

The International System of Units

Resolutions adopted

Résolutions adoptées

Bureau
↓ International des
↓ Poids et
↓ Mesures

Georg Fantner, Laboratory for Bio- and Nano- Instrumentation

Why do we need units?

Let's assume we have two pieces of rope: A & B

Rope A

Rope B

We can compare these two pieces by saying Rope B is 50% longer than rope A

Why do we need units?

Now let's assume we have three pieces of rope: A,B & C

Rope A

Rope B

Rope C

We can compare the previous pieces with the new piece C

Rope C is twice as long as rope B: $C=2*B$

Rope C is three times as long as rope A: $C=3*A$

For every new piece of rope we could do such a comparison ...

...would get quite messy!

Why do we need units?

OR: we could agree on a standard length unit: Let's call it the *EPFL Length Unit (ELU)*

Rope A

Rope B

Rope C

1 ELU

We can then say:

Rope A = 2 *ELU*

Rope B = 3 *ELU*

Rope C = 6 *ELU*

Every new piece of rope we can now measure in *ELU* and therefore that piece is automatically compared to all previously measured ropes!

How many units do we need

- Do we want to have a unit for every quantity we can measure?
We could define:
 - EPFL Length Unit: ELU
 - EPFL Area Unit : EAU
 - EPFL Volume Unit: EVU
 - ...
- *We would end up with a large number of units that are related, because we know Area (A) is defined in terms of Length (L) as:*

$$A=L * L$$

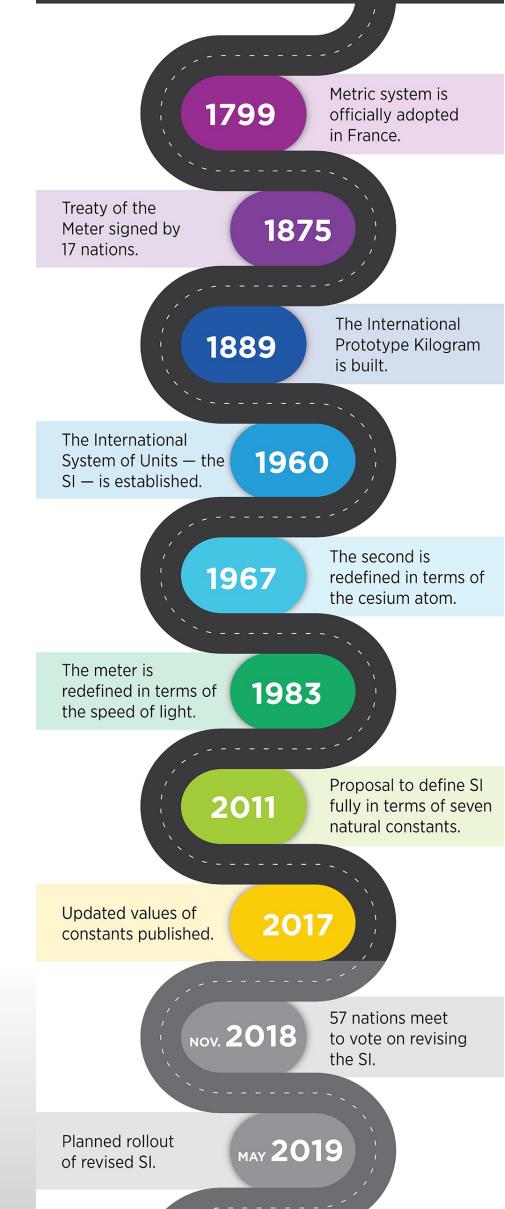
Therefore:

$$1 EAU=1 ELU^2$$

In the same way, many other physical quantities are interdependent with or are defined by other physical quantities. What we need is....

Coherent System of Units

A coherent system of units is defined such that equations between units have the same form as equations of the physical quantities or numerical values expressed in the units. Any numerical factors must be the same in both representations


There could be many possibilities for a coherent system of units.

