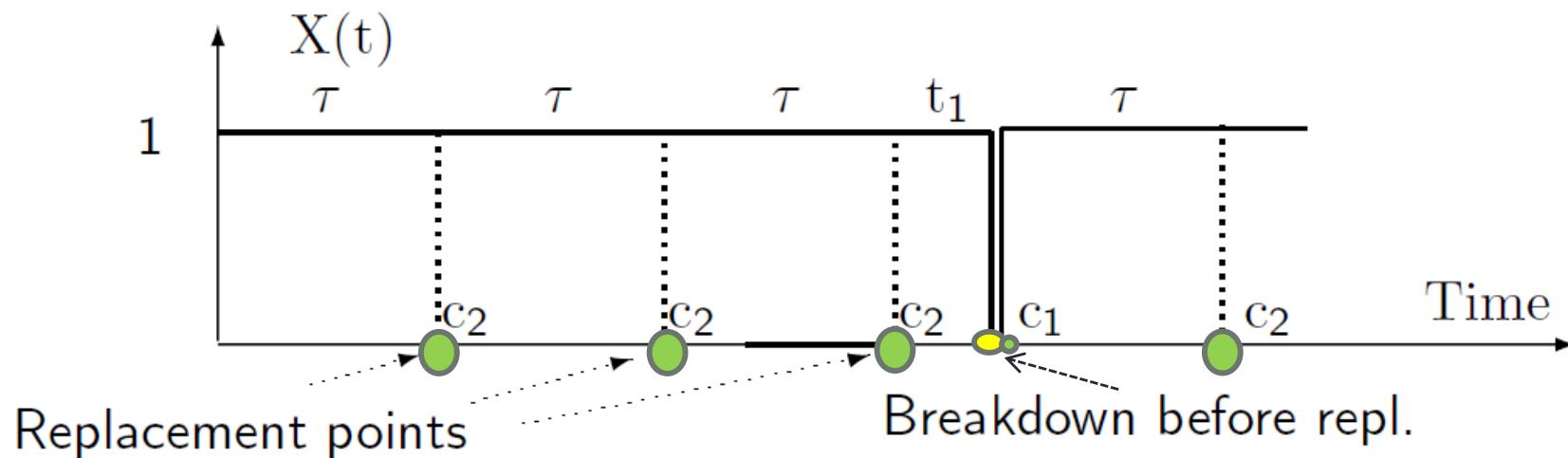


We fix $\tau > 0$ and denote by
 $\bar{S}_\tau(t) = 1 - S_\tau(t)$ the probability of no repair during $[0, t]$

We have $\bar{S}_\tau(t) = R(\tau)^n R(t - n\tau), \quad n\tau \leq t \leq (n + 1)\tau$

Preventive maintenance

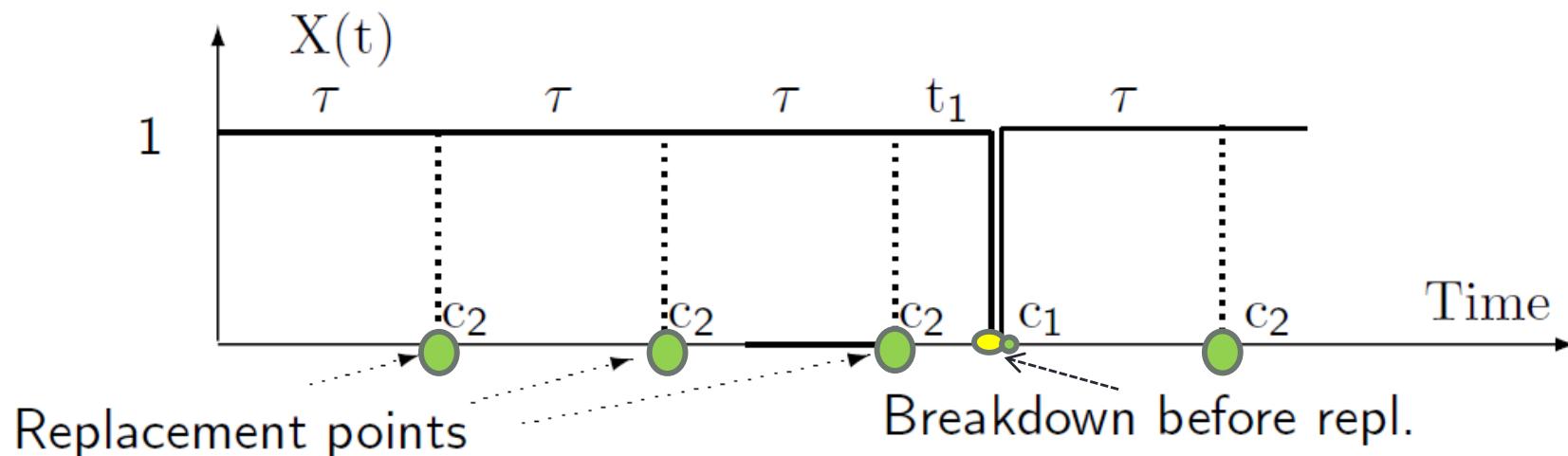
Observation : increasing τ increases the risk of run to failure!



We fix $\tau > 0$ and denote by $\bar{S}_\tau(t) = 1 - S_\tau(t)$ the probability of no repair during $[0, t]$ and $\bar{S}_{\tau_1}(t) \geq \bar{S}_{\tau_2}(t)$, for all $\tau_1 \leq \tau_2$ if and only if T is IFR.

Preventive maintenance

age replacement after τ :

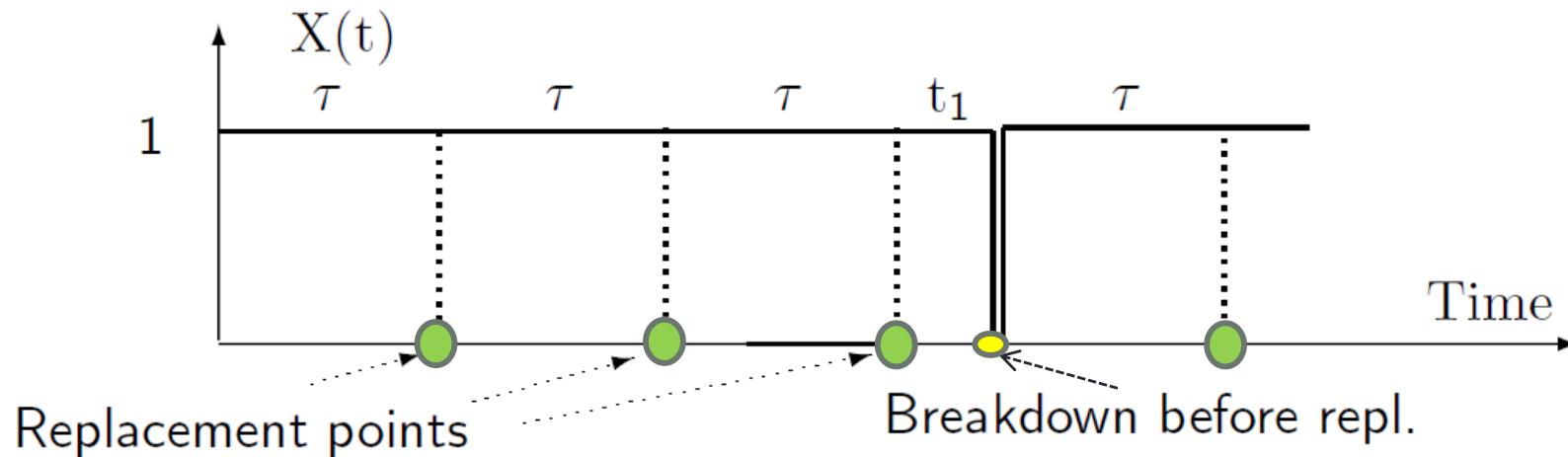


Suppose a cost c_1 is suffered for each failed item which is replaced and...

...a cost $c_2 < c_1$ is suffered for each nonfailed item which is exchanged.

Preventive maintenance

Optimal age replacement policy:



Letting

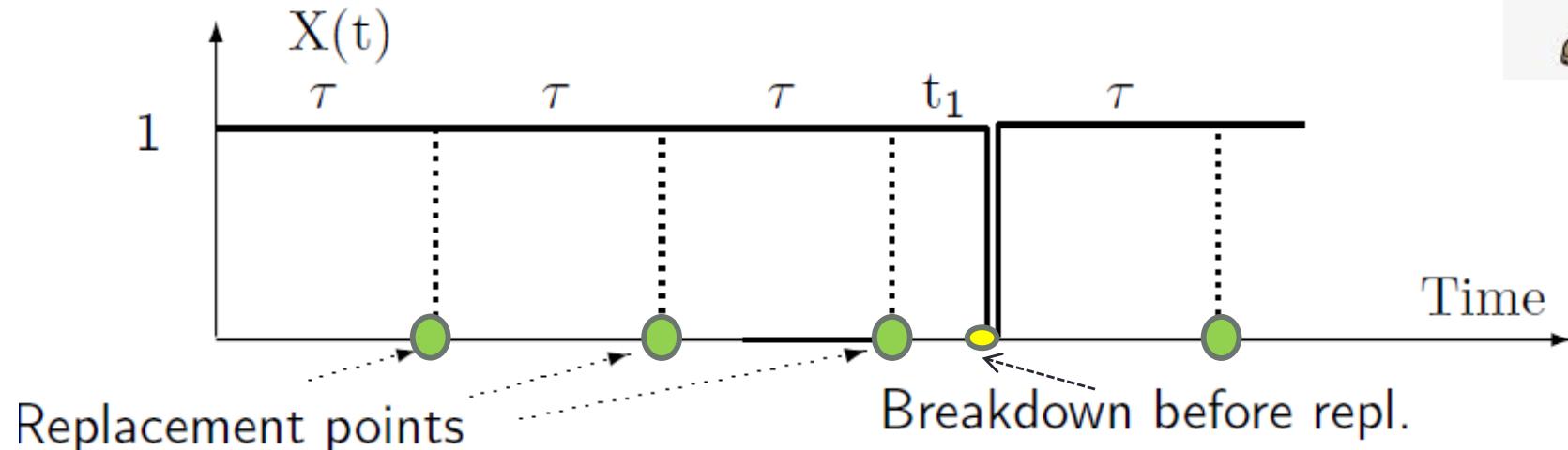
- $N_1(t)$ denote the number of failures during $[0, t]$ and
- $N_2(t)$ denote the number of exchanges of nonfailed items during $[0, t]$,

and we seek **the age policy minimizing $C(t)$**

$$C(t) = c_1 E(N_1(t)) + c_2 E(N_2(t))$$

Preventive maintenance

Optimal age replacement policy:



The solution $\tau = t$ to the equation

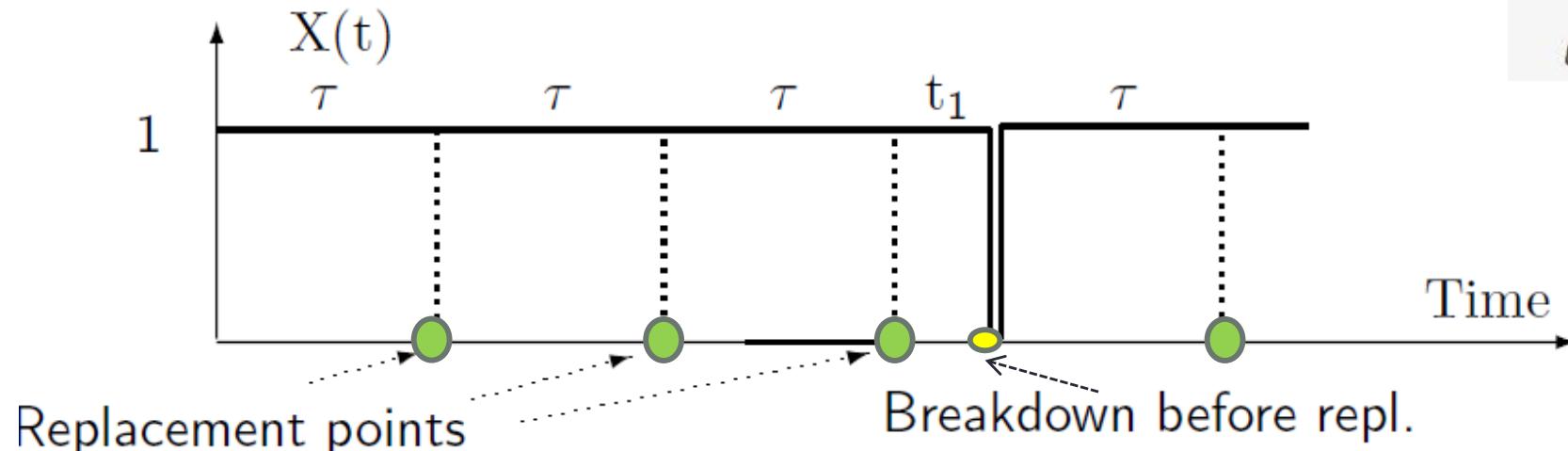
$$z(t) \int_0^t R(x)dx - F(t) = \frac{c_2}{c_1 - c_2}. \quad (1)$$

defines the optimal replacement strategy. Moreover, if F is IFR, we have:

$$\tau > \frac{c_2}{c_1} \text{MTTF}$$

Preventive maintenance

Exercise: work out the details for a Weibull distribution with $\alpha=2$, $\beta=1$.