We use the International System of Units (Système international (d'unités))

International System of Units

ROAD TO THE REVISED SI

- The SI is the modern form of the metric system
- The metric system was developed from 1791 onwards by a committee of the French Academy of Sciences
- In 1799 *mètre des Archives* and *kilogramme des Archives* were deposited in the French National Archives.
- 1812, Napoleon “reversed” this new development
- It took until 1875 for a “second attempt for unification of units”: the meter convention
- 1899 International prototype metre and International prototype kilogram replace the *mètre des Archives* and *kilogramme des Archives*
- 1960: Definition of the SI
- 1967: Definition of second based on Cs-133 hyperfine structure
- 1983: definition of meter in terms of vacuum speed of light
- 2019: The NEW SI based on definition of exact universal physical constants.

International System of Units

- The SI is the modern form of the metric system
- It is maintained by the General Conference on Weights and Measures (*CGPM, Conférence générale des poids et mesures*)
- It is based on seven base units with their corresponding **physical quantities**:

Base unit	Phys. Quantity
Ampere (A)	electrical current
Kelvin (K)	temperature
second (s)	time
meter (m)	distance
kilogram (kg)	mass
candela (cd)	luminous intensity
mole (mol)	amount of substance

International System of Units

- It has 20 pre-fixes to depict multiples and fractions of the base units:

SI prefixes							
Prefix		Base 1000	Base 10	Decimal	English word		
Name	Symbol				Short scale	Long scale	
yotta	Y	1000^8	10^{24}	1 000 000 000 000 000 000 000 000	septillion	quadrillion	
zetta	Z	1000^7	10^{21}	1 000 000 000 000 000 000 000 000	sexillion	trilliard	
exa	E	1000^6	10^{18}	1 000 000 000 000 000 000 000 000	quintillion	trillion	
peta	P	1000^5	10^{15}	1 000 000 000 000 000 000 000 000	quadrillion	billiard (Proposed)	
tera	T	1000^4	10^{12}	1 000 000 000 000 000 000 000 000	trillion	billion	
giga	G	1000^3	10^9	1 000 000 000	billion	milliard	
mega	M	1000^2	10^6	1 000 000	million		
kilo	k	1000^1	10^3	1 000	thousand		
hecto	h	$1000^{2/3}$	10^2	100	hundred		
deca	da	$1000^{1/3}$	10^1	10	ten		
		1000^0	10^0	1	one		
deci	d	$1000^{-1/3}$	10^{-1}	0.1		tenth	
centi	c	$1000^{-2/3}$	10^{-2}	0.01		hundredth	
milli	m	1000^{-1}	10^{-3}	0.001		thousandth	
micro	μ	1000^{-2}	10^{-6}	0.000 001		millionth	
nano	n	1000^{-3}	10^{-9}	0.000 000 001	billionth	milliardth	
pico	p	1000^{-4}	10^{-12}	0.000 000 000 001	trillionth	billionth	
femto	f	1000^{-5}	10^{-15}	0.000 000 000 000 001	quadrillionth	billiardth (Proposed)	
atto	a	1000^{-6}	10^{-18}	0.000 000 000 000 000 001	quintillionth	trillionth	
zepto	z	1000^{-7}	10^{-21}	0.000 000 000 000 000 000 001	sextillionth	trilliardth	
yocto	y	1000^{-8}	10^{-24}	0.000 000 000 000 000 000 000 001	septillionth	quadrillionth	

Source: Wikipedia: https://en.wikipedia.org/wiki/International_System_of_Units#Base_units

International System of Units

- It has 22 derived units:

Name	Symbol	Quantity	Expressed in terms of other SI units	Expressed in terms of SI base units
radian	rad	angle		$\text{m} \cdot \text{m}^{-1}$
steradian	sr	solid angle		$\text{m}^2 \cdot \text{m}^{-2}$
hertz	Hz	frequency		s^{-1}
newton	N	force, weight		$\text{kg} \cdot \text{m} \cdot \text{s}^{-2}$
pascal	Pa	pressure, stress	N/m^2	$\text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$
joule	J	energy, work, heat	$\text{N} \cdot \text{m}$	$\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
watt	W	power, radiant flux	J/s	$\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$
coulomb	C	electric charge or quantity of electricity		$\text{s} \cdot \text{A}$
volt	V	voltage (electrical potential difference), electromotive force	W/A	$\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-1}$
farad	F	electric capacitance	C/V	$\text{kg}^{-1} \cdot \text{m}^{-2} \cdot \text{s}^4 \cdot \text{A}^2$
ohm	Ω	electric resistance, impedance, reactance	V/A	$\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-2}$
siemens	S	electrical conductance	A/V	$\text{kg}^{-1} \cdot \text{m}^{-2} \cdot \text{s}^3 \cdot \text{A}^2$
weber	Wb	magnetic flux	$\text{V} \cdot \text{s}$	$\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \cdot \text{A}^{-1}$
tesla	T	magnetic field strength	Wb/m^2	$\text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-1}$
henry	H	inductance	Wb/A	$\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \cdot \text{A}^{-2}$
degree Celsius	$^{\circ}\text{C}$	temperature relative to 273.15 K		K
lumen	lm	luminous flux	$\text{cd} \cdot \text{sr}$	cd
lux	lx	illuminance	lm/m^2	$\text{m}^{-2} \cdot \text{cd}$
becquerel	Bq	radioactivity (decays per unit time)		s^{-1}
gray	Gy	absorbed dose (of ionizing radiation)	J/kg	$\text{m}^2 \cdot \text{s}^{-2}$
sievert	Sv	equivalent dose (of ionizing radiation)	J/kg	$\text{m}^2 \cdot \text{s}^{-2}$
katal	kat	catalytic activity		$\text{s}^{-1} \cdot \text{mol}$

Source: http://getmetricized.blogspot.com/2015/04/introducing-si-base-units-and-derived_7.html

Defining units based on physical phenomena

In order to define a unit, we all have to agree on some things:

1. We could use a physical phenomenon what we assume to be constant and that is measurable

Example 1: We could define time as a fraction of a day:

$$1\text{s} = 1/86\,400 \text{ of a day}$$

Problem: The physical phenomenon needs to be constant and must be clearly defined!

How do we define a day?

- The time it takes for the earth to do a full rotation (stellar day)
- The time it takes between two times that the sun is at its highest point (solar day)

These two definitions are NOT the same! The solar day is also not constant! It depends on the time of year!

Defining units based on physical phenomena

Example 2: We could define 1 degree centigrade:

$1^{\circ}\text{C} = 1/100$ of the difference in temperature between the freezing and boiling point of water

Problem: The freezing and boiling points of water depend on the atmospheric pressure, and hence the altitude and weather!

Example 3: $1\text{m} = 10^{-7} * \text{distance between north pole and equator when passing through Paris}$

Problem: This definition is neither very practical or measurable.

Defining units based on physical artefacts

2. Another way is to agree on one physical manifestation of the unit to which all others are compared. Such physical manifestations are called artefacts (or sometimes prototypes).

Example 4: The prototype kg and m were made in 1889 out of 90% platinum and 10% iridium. Multiple copies were made to which all other objects could be compared.

Problem:

- There are a limited number of copies. Making more copies from copies can cause systematic errors.
- Artefacts can change over time. The prototype kg loses ca 0.5 ug/year

Defining units based on universally true constants

3. A better approach would be to define units based on universally true constants and “proven” physical laws that link the constants to quantities that have specific units.

Example 5: The second (s) is defined based on the hyperfine structure of Cs-133.
It is taking the fixed numerical value of the cesium frequency:

$$\Delta\nu_{Cs} = \Delta\nu(^{133}Cs)_{HFS} = 9'192'631'770 \text{ Hz}$$

with $1\text{Hz}=1\text{s}^{-1}$

Based on quantum mechanics we assume that this transition is constant and universal all over the world when (measured under the same conditions).

We can then derive the definition of other units based on physical laws and physical constants with fixed numerical values.