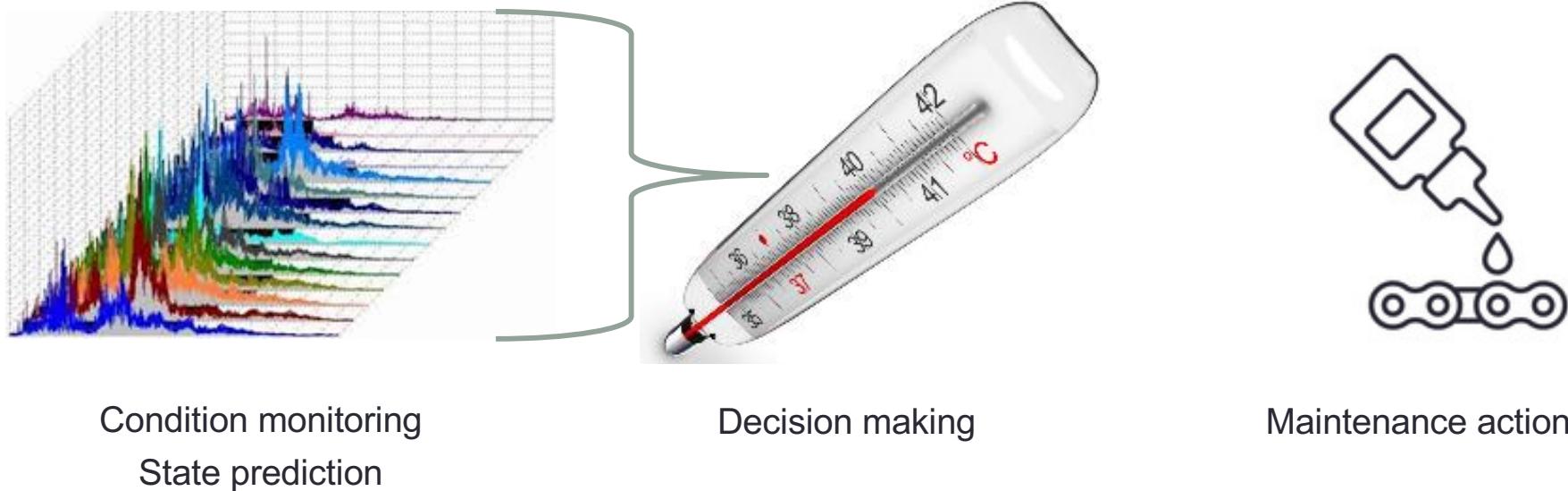
The solution $\tau = t$ to the equation

$$z(t) \int_0^t R(x)dx - F(t) = \frac{c_2}{c_1 - c_2}. \quad (1)$$

defines the optimal replacement strategy. Moreover, if F is IFR, we have:

$$\tau > \frac{c_2}{c_1} \text{MTTF}$$

Predictive maintenance



Online estimation

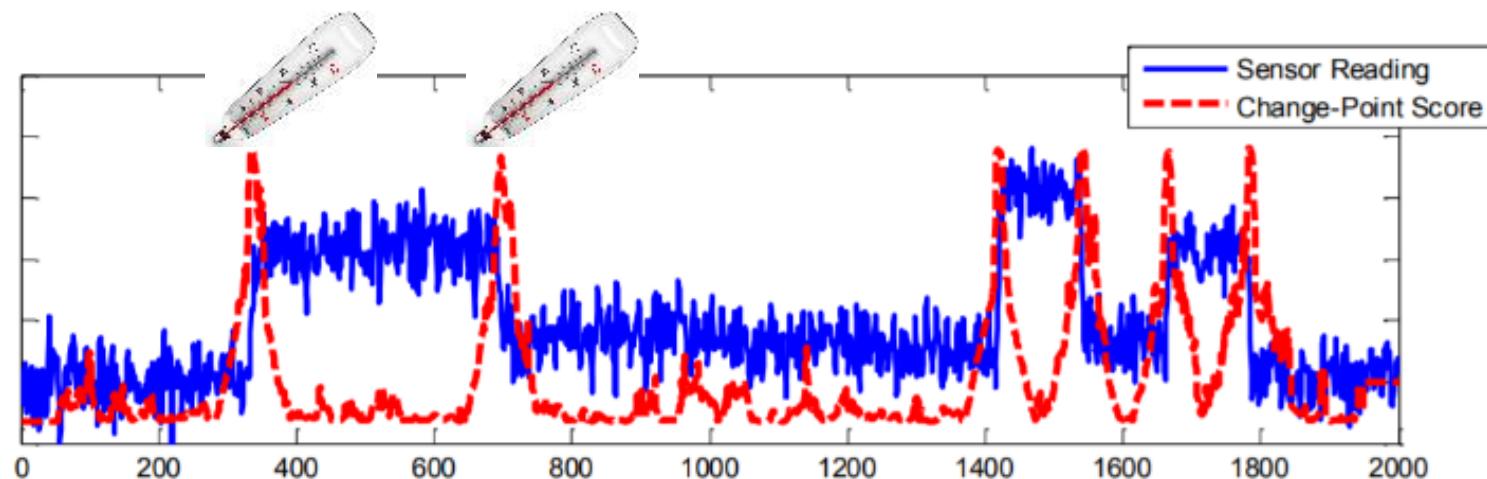
Index Policies

Maintenance when required

Theoretical formulation:

Predictive maintenance relies on

Distributional Change Detection in Time-series



- **Objective:** Detecting **abrupt changes** lying among time-series data

Predictive maintenance

Pioneering work
in 1940 by
Abraham Wald:
Sequential hypothesis test

Condition monitoring
State prediction

Decision making

Hypothesis test

H_0 : Maintenance not
needed

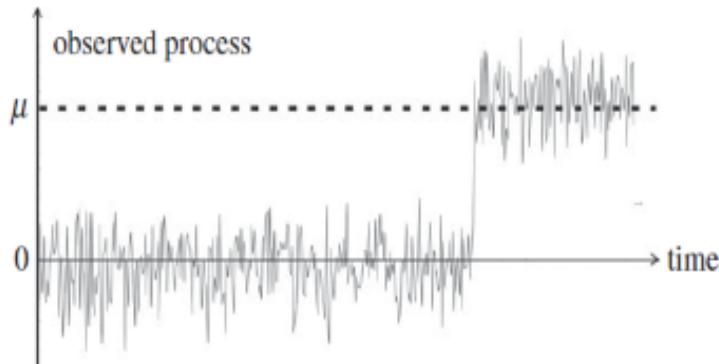
H_1 : Maintenance needed

Online estimation

Index Policies

**Maintenance
when required**

Predictive maintenance



Condition monitoring

$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

Model based

Minimize Probability of false alarm (accept H_1 when H_0 is true)

Trade off

Minimize Probability of false serenity (accept H_0 when H_1 is true)

Hypothesis test

H_0 : Maintenance not needed

H_1 : Maintenance needed

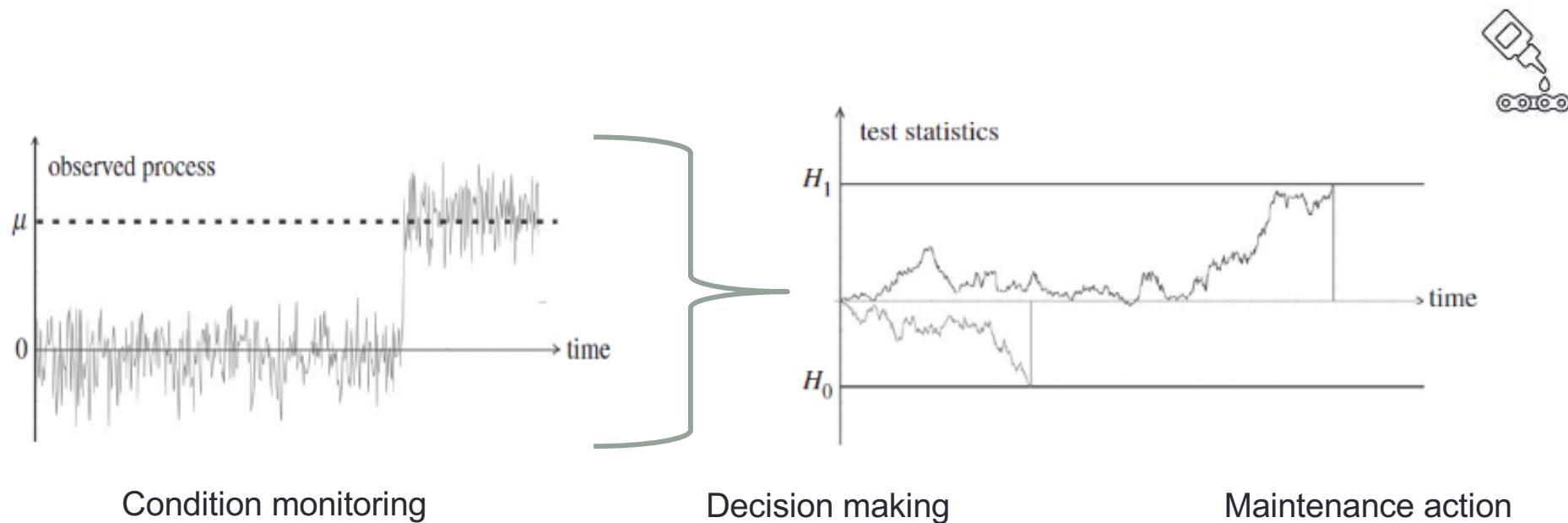
Typical Index Policy:

If likelihood $\geq K$: we accept H_0

If likelihood $< K$: we accept $H_1 \rightarrow$ maintenance

Maintenance when required

Predictive maintenance



$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

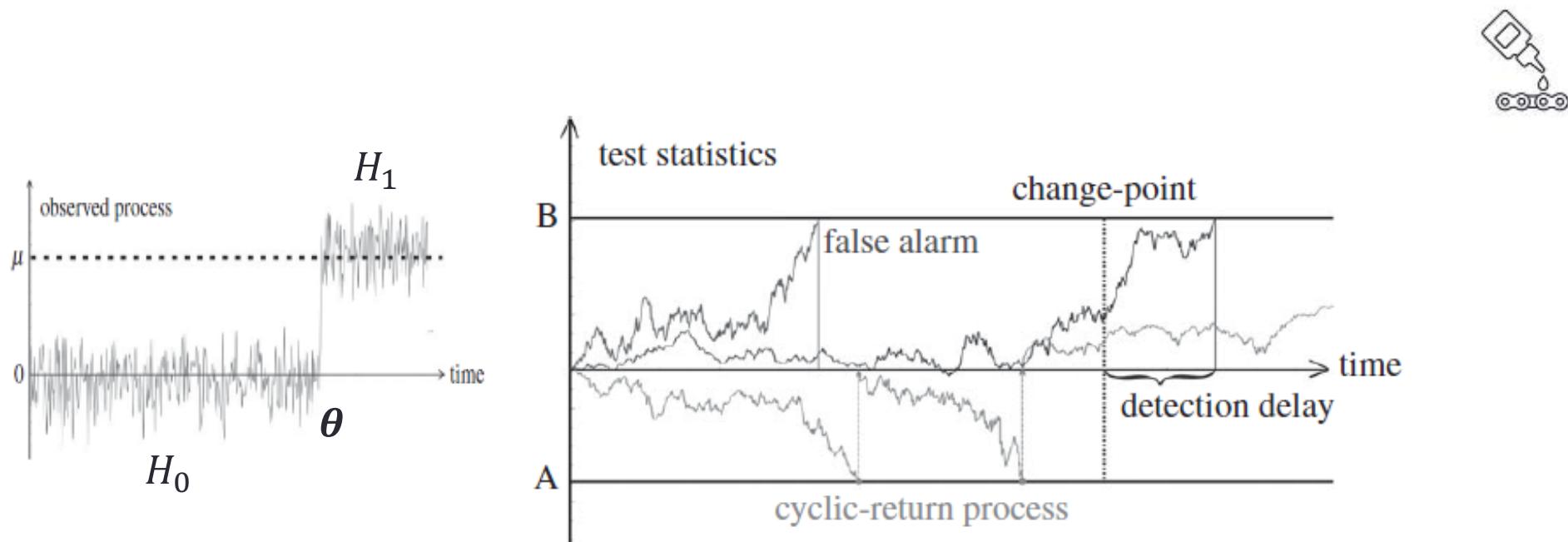
Model based

**Sequential probability
ratio testing**

D. Siegmund, 2013, Sequential analysis,
N.Y. Springer

**Maintenance
when required**

Predictive maintenance



Change-point detection

$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

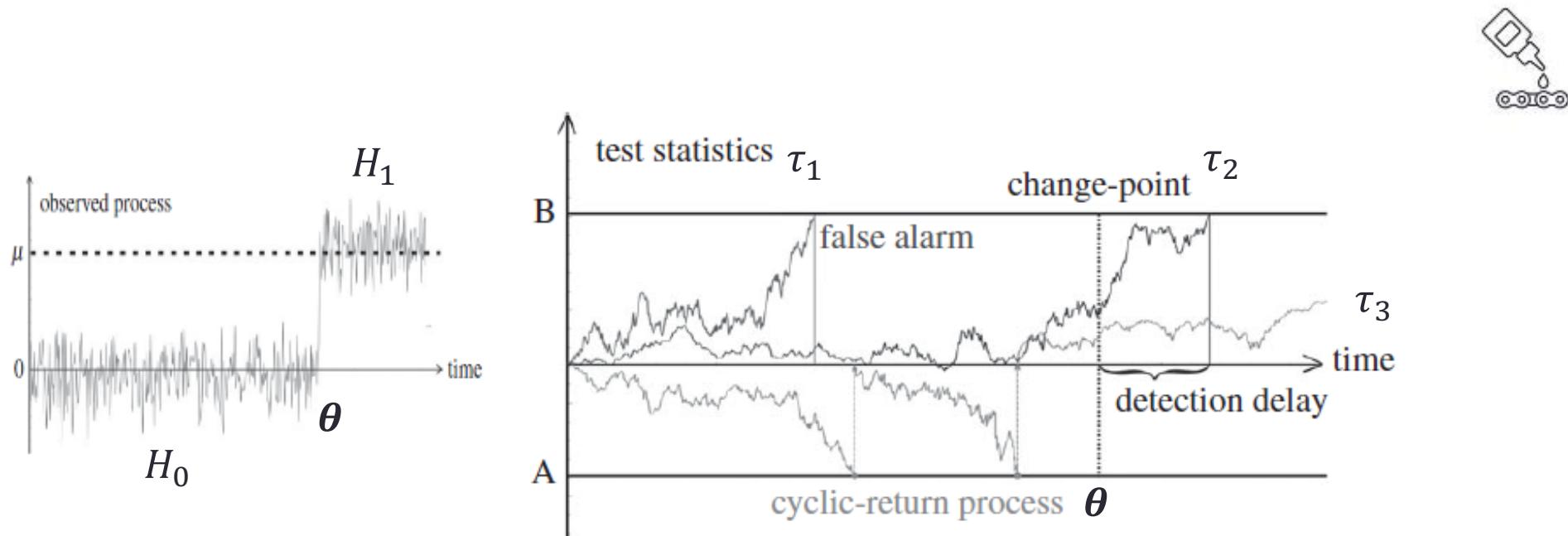
$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