Defining units based on universally true constants

Let's look at the relationship between distance and time:

$$\Delta x = v \cdot \Delta t$$

- Let's first use the s based on the CS-133 method, and the meter based on the prototype meter artefact. We can then calculate for any object the speed that it travels at:

$$v = \frac{\Delta x}{\Delta t}$$

- We can also measure this speed for a photon travelling in vacuum:

$$v_{photon} = c = 299'792'458,0 \dots \frac{m}{s}$$

The precision of c depends on the precision of the prototype meter we used.

But we know from the theory of relativity that c is constant!

- Instead of using the prototype meter, we could define:

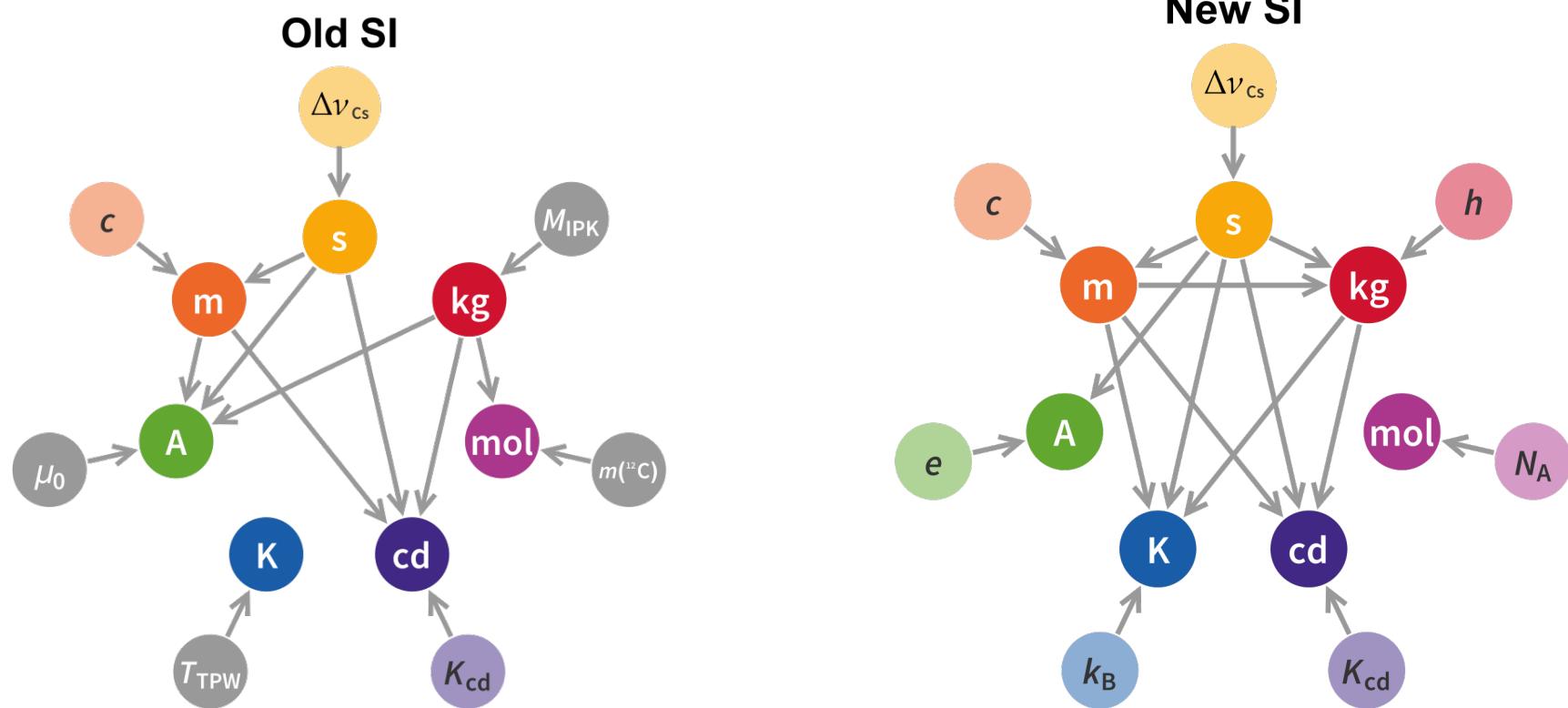
$$v_{photon} = c = 299'792'458 \frac{m}{s} \text{ EXACT!}$$

From that we can define that the meter is equal to the distance light travels in vacuum in 299'792'458s.