Model based

Minimize average **delay** and respect constraints on **false alarm**

Maintenance when required

Predictive maintenance



Change-point detection

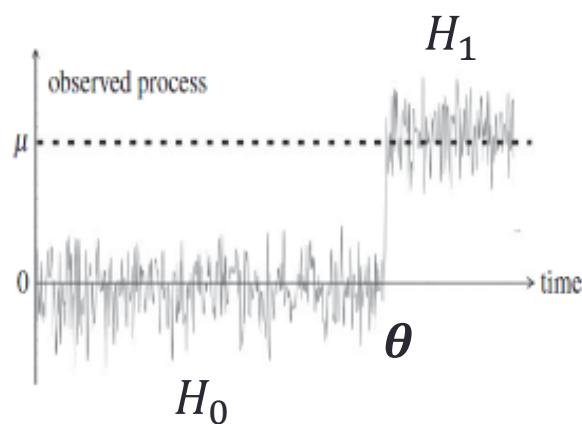
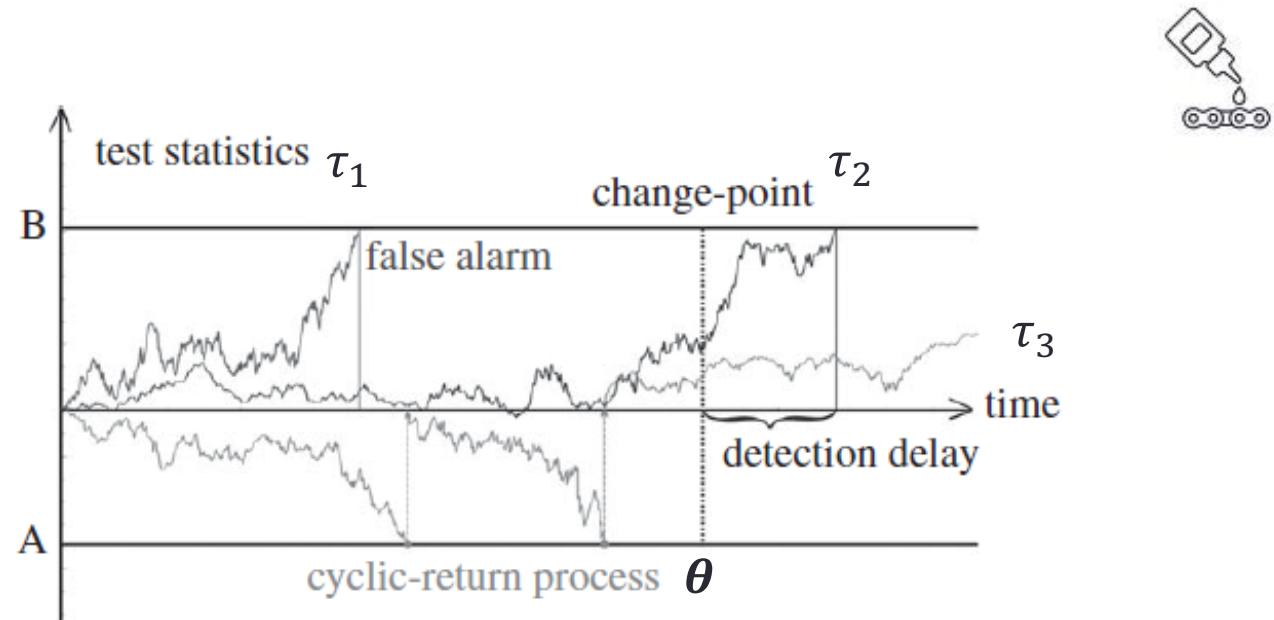
$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

Model based

Bayesian problem: find stopping time τ^* s.t.
 $\inf_{\tau} [P(\tau \leq \theta) + cE(\tau - \theta)^+] = P(\tau^* \leq \theta) + cE(\tau^* - \theta)^+$

Predictive maintenance



Change-point detection

$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

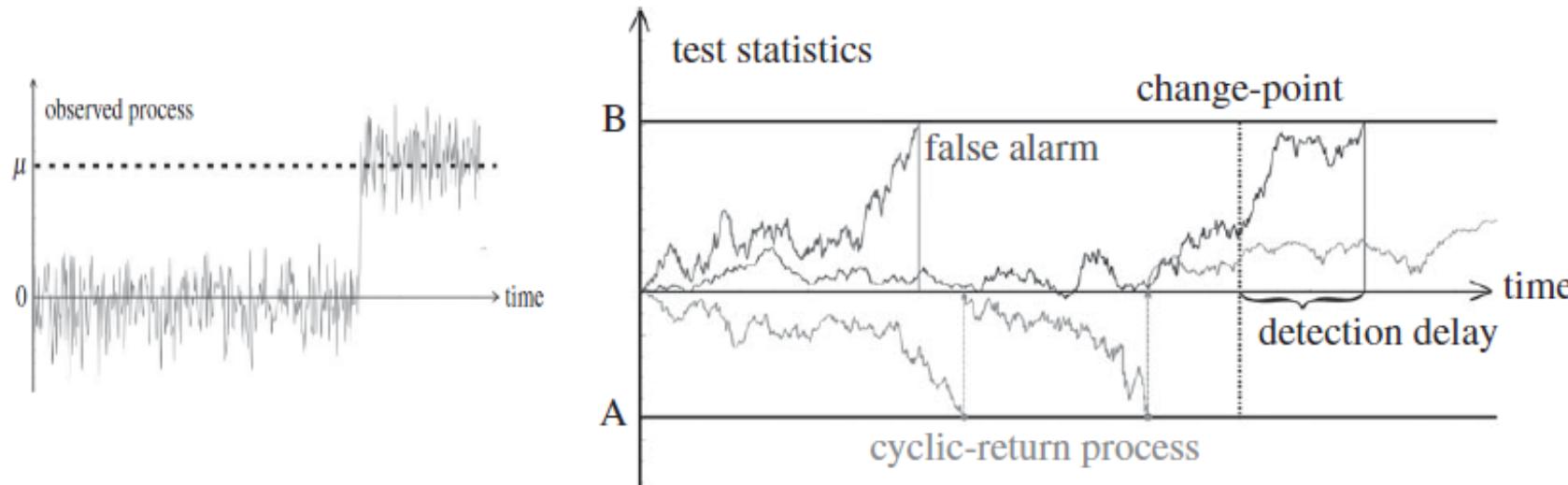
$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

Model based

Conditional extremal problem: for $P(\tau^* \leq \theta) \leq \alpha$
find stopping time τ^* s.t.

$$\inf_{\tau} [E(\tau - \theta | \tau \geq \theta)] = E(\tau^* - \theta | \tau^* \geq \theta)$$

Predictive maintenance



Change-point detection

$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

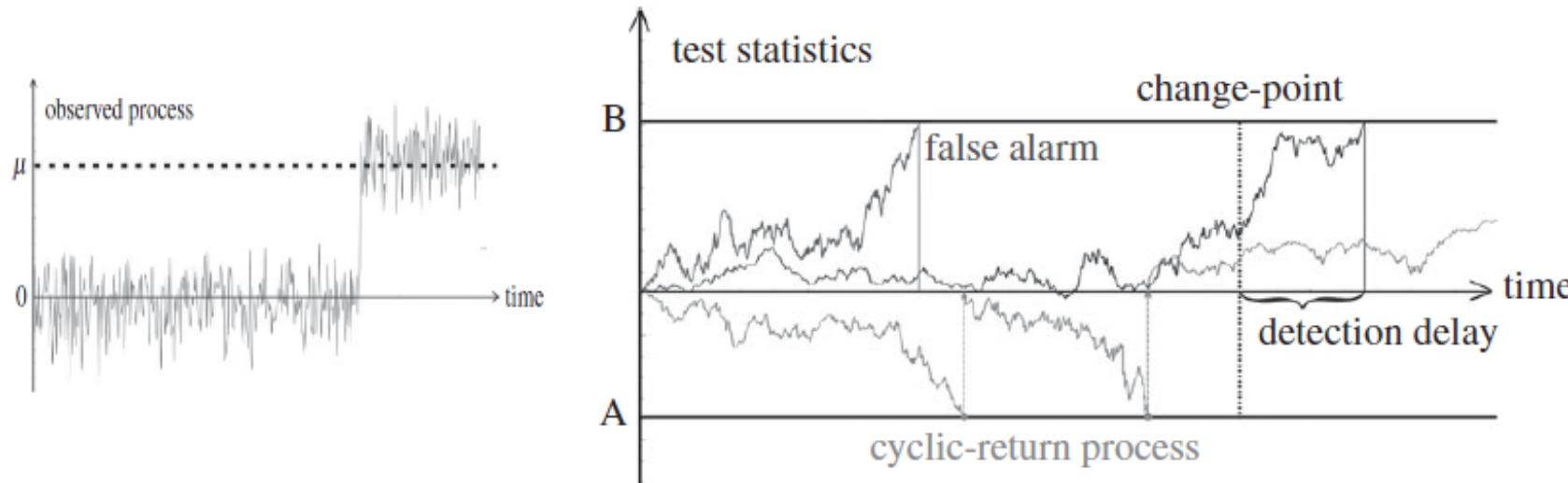
$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

Model based

A. Shiryaev, 1963
 On detecting of disorders in
 industrial processes.
Ann. Stat. 36, 787–807.

Maintenance
 when required

Predictive maintenance



Change-point detection

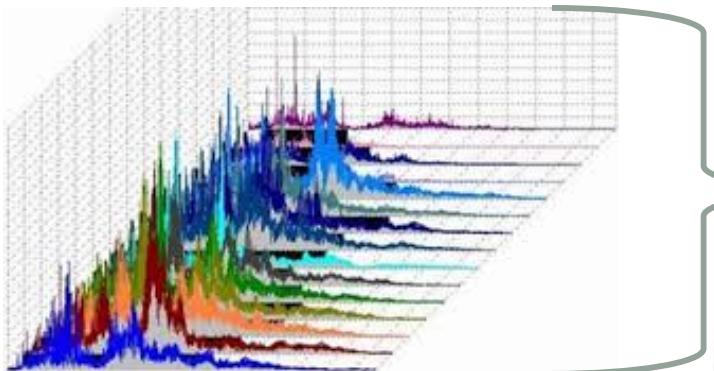
$$H_0 : \mathbf{x}[i] = \sigma \mathbf{w}[i]$$

$$H_1 : \mathbf{x}[i] = \sigma \mathbf{w}[i] + \mu$$

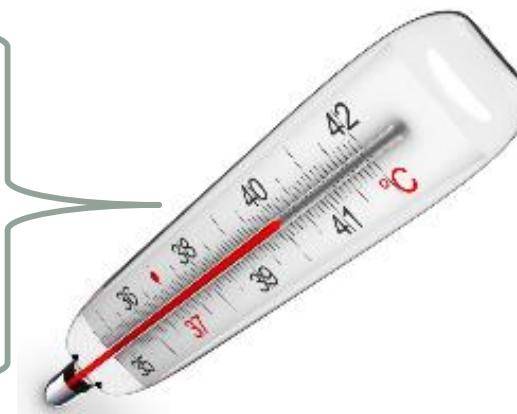
Model based

A. Shiryaev, and P. Y. Zryumov, (2009).
 On the Linear and Nonlinear Generalized
 Bayesian Disorder Problem.
*Optimality and Risk, Modern
 Trends in Mathematical Finance.*

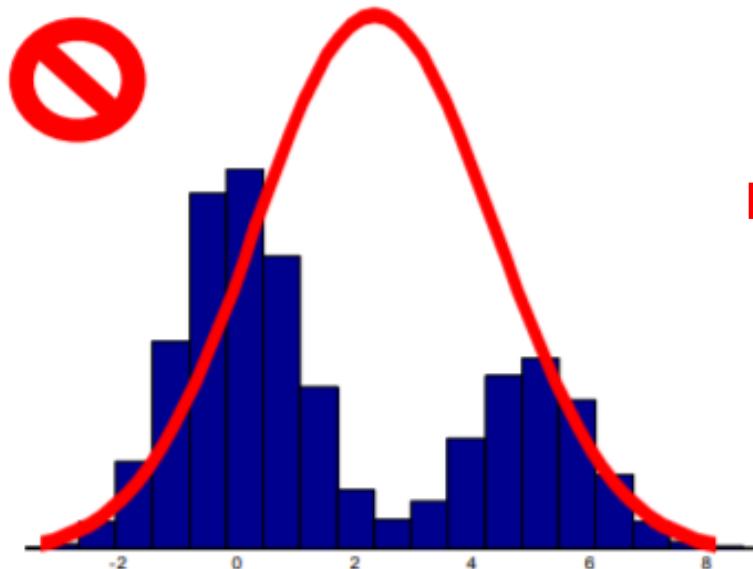
Predictive maintenance



Condition monitoring

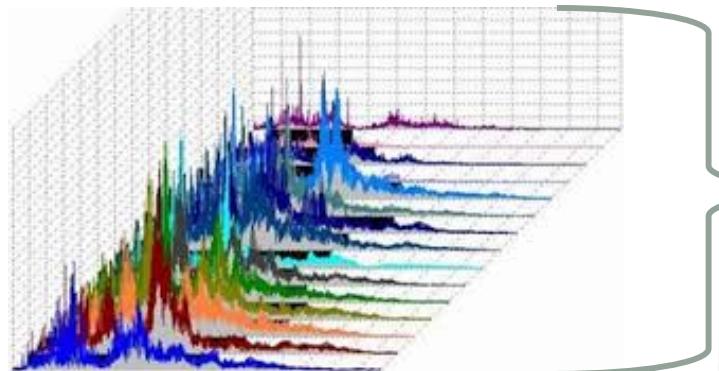


Decision making

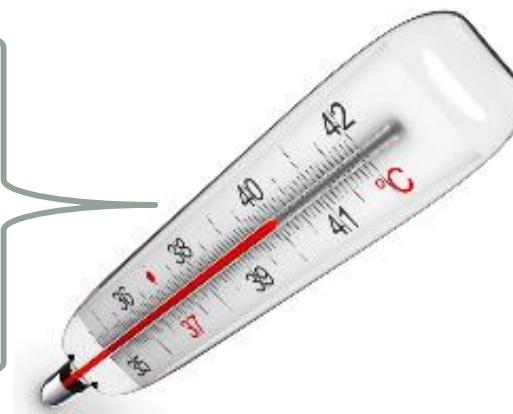


Model mismatch!