If c is universal, then this defines the *meter* universally!

Defining units based on universally true constants

In a similar way we can define all other base units by agreeing on exact numerical values for specific physical constants.


This is the BIG CHANGE in the International System of Units from May 20th 2019!

All base units were re-defined based on physical constants and no more physical artefacts are in use.

The constants with exact numerical values are:

$h = 6.62607015 \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$	Planck's constant
$e = 1.602176634 \times 10^{-19} \text{ A} \cdot \text{s}$	elementary charge
$k = 1.380649 \times 10^{-23} \text{ kg} \cdot \text{m}^2 \cdot \text{K}^{-1} \cdot \text{s}^{-2}$	Boltzmann constant
$N_A = 6.02214076 \times 10^{23} \text{ mol}^{-1}$	Avogadro's number
$c = 299792458 \text{ m} \cdot \text{s}^{-1}$	Vacuum speed of light
$\Delta v_{Cs} = \Delta v(^{133}\text{Cs})_{hfs} = 9192631770 \text{ s}^{-1}$	Hyperfine structure transition frequency of the caesium-133 atom
$K_{cd} = 683 \text{ cd} \cdot \text{sr} \cdot \text{s}^3 \cdot \text{kg}^{-1} \cdot \text{m}^{-2}$	Luminous efficacy

Fundamental differences between old and new SI

By Emilio Pisanty - Own work, CC BY-SA 4.0, <https://commons.wikimedia.org/w/index.php?curid=50713156>

Dimensional Analysis

- The SI is a coherent system of units so that equations between units have the same form as the equations expressed in physical quantities or numerical values.
- This is very convenient, because it allows us to use dimensional analysis to find relationships that we might not know yet.
- Let's look at a pendulum: what is the formula for a pendulum period?
- What quantities could influence the time the pendulum takes for one period?

The universe by orders of magnitude

Table 1-3 The Universe by Orders of Magnitude

Size or Distance	(m)	Mass	(kg)	Time Interval	(s)
Proton	10^{-15}	Electron	10^{-30}	Time for light to cross nucleus	10^{-23}
Atom	10^{-10}	Proton	10^{-27}	Period of visible light radiation	10^{-15}
Virus	10^{-7}	Amino acid	10^{-25}	Period of microwaves	10^{-10}
Giant amoeba	10^{-4}	Hemoglobin	10^{-22}	Half-life of muon	10^{-6}
Walnut	10^{-2}	Flu virus	10^{-19}	Period of highest audible sound	10^{-4}
Human being	10^0	Giant amoeba	10^{-8}	Period of human heartbeat	10^0
Highest mountain	10^4	Raindrop	10^{-6}	Half-life of free neutron	10^3
Earth	10^7	Ant	10^{-4}	Period of Earth's rotation	10^3
Sun	10^9	Human being	10^2	Period of Earth's revolution around the Sun	10^7
Distance from Earth to the Sun	10^{11}	Saturn V rocket	10^6		
Solar system	10^{13}	Pyramid	10^{10}	Lifetime of human being	10^9
Distance to nearest star	10^{16}	Earth	10^{24}	Half-life of plutonium-239	10^{12}
Milky Way galaxy	10^{21}	Sun	10^{30}	Lifetime of mountain range	10^{15}
Visible universe	10^{26}	Milky Way galaxy	10^{41}	Age of Earth	10^{17}
		Universe	10^{52}	Age of universe	10^{18}

©2008 by W.H. Freeman and Company

Exercise problems I:

Redefinition of the kg based on Planck's constant:

- Since May 20th 2019, the kg is no longer defined based on the prototype kg but based on the exact definition of Planck's constant.
- How is the base unit kg defined when having s defined using the Cs-133 definition and m defined through c ? Prove that the dimensions are correct.
- *Hint: think about the energy of a photon.*