Predictive maintenance

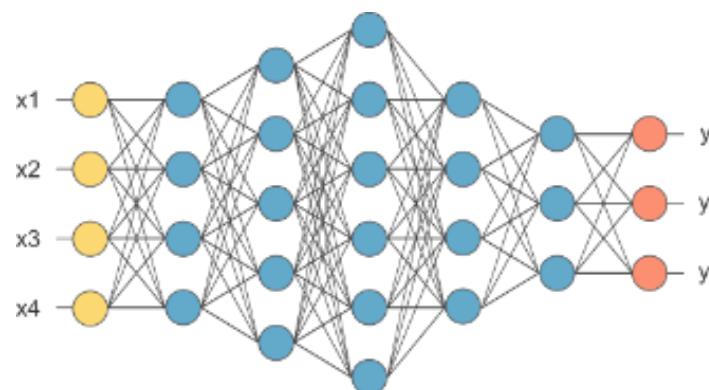


Condition monitoring

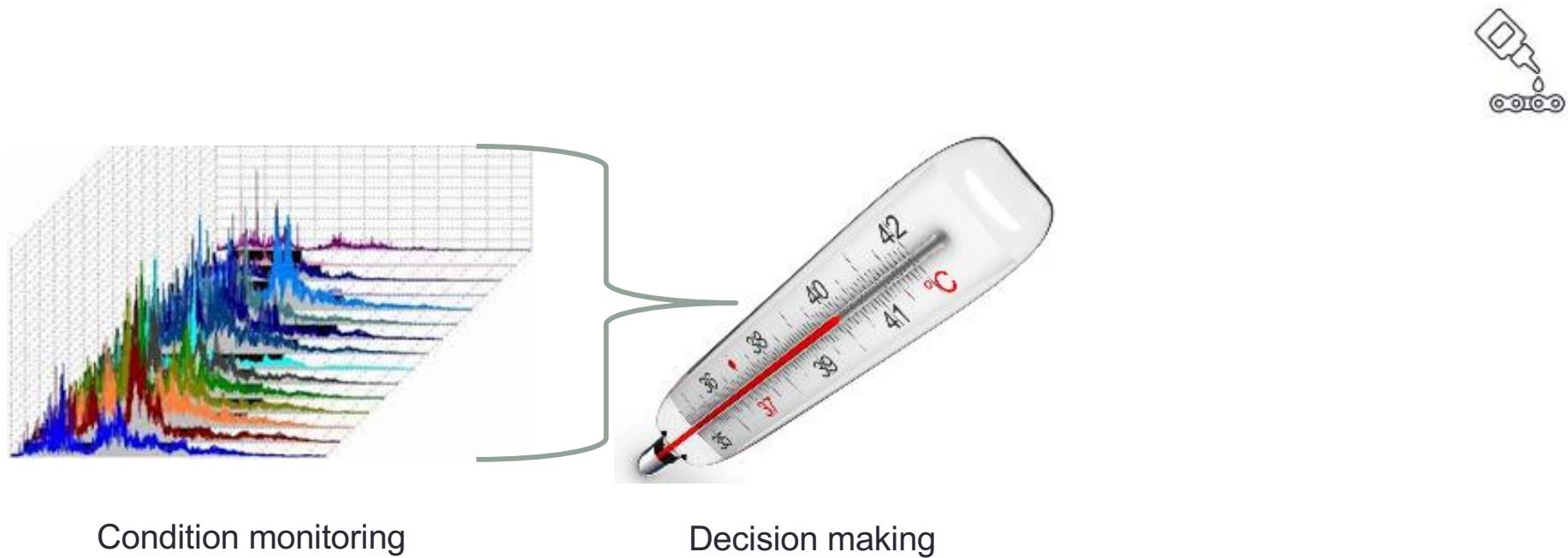


Decision making

**Data based
(model free)
estimation**



Predictive maintenance



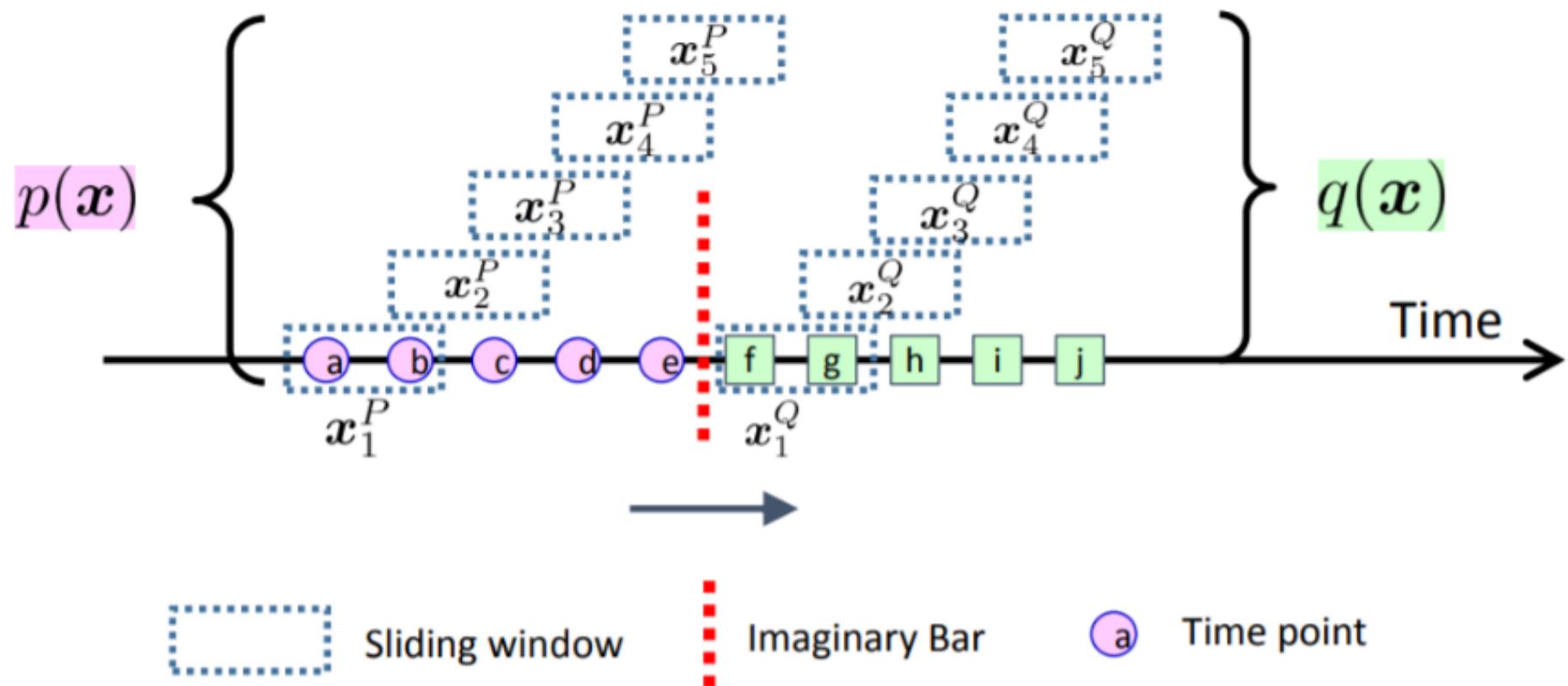
Get relevant, clean and synchronized data

- **Support Vector Machine:** Desorby et al. 2005
- **Likelihood based methods:** Kawahara & Sugiyama, 2009

Predictive maintenance

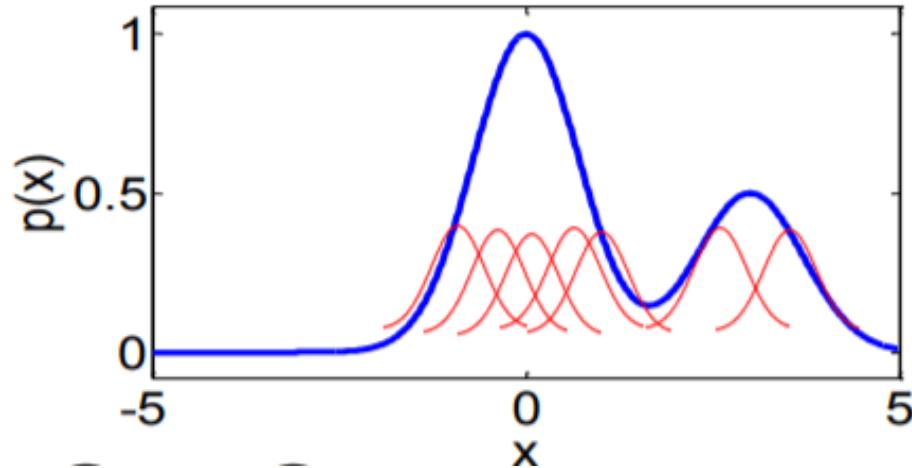
Theoretical problem: Estimate and compare densities

- Construct samples by using sliding window.
- An imaginary bar in the middle divides samples into two groups.
- Assume two groups of samples are from p and q .



Predictive maintenance

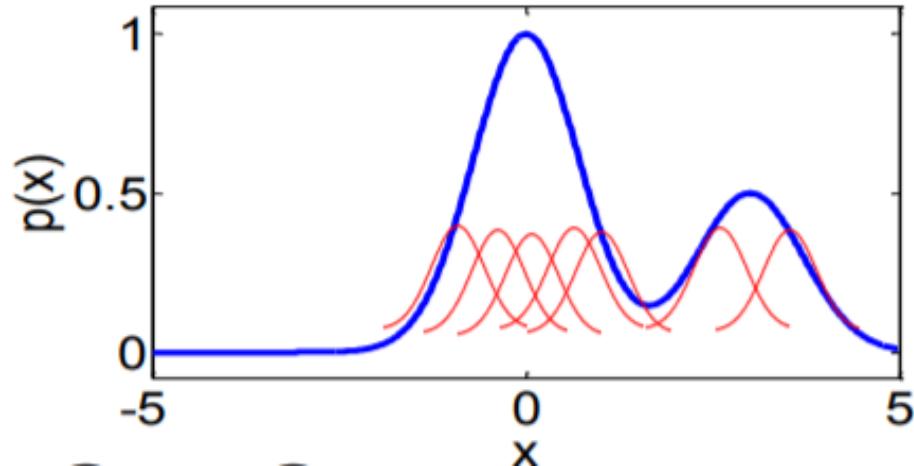
Kernel density estimation for p and q:



$$\hat{p}(\mathbf{x}; \sigma) = \frac{1}{n} \sum_{i=1}^n K_\sigma(\mathbf{x}, \mathbf{x}_i)$$
$$K_\sigma(\mathbf{x}, \mathbf{x}') = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{||\mathbf{x} - \mathbf{x}'||^2}{-2\sigma^2}\right)$$

Predictive maintenance

Direct ratio estimation for $r=p/q$:



$$\hat{p}(\mathbf{x}; \sigma) = \frac{1}{n} \sum_{i=1}^n K_\sigma(\mathbf{x}, \mathbf{x}_i)$$

$$K_\sigma(\mathbf{x}, \mathbf{x}') = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{||\mathbf{x} - \mathbf{x}'||^2}{-2\sigma^2}\right)$$

Direct Density Ratio Estimation (Sugiyama et al., 2012).

$$\frac{p(\mathbf{x})}{q(\mathbf{x})} \approx \hat{r}(\mathbf{x}; \boldsymbol{\theta}) = \sum_i^n \theta_i K_\sigma(\mathbf{x}, \mathbf{x}_i)$$

Predictive maintenance

Direct ratio estimation for $r=p/q$:

$$\widehat{\text{KL}} := \frac{1}{n} \sum_{i=1}^n \log \hat{r}(\mathbf{x}_i) \quad \text{Kulback Leibler}$$

$$\widehat{\text{PE}} := -\frac{1}{2n} \sum_{i=1}^n \hat{r}(\mathbf{x}'_i)^2 + \frac{1}{n} \sum_{i=1}^n \hat{r}(\mathbf{x}_i) - \frac{1}{2} \quad \text{Pearson}$$

Relative Pearson

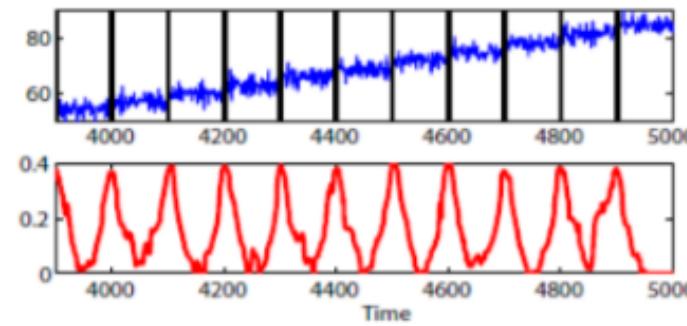
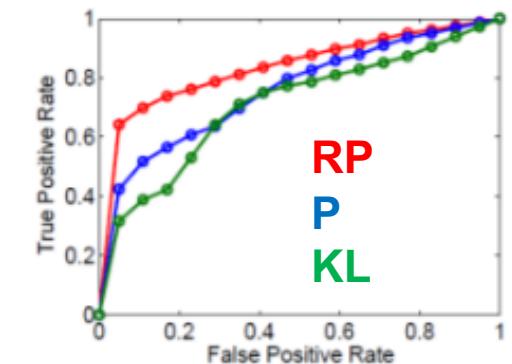
$$\widehat{\text{PE}}_\alpha = -\frac{\alpha}{2n} \sum_{i=1}^n \hat{r}(\mathbf{x}_i)^2 - \frac{1-\alpha}{2n} \sum_{i=1}^n \hat{r}(\mathbf{x}'_i)^2 + \frac{1}{n} \sum_{i=1}^n \hat{r}(\mathbf{x}_i) - \frac{1}{2}$$

Predictive maintenance

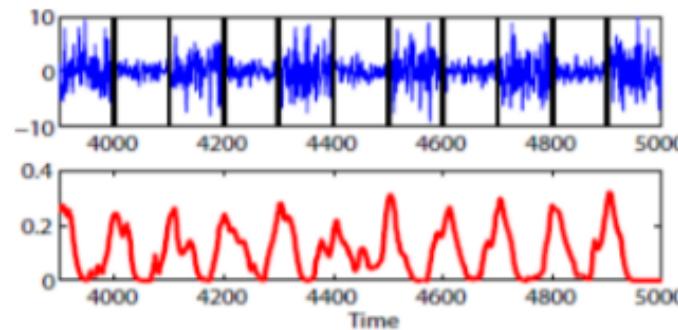
Experiment with synthetic data

— original signal
— Index function
— ground truth

Mean Shift



Variance Scaling



Example: train track maintenance

On Board Monitoring System for Tilting Trains

- Measurement of vehicle reactions
- Monitoring of the track condition

contact:
axel.fuerst@bfh

 Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Innosuisse - Schweizerische Agentur
für Innovationsförderung